
A Unified Transformation Technique for Multilevel Blocking
M. Jimfnez, J. M. Llaberia, A. Fernfindez and E. Morancho

Departamento de Arquitectura de Computadores, Universidad Politfcnica de Catalufia
Gran Capitfin s/n, M6dulo D6, E-08034 Barcelona, (Spain), e-mail: marta@ac.upc.es

Abstract. This paper presents a new unified method for simultaneously
tiling the register and cache levels of the memory hierarchy. We will only
focus on the code transformation phase of tiling. Our algorithm uses
strip-mining and loop interchange on all memory hierarchy levels to deter-
mine the tiles as usual, and, afterwards, and due to the special characteristics
of the register level, we apply index set splitting, unrolling and scalar
replacement to this level. After applying strip-mining, the iteration space is
non-convex. To perform in a single step the loop interchange in non-convex
iteration spaces, we use non-unimodular matrices. The order proposed to per-
form index set splitting to the loops guarantees that each loop in the nest has
to be processed only once and also avoids code explosion.

1 I n t r o d u c t i o n
To hide the details of the memory hierarchy from the user, several code transforma-
tion techniques have been developed. These techniques aim at exploiting the temporal
and spatial locality properties of a program.

Iteration space tiling is a code restructuration technique used to reduce a pro-
gram's data working set. Several proposals in the literature consider loop tiling on
one, two or more levels of the hierarchy (registers, cache levels, TLB, virtual
memory).Tiling an iteration space can be implemented using unroll & jam and scalar
replacement at the register level[i][2], and applying strip-mining and loop inter-
change at all other levels of the hierarchy[3][6][9].

Tiling complex iteration spaces presents several problems. Applying strip-mining
to a loop nest produces a non-convex iteration space since some of the loops in the
nest will end up with a step different from 1. Therefore, the loop interchange needed
after strip-mining can not be done using techniques based on unimodular transforma-
tion matrices [10]. Previous work on tiling, such as Wolf and Lam [10], uses ad-hoc
methods to implement the loop interchange after strip-mining, and does not give a
general algorithm. At the register level, S. Can" [2] uses pattern recognition tech-
niques on the loop bounds to apply unroll and jam. Nevertheless, when the iteration
space is complex, the loop bounds can not be matched by the patterns and no general
algorithm to partition these complex iteration spaces into simpler ones, that could
be recognized through patterns, is presented in [2].

Commercial compilers such as KAP from Kuck & Associates are not always able
to produce an iteration space tiling when the loop bounds are affine functions of the
surrounding loops iteration variables. These types of bounds are commonly found in

linear algebra algorithms.
This paper presents a new unified method for simultaneously tiling the register

and cache levels of the memory hierarchy. Because we do not use pattern recognition
techniques, our method works for any iteration space having loop bounds defined as
affine functions of the surrounding loops iteration variables. We will focus on the code
transformation phase of filing and we will assume that dependency analysis and
locality analysis have already been performed [10][9]. Our algorithm uses

403

strip-mining and loop interchange on all memory hierarchy levels (cache and regis-
ters) to determine the tiles as usual, and, afterwards, and due to the special charac-
teristics of the register level, we also apply index set splitting, unrolling and scalar
replacement to this level. The loop interchange in non-convex iteration spaces
(spaces resulting after strip-mining) is done in a single step using non-unimodular
matrices. We also use an order to perform index set splitting that guarantees that each
loop in the nest has to be processed only once and also avoids code explosion.

2 Transformation Steps
We use the Multilevel Orthogonal Block (MOB) forms [7] to compute the tiles in
each level of the memory hierarchy. The MOB forms provide maximum reuse of data
in all levels simultaneously and their orthogonality property provides a simple
method to optimize the form and the size of the tiles at each level. We will assume
that the loops to be transformed are perfectly nested, fully permutable[8] and the
loops bounds are affine functions of the surrounding loops iteration variables.
The steps we follow are:

Tiling: To all levels of the memory hierarchy (cache and registers):
1. Apply strip-mining to all loops selected using the MOB forms.
2. Interchange loops as determined by the MOB forms.

At the register level:
3. Apply index set splitting repeatedly until being able to unroll those loops

that provide data reuse at the register level.
4. Distribute the surrounding loop of the loops we want to fully unroll.
5. Fully unroll all innermost loops.
6. Apply scalar replacement to all innermost loops [2].

