
Implementing Pipelined Computation and
Communication in an HPF Compiler

Thomas Brandes 1.
Fr@d@ric Desprez 2.*

1 GMD, SCAI
Schloss Birlinghoven, P.O. Box 1319, 53754 St. Augustin, Germany

2 LIP, ENS Lyon, CNRS URA 1398, INRIA Rh6ne-Alpes
46, All@e d'Italie, 69364 LYON cedex 07, France

Abstract . Many scientific applications can benefit from pipelining compu-
tation and communication. Our aim is to provide compiler and runtime sup-
port for High Performance Fortran applications that could benefit from these
techniques. This paper describes the integration of a library for pipelined
computations in the runtime system. Results on some application kernels are
given.

1 I n t r o d u c t i o n

With the introduction of High Performance Fortran (HPF) [KLS+94], it is possible
to use the data parallel programming paradigm in a very convenient way for scien-
tific applications. With current compilation technology, these programs will execute
phases of computations and communications on differents sets of data and no over-
lap exists between communications and computations. Moreover, communication
phases are synchronous, i.e. each processor executes these phases at the same time
and waits until the last processor completes his communication phase. An important
task of the HPF compiler is to detect the potential of overlapping computation and
communication and to take efficient use of it.

Overlapping is not always possible because of the dependences within the code. In
this case the computation might be broken into smaller pieces that can be executed
in a pipelined fashion. This is also called macro-pipelining [Kin88, Tse93]. Usually,
the resulting code of macro-pipelining is very complicated. But we will show that it
is possible to use runtime system functions that do this splitting at runtime. This
does not only decrease the complexity of the HPF compiler, but also allows the
optimization of overlapping computation and communication at runtime. This can
be done by making some runtime measurements that determines the best size of
granularity.

Though most of the techniques are already known, this paper focus on the effi-
cient use and the integration in an existing HPF compilation system. The runtime
functions are a new version of the LOCCS library (Low Overhead Communication
and Computation Subroutines) that has been first presented in [DT92].

* This works has been supported by the Esprit-6643 project PPPE (Portable Parallel
Programming Environment)

'~ This work has been supported by the INRIA Rhbne-Alpes and the PRC-GDR PRS

460

2 P i p e l i n e d C o m p u t a t i o n s

In pipelined computations, a processor cannot begin execution until it receives results
computed by its predecessor. Though this kind of pipelined execution for its own is
still a sequential execution, there are two possibilities to extract partial parMlelism
by overlapping computations. If one pipelined computation follows another one, all
processers become busy when the pipeline is filled. The other possibility is to break
the computation and to send partial results. By this way the processors may overlap
their computations as shown in Figure 1.

The ADI algorithm in Figure 2 is a typical example that benefits from pipelining
computation. Assume that the columns are distributed in a block fashion among
the available processors. The first loop nest contains no dependence and can be
executed in parallel. In the second loop nest, every processor computes the results
in row order, sending the last value to the next processor as soon as it is ready. This
strategy produces a pipetined effect.

(a) coare~r '~ed @) r ~ , r ~ ed (0 mKUum-grained

PARAMETER (N=...)
REAL, DIMENSION (hi,N) :: A.B
DISTRIBUTE (*, BLOCK) :: A, B
DOI=2, N
DOI= 1,N
A(I,D = A(I$) - A(I-1 j)*B(I,.O

ENDDO
END DO
DOI=2,N
DOI= 1,N
A(IgO = A(I,D - AfIJ-1)*B(I,D

END DO
END DO

Fig. 1. Breaking up a pipelined computa-
tion.

Fig. 2. ADI algorithm in HPF.

Usually, this method is not very efficient due to the large communication startup
time on MIMD message-passing machines. Therefore, a variant of the method is
chosen where each processor computes a few rows before communicating the results

(tiling).

3 I m p l e m e n t a t i o n w i t h i n A D A P T O R

ADAPTOR (Automatic Data Parallelism Translator) is a public domain compilation
system developed at GMD for compiling data parallel HPF programs to equivalent
message passing programs [BZ94].

Instead of generating directly complex pipelining code for loop nests, ADAPTOR
provides a driver routine that is implemented within the runtime system DALIB.

461

This routine is called with the sections belonging to the iteration space and with the
corresponding data dependences. The first parameter is the name of the local sub-
routine that contains the code for one tile. The compiler has to find cross-processor
loops and must generate the call to the routine as well as the code for the local
subroutine.

