
Implementing Pipelined Computation and 
Communication in an HPF Compiler 

Thomas Brandes 1. 
Fr@d@ric Desprez 2.* 

1 GMD, SCAI 
Schloss Birlinghoven, P.O. Box 1319, 53754 St. Augustin, Germany 

2 LIP, ENS Lyon, CNRS URA 1398, INRIA Rh6ne-Alpes 
46, All@e d'Italie, 69364 LYON cedex 07, France 

Abstract .  Many scientific applications can benefit from pipelining compu- 
tation and communication. Our aim is to provide compiler and runtime sup- 
port for High Performance Fortran applications that could benefit from these 
techniques. This paper describes the integration of a library for pipelined 
computations in the runtime system. Results on some application kernels are 
given. 

1 I n t r o d u c t i o n  

With the introduction of High Performance Fortran (HPF) [KLS+94], it is possible 
to use the data parallel programming paradigm in a very convenient way for scien- 
tific applications. With current compilation technology, these programs will execute 
phases of computations and communications on differents sets of data and no over- 
lap exists between communications and computations. Moreover, communication 
phases are synchronous, i.e. each processor executes these phases at the same time 
and waits until the last processor completes his communication phase. An important 
task of the HPF compiler is to detect the potential of overlapping computation and 
communication and to take efficient use of it. 

Overlapping is not always possible because of the dependences within the code. In 
this case the computation might be broken into smaller pieces that can be executed 
in a pipelined fashion. This is also called macro-pipelining [Kin88, Tse93]. Usually, 
the resulting code of macro-pipelining is very complicated. But we will show that it 
is possible to use runtime system functions that do this splitting at runtime. This 
does not only decrease the complexity of the HPF compiler, but also allows the 
optimization of overlapping computation and communication at runtime. This can 
be done by making some runtime measurements that determines the best size of 
granularity. 

Though most of the techniques are already known, this paper focus on the effi- 
cient use and the integration in an existing HPF compilation system. The runtime 
functions are a new version of the LOCCS library (Low Overhead Communication 
and Computation Subroutines) that has been first presented in [DT92]. 

* This works has been supported by the Esprit-6643 project PPPE (Portable Parallel 
Programming Environment) 
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2 P i p e l i n e d  C o m p u t a t i o n s  

In pipelined computations, a processor cannot begin execution until it receives results 
computed by its predecessor. Though this kind of pipelined execution for its own is 
still a sequential execution, there are two possibilities to extract partial parMlelism 
by overlapping computations. If one pipelined computation follows another one, all 
processers become busy when the pipeline is filled. The other possibility is to break 
the computation and to send partial results. By this way the processors may overlap 
their computations as shown in Figure 1. 

The ADI algorithm in Figure 2 is a typical example that benefits from pipelining 
computation. Assume that the columns are distributed in a block fashion among 
the available processors. The first loop nest contains no dependence and can be 
executed in parallel. In the second loop nest, every processor computes the results 
in row order, sending the last value to the next processor as soon as it is ready. This 
strategy produces a pipetined effect. 

(a) coare~r '~ed @) r ~ , r ~  ed (0 mKUum-grained 

PARAMETER (N=...) 
REAL, DIMENSION (hi,N) :: A.B 
DISTRIBUTE (*, BLOCK) :: A, B 
DOI=2, N 
DOI= 1,N 
A(I,D = A(I$) - A(I-1 j)*B(I,.O 

ENDDO 
END DO 
DOI=2,N 
DOI= 1,N 
A(IgO = A(I,D - AfIJ-1)*B(I,D 

END DO 
END DO 

Fig. 1. Breaking up a pipelined computa- 
tion. 

Fig. 2. ADI algorithm in HPF. 

Usually, this method is not very efficient due to the large communication startup 
time on MIMD message-passing machines. Therefore, a variant of the method is 
chosen where each processor computes a few rows before communicating the results 

(tiling). 

3 I m p l e m e n t a t i o n  w i t h i n  A D A P T O R  

ADAPTOR (Automatic Data Parallelism Translator) is a public domain compilation 
system developed at GMD for compiling data parallel HPF programs to equivalent 
message passing programs [BZ94]. 

