
Efficient Mapping of Interdependent Scans

Michel Barreteau and Paul Feautrier

Laboratoire PRISM, Universit6 de Versailles - StQuentin
45, avenue des Etuts-Unis, 78 035 Versailles, FRANCE

A b s t r a c t . Distributed memory multiprocessors are extremely sensitive
to communication costs. Some global communications such as scans and
reductions are of special interest since their cost is much lower than for
point to point communications. Our paper focuses on an algorithm which
efficiently takes the mapping of sca~s into account.

1 I n t r o d u c t i o n

Communicat ions remain the most critical aspect of performance in efficiently
p rogramming distributed memory multiprocessors. Hence minimizing commu-
nications is an indispensable task. A static placement may be obtained in two
different ways: one may ask the user to insert annotations to specify da ta map-
ping ~ la HPF. Our approach is to leave this work to the compiler (see 2).
However such a placement will not be sufficient if some particularities of the
target machine are not taken into account, for instance if communicat ion prim-
itives with low overhead are not used. In this paper, we propose a method to
compute a placement which efficiently exploits interprocessor da ta movements
such as scans and reductions. Especially we detail the Cholesky example to make
the reader sensitive to the interdependences of scans. Neglecting them yields a
mapping which may be incompatible with the minimization of communications.

2 A u t o m a t i c p a r a l l e l i z a t i o n

Automat ic parallelization consists of extracting from the source program all
restrictions on its potential parallelism. The Data Flow Graph (DFG) depicts
the results of this analysis, i.e. the da ta movements between sets of operations
[2]. A System of Affine Recurrence Equations (SARE) is built from the DFG. It
is suitable for detecting recurrences [41. We will consider the foIIowing SALVE of
three equations, which is extracted from a Cholesky decomposition program:

Ins_2[i, k] = {

Ins_5[i,j,k] = {

Scan({ i2 ,k2 I (3 < i 2 < n) ^ (1 < k2) A (1 < i 2 -- k2)},
([0 1]), "4- , - Ins -6[kz , i2] 2, In i tS2)[i ,k]

i] (~ < ,~) ̂ (2 _< k) ^ (~ < i - k)
~ [i , i] - (~ [< r k])~ i," (2 _< i < .,~) A (~ = 1)

8ean (f i 5 , J5 ,k5 I (a < i5) ^ (J5 < n) ^ (1 < ks)
^(1 _< i 5 - ks) A (l < j5 -- i5)}, ([0 0 1]), +,
- - (Ins-6[kh, Jh] * Ins-6[k5, i5]), In i tS 5)[i, j, k] if (j < n) ^ (2 < k) A (1 < i - - k) ^ (1 < j - i)

4< 5] - ((4< J] /~ k]), (a[k, ~] / ~ k]))
ff (2< 0 ^ (J <~)^ (k = 1)^(1 - < J - 0

464

{ I~_5[i , j, i - 1] / I , ~ _ 2 [i , i - 1]
lns_6[i,j] = if (2 _< i) ^ (j _< n) ^ (1 _< j - i)

3 S c a n s &: R e d u c t i o n s

Since scans and reductions are particular recurrences due to their associative op-
erator, they may be computed in a parallel way using a binary tree. A reduction
is a special scan in which only the final result is used. We only consider unidi-
rectional scans, i.e. scans whose accumulation follows a unique direction in their
i teration space. Let us remember the semantics of the unidirectional operator
S c a n (~Ps, v s , (~,Ds, Gs) : Z)s describes the accumulation space, v s is the direc-
tion vector, Q a binary and associative operator, Ds the expression of the da ta
to be reduced and Gs are initial values. Scan computes a value for each integral
point of :Ps, i.e. a multidimensional array S. Some so-called virtual processors
are in charge of these computat ions. They define the virtual processors space.

Two scans S~ and $5 whose direction vectors are vs~ = (0, 1) and vs~ =
(0, 0, 1) have been detected in our SARE. $2 computes the array S2: V (3 _<
i~ _< .) A (1 < k~) A (~ _ i~ -- k~), S~[i~, ks] = S2[i~, k~ - 1] + (-I.~_6[k~, i~]~).

Practical implementat ions of the S c a n operator allow only direction vectors
which are parallel to the canonical axes of the virtual processors grid. A correct
determinat ion of the orientation of scans is necessary to avoid some additional
communicat ions related to non local data. But most of the t ime it depends on
interactions between scans. Hence, the problem is to find out an efficient orienta-
tion of all the scans when placement binds them together. To this end we recall
the successive stages of the mapping algorithm introduced in [3], which will be
modified in order to solve our problem.

4 P l a c e m e n t a l g o r i t h m

A placement function ~rc, which is applied to a set of operations defined by an
equation C of iteration vector iv, gives the name of the virtual processor on
which C has to be executed. As regards geometry, a grid of virtual processors
whose dimension g is given (9 = 2 for Cholesky), has been elected. For each
equation and for each scan, an affine placement function with g components has
to be computed: for all dimension d (1 <_ d <_ g), 7rd(ic) = H d . i c + Kdv.n + 1 d
where unknowns are the coefficients Pc of the 9 x]iv] matr ix H, ~'c of the
9 x In[mat r ix K and ~c of the vector 1. The vector of structure parameters is
n (n belongs to it). tvl gives the number of components of a vector v.

