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Abstract. This paper presents a new unified method for simultaneously 
tiling the register and cache levels of the memory hierarchy. We will only 
focus on the code transformation phase of tiling. Our algorithm uses 
strip-mining and loop interchange on all memory hierarchy levels to deter- 
mine the tiles as usual, and, afterwards, and due to the special characteristics 
of the register level, we apply index set splitting, unrolling and scalar 
replacement to this level. After applying strip-mining, the iteration space is 
non-convex. To perform in a single step the loop interchange in non-convex 
iteration spaces, we use non-unimodular matrices. The order proposed to per- 
form index set splitting to the loops guarantees that each loop in the nest has 
to be processed only once and also avoids code explosion. 

1 I n t r o d u c t i o n  
To hide the details of the memory hierarchy from the user, several code transforma- 
tion techniques have been developed. These techniques aim at exploiting the temporal 
and spatial locality properties of a program. 

Iteration space tiling is a code restructuration technique used to reduce a pro- 
gram's data working set. Several proposals in the literature consider loop tiling on 
one, two or more levels of the hierarchy (registers, cache levels, TLB, virtual 
memory).Tiling an iteration space can be implemented using unroll & jam and scalar 
replacement at the register level[i][2], and applying strip-mining and loop inter- 
change at all other levels of the hierarchy[3][6][9]. 

Tiling complex iteration spaces presents several problems. Applying strip-mining 
to a loop nest produces a non-convex iteration space since some of the loops in the 
nest will end up with a step different from 1. Therefore, the loop interchange needed 
after strip-mining can not be done using techniques based on unimodular transforma- 
tion matrices [10]. Previous work on tiling, such as Wolf and Lam [10], uses ad-hoc 
methods to implement the loop interchange after strip-mining, and does not give a 
general algorithm. At the register level, S. Can" [2] uses pattern recognition tech- 
niques on the loop bounds to apply unroll and jam. Nevertheless, when the iteration 
space is complex, the loop bounds can not be matched by the patterns and no general 
algorithm to partition these complex iteration spaces into simpler ones, that could 
be recognized through patterns, is presented in [2]. 

Commercial compilers such as KAP from Kuck & Associates are not always able 
to produce an iteration space tiling when the loop bounds are affine functions of the 
surrounding loops iteration variables. These types of bounds are commonly found in 

linear algebra algorithms. 
This paper presents a new unified method for simultaneously tiling the register 

and cache levels of the memory hierarchy. Because we do not use pattern recognition 
techniques, our method works for any iteration space having loop bounds defined as 
affine functions of the surrounding loops iteration variables. We will focus on the code 
transformation phase of filing and we will assume that dependency analysis and 
locality analysis have already been performed [10][9]. Our algorithm uses 
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strip-mining and loop interchange on all memory hierarchy levels (cache and regis- 
ters) to determine the tiles as usual, and, afterwards, and due to the special charac- 
teristics of the register level, we also apply index set splitting, unrolling and scalar 
replacement to this level. The loop interchange in non-convex iteration spaces 
(spaces resulting after strip-mining) is done in a single step using non-unimodular 
matrices. We also use an order to perform index set splitting that guarantees that each 
loop in the nest has to be processed only once and also avoids code explosion. 

2 Transformation Steps 
We use the Multilevel Orthogonal Block (MOB) forms [7] to compute the tiles in 
each level of the memory hierarchy. The MOB forms provide maximum reuse of data 
in all levels simultaneously and their orthogonality property provides a simple 
method to optimize the form and the size of the tiles at each level. We will assume 
that the loops to be transformed are perfectly nested, fully permutable[8] and the 
loops bounds are affine functions of the surrounding loops iteration variables. 
The steps we follow are: 

Tiling: To all levels of the memory hierarchy (cache and registers): 
1. Apply strip-mining to all loops selected using the MOB forms. 
2. Interchange loops as determined by the MOB forms. 

At the register level: 
3. Apply index set splitting repeatedly until being able to unroll those loops 

that provide data reuse at the register level. 
4. Distribute the surrounding loop of the loops we want to fully unroll. 
5. Fully unroll all innermost loops. 
6. Apply scalar replacement to all innermost loops [2]. 

Due to the lack of space, in this paper we will focus only at the register level. In 
[5] we explain how to perform strip-mining and interchange in non-convex iteration 
spaces in a single step. 

2.1 Register Level 

To exploit data locality at the register level after applying the loop interchange trans- 
formation, we need to fully unroll the most internal loops in the nest (loops that pro- 
vide data reuse at this level) and to apply scalar replacement. We will refer to the 
loops that we want to unroll as Unroll Candidates Loops (UCLs). 

Scalar replacement [2] finds opportunities for reuse of subscripted variables and 
replaces the references involved by references to temporal scalar variables; we use sca- 
lar replacement for determining array elements that are loop invariant with respect to 
the iteration variable of the innermost loop. 

The loop i of Fig. 1 (a) is an UCL and can be fully unrolled using conditional state- 
ments in the loop body as shown in Fig.l(b). Loop i inside the if-part can be fully 
unrolled since it always executes the same number of iterations. The choice between 
the unrolled and non-unrolled version is performed at runtime by the if-test. The 
overhead of the if-test seems to be equivalent to the overhead of the max function in 
Fig.l(a). Nevertheless, the problem of using conditional statements is that, in the 
general case, the conditional statement cannot be moved outside the loop that sur- 
round the UCLs (loop k in Fig.l(b)) and it is not possible to apply scalar replacement 
to this loop. 