PA LtlIJE'TE.t (| ~ . . .)
]L~lil, D~I~ISXDII (| , |) ; : A. B

!l[/'F$ BIS"ELTBOT~ (*.BLOCK) : : JZ. B

DO I s 2 , I
DO J �9 1 , I

,IL(]~,J) �9 A(~[,,]) - A (] ~ * I , J) * B (I , 3)
EID DQ

E]D DO
CALL DkLI~-LOCCS.SRIF-s (BLDCK, 2, O,

1 (: , 2 : |) , [0 , 1] , B (: , 2 : |) , f'O,O])

F.[TZIISIC (IPF.LDCAL) SgBIOITZgs BLOCK (A, B)
LEXL A (: , :) , B { : , :)

!IIPF$ DISTLIB~'s163 *(*.BLDC:X) : : 1, B
90 3-1bolJtd(t~.2) .~bo~d(&,2)

DO IglbOlL~d(t, 1) , 1.boluz4(J., 1)
A (I , J) �9 . t { l , 3) - J . (1 ,J - I) *B (I , J)

~JID 0t]
E|[~ DO
s

The runtime approach allows to integrate machine dependent optimizations in
the runtime system. Furthermore, the driver can deal with arbitrary distributions of
the arguments. Therefore we can generate code also for cases where the distribution
of the arguments is unknown at compile time. The computation of the optimal size
of the tiles can be computed at run-time and dynamically adjusted.

A detailed description of the interface and of the implementation is given in our
report [BD96].

4 Resu l t s

In this section, we give the results of first experiments using optimized pipelined
computations within ADAPTOR.

Figure 3 shows the speedups achieved by pipelining on the IBM SP 2 (AIX 3.2.5).
We compare the execution time of the parallel program against the execution time
of the serial program to show the real speed-ups. The pipelined execution uses in
the serial dimension the block size 16.

2f x ' J " .

12 , / / ~

4 5 e ~ Io 12 ~4 16

ID ~ "

4

2

Fig. 3. Speedups for the pipelined execu- Fig. 4. Speedups for the ADI algorithm.
tion of the gauss-seidel relaxation.

462

Now we discuss the parallelization of the ADI algorithm given on Figure 2. This
algorithm contains dependences partly between the columns, partly between the
rows. There are two strategies to solve this problem, one using a redistribution
(transposition) of the array, one utilizing pipelined execution. As shown in Figure 4
the pipelined execution achieves nearly the optimal speed-up and needs no temporary
data.

Our report describes other applications of pipelined executions and gives more
detailled results [BD96].

5 Conc lus ion and Future Work

Our first impressive results show that there is no doubt about the usefulness of
pipelining and about the efficient realization within ADAPTOR. Our experiments
have shown that the pipelined computation using the overlap of computation and
communication can be integrated successfully within an HPF compiler. Using these
kind of optimizations in a message passing program is difficult and usually machine-
dependent. By their integration in a compiler, the user can benefit from it a very
convenient way. The interface of the LOCCS library is now well suited for the opti-
mization of a compiler like ADAPTOR. An MPI version of the LOCCS is currently
under development. Our future work concentrates on increasing the possibilities of
pipelined executions and on the development of good algorithms and heuristis for
choosing the order and the grain of the tiles.

A c k n o w l e d g e m e n t s

We thank ZAM, Jiilich for providing access to the Intel Paragon XP/S.

R e f e r e n c e s

[BD96]

[BZ94]

[DT92]

[KinSS]

[KLS+94]

[Tse93]

T. Brandes and F. Desprez. Implementing Pipelined Computation and Commu-
nication in an HPF Compiler. Technical report, LIP - ENS Lyon, 1996.
Th. Brandes and F. Zimmermarm. ADAPTOR - A Transformation Tool for HPF
Programs. In K.M. Decker and R.M. Rehmann, editors, Programming Environ-
ments for Massively Parallel Distributed Systems, pages 91-96. Birkh~iuser, April
1994.
F. Desprez and B. Tourancheau. LOCCS: Low Overhead Communication and
Computation Subroutines. Technical Report 92-44, LIP - ENS Lyon, December
1992.
C. King. Pipelined data parallel algorithms: Concept, design and modeling. PhD
thesis, Michigan State University, Department of Computer Science, 1988.
C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. The High Per-

]ormance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.
C. Tseng. An optimizing Fortran D compiler for MIMD distributed-memory ma-
chines. PhD thesis, Rice University, Houston, Texas, 1993.