Due to the lack of space, in this paper we will focus only at the register level. In
[5] we explain how to perform strip-mining and interchange in non-convex iteration
spaces in a single step.

2.1 Register Level

To exploit data locality at the register level after applying the loop interchange trans-
formation, we need to fully unroll the most internal loops in the nest (loops that pro-
vide data reuse at this level) and to apply scalar replacement. We will refer to the
loops that we want to unroll as Unroll Candidates Loops (UCLs).

Scalar replacement [2] finds opportunities for reuse of subscripted variables and
replaces the references involved by references to temporal scalar variables; we use sca-
lar replacement for determining array elements that are loop invariant with respect to
the iteration variable of the innermost loop.

The loop i of Fig. 1 (a) is an UCL and can be fully unrolled using conditional state-
ments in the loop body as shown in Fig.l(b). Loop i inside the if-part can be fully
unrolled since it always executes the same number of iterations. The choice between
the unrolled and non-unrolled version is performed at runtime by the if-test. The
overhead of the if-test seems to be equivalent to the overhead of the max function in
Fig.l(a). Nevertheless, the problem of using conditional statements is that, in the
general case, the conditional statement cannot be moved outside the loop that sur-
round the UCLs (loop k in Fig.l(b)) and it is not possible to apply scalar replacement
to this loop.

In general, the bounds of the UCLs are affine functions of the surrounding
loops iteration variables, and it is not possible to apply scalar replacement to the
innermost loop, and therefore there is no data reuse at the register level.To overcome

404

do lO iB=Li, Ui , B i

do 10 k = L k , Ue, Be
do 10 i = max(/B, k), i"+Bi-1

�9 . . A (i) . . .
10 continue

(a)

do 10 il~=Li, U i, B i do 10 ilJ=Li, Ui , B i

do 1 o k =L k , U e, B e do 20 k =Le, min(i B , Ue), Be
i f (i s . ge. k) t h e n do 20 i = i n, iB+Bi-1

do ao i= i", in+Bcl ...A (i).--
�9 . . A (i) . . . 2o continue

2o continue do lok= k,Ue, Be
else d o l o i = k , iB+Bi-1

do3oi=k, iB+Bi-1 ...A(i)-..
�9 ..A (i)... io continue

3 0 enddo
endi f

1o continue (b) (c)

Fig. 1. (a) Example of loop nest. (b) Code using conditional statements.
(c) Loop nest after applying ISS.

this problem, we use Index Set Splitting (ISS) on the external loops in order to sim-
plify the bounds of the UCLs, so that they can be fully unrolled.

For example, to unroll loop i in Fig.l(a), it is necessary that i always executes the
same number of iterations. Isolating the bounds i s and iB+Bi-1 from the other bounds,
we will achieve this goal.

In the example we split loop k into two new loops in such a way that in every
iteration of one of the new loops the constraint k< i s holds, and in every iteration of
the other loop the constraint k > i B holds. Now we can simplify the bounds of loop i in
both new loop nests. In the loop nest where k < i ~ holds, the lower complex bound of i
can be simplified to i B (max(/B, k)= is). Similarly, in the loop nest where k > i B holds, the
lower complex bound of i can be simplified to k (max(/B, k)= k) .The resulting code after
index set splitting is shown in Fig.l(c). The UCL i of the first loop nest always exe-
cutes Bi iterations and can be fully unrolled. The loop i of the second loop nest never
executes a constant number of iteration and cannot be unrolled.

The order in which we apply ISS is very important to avoid processing a loop
more than once and to avoid code explosion. We first apply ISS to the loops that we
want to unroll (UCLs) from innermost to outermost (this ordering makes possible
processing each loop only once). Then, ISS is applied to the rest of the loops from
outermost to innermost (this second ordering avoids code explosion). See [5] for fur-
ther details on how we apply ISS. Due to this order, it can happen that the UCLs are
not directly surrounded by a loop. In this case it is necessary to apply loop distribu-
tion after ISS to be able to apply scalar replacement later on. In particular, we will
distribute the loop that surrounds the UCLs. Figure 2(a) shows code of Fig.l(a) after
applying unroll and scalar replacement.

3 Results and Conclusions
We used a triangular matrix product (MxM) algorithm and a rank 2k update (SYR2K)
algorithm to evaluate the effects of the new method proposed. The matrices in the
SYR2K algorithm are banded and stored in compact form, therefore the complexity
of the loop bounds in SYR2K is higher than in the triangular matrix product algorithm.