In general, the bounds of the UCLs are affine functions of the surrounding 
loops iteration variables, and it is not possible to apply scalar replacement to the 
innermost loop, and therefore there is no data reuse at the register level.To overcome 
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do lO iB=Li, Ui ,  B i 

do 10 k = L k ,  Ue,  Be 
do 10 i = max(/B, k), i"+Bi-1 

�9 . . A ( i  ) . . .  
10 continue 

(a) 

do 10 il~=Li, U i, B i do 10 ilJ=Li, Ui ,  B i 

do 1 o k =L  k , U e, B e do 20 k =Le, min(i B , Ue), Be 
i f (i s . ge.  k ) t h e n  do 20 i = i n, iB+Bi-1 

do  ao i= i", in+Bcl ...A (i).-- 
�9 . . A ( i ) . . .  2o continue 

2o continue do lok= k,Ue, Be 
else d o l o i = k ,  iB+Bi-1 

do3oi=k,  iB+Bi-1 ...A(i )-.. 
�9 ..A (i)... io continue 

3 0 enddo 
endi f 

1o continue (b) (c) 

Fig. 1. (a) Example of loop nest. (b) Code using conditional statements. 
(c) Loop nest after applying ISS. 

this problem, we use Index Set Splitting (ISS) on the external loops in order to sim- 
plify the bounds of the UCLs, so that they can be fully unrolled. 

For example, to unroll loop i in Fig.l(a), it is necessary that i always executes the 
same number of iterations. Isolating the bounds i s and iB+Bi-1 from the other bounds, 
we will achieve this goal. 

In the example we split loop k into two new loops in such a way that in every 
iteration of one of the new loops the constraint k< i s holds, and in every iteration of 
the other loop the constraint k > i  B holds. Now we can simplify the bounds of loop i in 
both new loop nests. In the loop nest where k < i  ~ holds, the lower complex bound of i 
can be simplified to i B (max(/B, k)= is). Similarly, in the loop nest where k > i  B holds, the 
lower complex bound of i can be simplified to k (max(/B, k)= k) .The resulting code after 
index set splitting is shown in Fig.l(c). The UCL i of the first loop nest always exe- 
cutes Bi iterations and can be fully unrolled. The loop i of the second loop nest never 
executes a constant number of iteration and cannot be unrolled. 

The order in which we apply ISS is very important to avoid processing a loop 
more than once and to avoid code explosion. We first apply ISS to the loops that we 
want to unroll (UCLs) from innermost to outermost (this ordering makes possible 
processing each loop only once). Then, ISS is applied to the rest of the loops from 
outermost to innermost (this second ordering avoids code explosion). See [5] for fur- 
ther details on how we apply ISS. Due to this order, it can happen that the UCLs are 
not directly surrounded by a loop. In this case it is necessary to apply loop distribu- 
tion after ISS to be able to apply scalar replacement later on. In particular, we will 
distribute the loop that surrounds the UCLs. Figure 2(a) shows code of Fig.l(a) after 
applying unroll and scalar replacement. 

3 Results and Conclusions 
We used a triangular matrix product (MxM) algorithm and a rank 2k update (SYR2K) 
algorithm to evaluate the effects of the new method proposed. The matrices in the 
SYR2K algorithm are banded and stored in compact form, therefore the complexity 
of the loop bounds in SYR2K is higher than in the triangular matrix product algorithm. 

The two algorithms are compiled first without applying any restructuring transfor- 
mation, then using the KAP compiler to restructure the code, and finally applying our 
new method. We compare the performance (Mflops) obtained by each of these three 
versions of the algorithms on an ALPHA AXP 21064 (direct-mapped 8Kb cache 
memory and 32 floating point registers). In the results presented in this paper, we con- 
sidered registers and first level cache. 

In the triangular MxM algorithm the KAP compiler generates different code 
depending on the initial loop ordering so we have selected the ordering that yields the 
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do  10 iB=Li, Ui, B i 

r l = A  (i  n) 
r 2 = A  (i  n +1 ) 
, , o  

rn=A (i B +Bid) 
do 2o k=Lk, min(i 8, Uk), Bk 

" - - r l " ' "  
""172"'" 

�9 �9 " r n -  �9 �9 

20 continue 

A ( i ~) = r l  
A ( is  +1 ) = r 2  
o o o  

A ( i  s +Bi -1) = r n  
do  l o k = k , U k , B  k 

do  10 i = k, iS+Bi-1 
. . .A( i  ) . . .  

�9 MxM proposed --o-- SYR2K proposed 
----,,-- MxM Kap . . . . .  SYR2K Kap 

MxM no-restructuring--,~-- SYR2K no-restructuring 

' - - X ' A  "a')<'A'X'A'X'&'X" "~X'&'Ic.-A-X-A..  l i t - •  . . . . . . . . . . . .  

i0 continue (a) (b) o s~ . . . .  ,&~ . . . .  ,9~ . . . .  2&~ 

Fig.  2, (a) Loop nest after applying unroll and scalar replacement. Matrix size 
(b) Performance obtained by each method for different matrix sizes. 

best performance. Figure 2(b) (solid lines) shows how our proposal doubles the 
Mflops obtained by the KAP compiler. For SYR2K the KAP compiler is only able to 
apply scalar replacement without unrolling. Figure 2(b) (dotted lines) shows the 
Mflops obtained with a fixed band of 50 and different matrix sizes for the three ver- 
sions of the SYR2K algorithm. The proposed method obtains a speedup of around 4 
over the KAP compiler. 

In this paper we have presented a new unified method for code restructuring that 
aims at exploiting all levels of the memory hierarchy. The performance obtained with 
the method presented in this paper is substantially higher than the performance 
obtained by commercial compilers. Moreover, the relative improvement obtained 
with our method increases as the complexity of the loop bounds (such as in SYR2K) 
also increases. 
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