Instead of generating directly complex pipelining code for loop nests, ADAPTOR 
provides a driver routine that is implemented within the runtime system DALIB. 
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This routine is called with the sections belonging to the iteration space and with the 
corresponding data dependences. The first parameter is the name of the local sub- 
routine that contains the code for one tile. The compiler has to find cross-processor 
loops and must generate the call to the routine as well as the code for the local 
subroutine. 

PA LtlIJE'TE.t ( | ~ . . . )  
]L~lil, D~I~ISXDII ( | , | )  ; :  A. B 

!l[/'F$ BIS"ELTBOT~ (*.BLOCK) : :  JZ. B 

DO I s 2 ,  I 
DO J �9 1 ,  I 

,IL(]~,J) �9 A(~[,,]) - A ( ] ~ * I , J ) * B ( I , 3 )  
EID DQ 

E]D DO 
CALL DkLI~-LOCCS.SRIF-s (BLDCK, 2, O, 

1 ( : , 2 : | ) ,  [ 0 , 1 ] ,  B ( : , 2 : | ) ,  f'O,O]) 

F.[TZIISIC (IPF.LDCAL) SgBIOITZgs BLOCK (A,  B) 
LEXL A ( : , : ) ,  B { : , : )  

!IIPF$ DISTLIB~'s163 *(*.BLDC:X) : :  1, B 
90 3-1bolJtd(t~.2) .~bo~d(&,2)  

DO IglbOlL~d(t, 1 ) ,  1.boluz4( J., 1 ) 
A ( I , J )  �9 . t { l , 3 )  - J . (1 ,J - I ) *B ( I , J )  

~JID 0t] 
E|[~ DO 
s 

The runtime approach allows to integrate machine dependent optimizations in 
the runtime system. Furthermore, the driver can deal with arbitrary distributions of 
the arguments. Therefore we can generate code also for cases where the distribution 
of the arguments is unknown at compile time. The computation of the optimal size 
of the tiles can be computed at run-time and dynamically adjusted. 

A detailed description of the interface and of the implementation is given in our 
report [BD96]. 

4 Resu l t s  

In this section, we give the results of first experiments using optimized pipelined 
computations within ADAPTOR. 

Figure 3 shows the speedups achieved by pipelining on the IBM SP 2 (AIX 3.2.5). 
We compare the execution time of the parallel program against the execution time 
of the serial program to show the real speed-ups. The pipelined execution uses in 
the serial dimension the block size 16. 

2f x ' J "  . 

12 , /  / ~  

4 5 e ~ Io 12 ~4 16 

ID ~ " 

4 

2 

Fig. 3. Speedups for the pipelined execu- Fig. 4. Speedups for the ADI algorithm. 
tion of the gauss-seidel relaxation. 
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Now we discuss the parallelization of the ADI algorithm given on Figure 2. This 
algorithm contains dependences partly between the columns, partly between the 
rows. There are two strategies to solve this problem, one using a redistribution 
(transposition) of the array, one utilizing pipelined execution. As shown in Figure 4 
the pipelined execution achieves nearly the optimal speed-up and needs no temporary 
data. 

Our report describes other applications of pipelined executions and gives more 
detailled results [BD96]. 

5 Conc lus ion  and Future  Work 

Our first impressive results show that there is no doubt about the usefulness of 
pipelining and about the efficient realization within ADAPTOR. Our experiments 
have shown that  the pipelined computation using the overlap of computation and 
communication can be integrated successfully within an HPF compiler. Using these 
kind of optimizations in a message passing program is difficult and usually machine- 
dependent. By their integration in a compiler, the user can benefit from it a very 
convenient way. The interface of the LOCCS library is now well suited for the opti- 
mization of a compiler like ADAPTOR. An MPI version of the LOCCS is currently 
under development. Our future work concentrates on increasing the possibilities of 
pipelined executions and on the development of good algorithms and heuristis for 
choosing the order and the grain of the tiles. 
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