The two algorithms are compiled first without applying any restructuring transfor-
mation, then using the KAP compiler to restructure the code, and finally applying our
new method. We compare the performance (Mflops) obtained by each of these three
versions of the algorithms on an ALPHA AXP 21064 (direct-mapped 8Kb cache
memory and 32 floating point registers). In the results presented in this paper, we con-
sidered registers and first level cache.

In the triangular MxM algorithm the KAP compiler generates different code
depending on the initial loop ordering so we have selected the ordering that yields the

405

do 10 iB=Li, Ui, B i

r l = A (i n)
r 2 = A (i n +1)
, , o

rn=A (i B +Bid)
do 2o k=Lk, min(i 8, Uk), Bk

" - - r l " ' "
""172"'"

�9 �9 " r n - �9 �9

20 continue

A (i ~) = r l
A (is +1) = r 2
o o o

A (i s +Bi -1) = r n
do l o k = k , U k , B k

do 10 i = k, iS+Bi-1
. . .A(i) . . .

�9 MxM proposed --o-- SYR2K proposed
----,,-- MxM Kap SYR2K Kap

MxM no-restructuring--,~-- SYR2K no-restructuring

' - - X ' A "a')<'A'X'A'X'&'X" "~X'&'Ic.-A-X-A.. l i t - •

i0 continue (a) (b) o s~ ,&~ ,9~ 2&~

Fig. 2, (a) Loop nest after applying unroll and scalar replacement. Matrix size
(b) Performance obtained by each method for different matrix sizes.

best performance. Figure 2(b) (solid lines) shows how our proposal doubles the
Mflops obtained by the KAP compiler. For SYR2K the KAP compiler is only able to
apply scalar replacement without unrolling. Figure 2(b) (dotted lines) shows the
Mflops obtained with a fixed band of 50 and different matrix sizes for the three ver-
sions of the SYR2K algorithm. The proposed method obtains a speedup of around 4
over the KAP compiler.

In this paper we have presented a new unified method for code restructuring that
aims at exploiting all levels of the memory hierarchy. The performance obtained with
the method presented in this paper is substantially higher than the performance
obtained by commercial compilers. Moreover, the relative improvement obtained
with our method increases as the complexity of the loop bounds (such as in SYR2K)
also increases.
A c k n o w l e d g m e n t s

This work was supported by the Ministry of Education and Science of Spain (CICYT TIC-0429/95).
R e f e r e n c e s

1. D. Callahan, S. Carr, K. Kennedy. Improving Register Allocation for Subscripted Variables. Int. Conf.
on Programming Language Design and Implementation, June 1990, pp. 53-65

2. S. Carr. Memory-Hierarchy Management. Ph.D. Dissertation, Rice University, Feb 1993.
3. S. Carr, K. McKinley, C-W. Tseng. Compiler Optimizations for Improving Data Locality. Int. Conf. on

Architectural Support for Programming Languages and Operating Systems, Aug 1994, pp.252-262
4. A. Femfindez, J.M. Llaberfa, M. Valero-Garcfa. Loop Transformation using non-unimodular matrices.

IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 8, Aug 1995, pp. 832-840
5. M. Jim6nez, J.M. Llaberfa, A. Fem~indez, E. Morancho. A Unified Transformation Technique for Mul-

tilevel Blocking. TR. UPC-DAC-1995-51, Dept. of Computer Architecture, Polytechnic University of
Catalonia, Dec 1995.

6. M. Lam, E.Rothberg, M. Wolf. The Cache Performance and Optimizations of Blocked Algorithms. Int.
Conf. on Architectural Support for Programming Languages and Operating Systems, 1991, pp. 63-74

7. J.J Navarro, T. Juan, T. Lang. MOB Forms: A Class of Multilevel Block Algorithms for Dense Linear
Algebra Operations. Int. Conf. on Supercomputing, July 1994, pp. 354-363

8. M. Wolf. Improving Locality and Parallelism in Nested Loops. Technical Report CSL-TR-92-538,
Stanford University, Aug 1992.

9. M. Wolf, M. Lam. A Data Optimizing Algorithm. Int. Conf. on Programming Language Design and
Implementation, June 1991, pp. 30-44

10. M. Wolf, M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. IEEE
Trans. on Parallel and Distributed System, Vol. 2, No. 4, October 1991, pp. 452-471

11. M. Wolfe. More Iteration Space Tiling. Int. Conf. on Supercomputing, 1989, pp. 655-664