Ex: 7 r ~ (i , k) d,1 i - d2 k a,1 n- - d -~" Pln~-2" -1- PZ~s-2" + l]ins_ 2. "1- ~In~-2

4 . 1 P l a c e m e n t c o n d i t i o n s

First let us consider usual placement conditions that are given by the DFG:

= ~I~_5(z, 3, i - 1) r l~rns_6 = P• PI~_5, PI~s_6 =Pzn~-51 (1)
r d,1 d,1 ~_ d,2 d,2 ~ _ d i , j)=~/%.~(i,i-1) * ~.~_0=.~._~ .~._~,.~._~=0} (2)

465

Then let us add the scan placement conditions which are developed in [1]:

1. Data alignment along the scan: V C(ic) e Ds(is), rrs(is) = ~rc(ic)
7g d [i k ~ 7r d [k i \ " r a,1 d,2 a,2 d,1 s~t 2, 2)= I~e_6~, 2, 2) ~" ~Ps2 =Pi,~_6,tt& =ttZns_6J" (3)

d " ' k d . "d ,1 d , 2 d , 2 d , 3 d 1 rrss(,~,35 , 5)=rrin._6(ks,as)@ { . & = 0 , . & =#*~._6,P& =U,;,_6} (4)
d ' �9 d " d~ l d , 2 d , 2 ~ d~3 d , 1 "1

= ~z~ ._ 6 (k~ , ,~) ~ {us~ =uz.._~, Us~ ~ 5 (,~, a~, k~) (5)
2. Results collection from the scan to any variable X such as X[ix] -- S[/(ix)]

with l(ix) = Ps.lx + Qs : ~x(ix) = ~sq(ix))
d,1 d,1 i..td,2 __l..td,2"L d (i ,k) C ~ { p z . . ~ = . s ~ , r , ~ - - s=. (6)

�9 �9 d , 1 d , 1 d,2 d , 2 d,3 d,31

3. As regards the placement condition on computations which consists of find-
ing for each scan an orientation following a j direction in the virtual proces-
sors grid: 3 j (1 <_ j <_ g) such that Has.vs # 0 and V i r j , H ~ . v s = 0 (8),
it should have priority to ensure an efficient computation. For each scan, g
conditions H d.vs = e d are at the top of the system P of placement equations
in order to satisfy the strategy of the solution algorithm described below. The
projection of v s by H s in the virtual processors grid is es . The components
of es are orientation parameters. All of them are equal to zero except one:
g S, e s = k . u s where k 6 7/* and us is a canonical vector (9)

Hs=.vs~ = es2 r {p~'~ 1 2,2 2 = es=, Us= = es=} (10)
-- ess, Ps5 = es~} (11)

Most of the placement conditions have to be satisfied in order to minimize
communications. A greedy algorithm based on the Gauss-Jordan elimination
takes the edges that transfer the most important data volume first into account.
This is their weight. In this way placement equations which are associated to
these edges have a high probability to be cut and taken part in the solution of
P . (The order of edges to be considered according to their weight - as computed
by our p r o t o t y p e - i s : (7),(4),(5),(1),(3),(6) and (2).)

In order to avoid the mapping of every operation on a unique processor
(experience shows that it often happens when all the equations are satisfied), a
heuristic is adopted. This is the triviality test: it only accepts an equation if the
current solution of P (this equation included) is still able to generate g linearly
independent solutions for each placement function.

d , 1 d , 2 The triviality test accepts for instance p& = 0 from (4). But #$5 = 0 is
rejected because one cannot build for Ins_5 g (i.e. 2) linearly independent

�9 de d,2 from (7) and .d~_5 = 0 from (7) and (4)). solutmns any more (PI~.z = P&

4.2 I n t e r a c t i o n s b e t w e e n scans

The pivot element of each equation is chosen to find out interactions between
scans. As no assumption about relations on the coefficients #s can be made, we
reject the problem to the relations S between the orientation parameters es.

i j d,2 d,2 i..t d,1 d,3 i~_6 = "$5, z~_6 = . & according to (4) and (3) impfies <2 <1
~Ins_6 -~- ldS2 , d,t d,2 d,1 d,2 d,2 d,3

PI~_6 = Ps2" Thus we get Ps2 = P& and p& : Pss" Finally ed2 : e d
from (10) and (11). s5

466

The constraint to be satisfied for building $ comes straightforward from (8): let
(u l , . . . , u Q be the canonical vectors which describe the g directions of the virtual
processors space, then S must guarantee that each es follows any canonical axis
of the processors grid, i.e. each es must be colinear to one u j .

Let us consider the equation E: at first e~2 = e 1 since equations are processed
$5

dimension per dimension. Then a combination of canonical vectors uJs which
represents the direction of reorientation vectors es is chosen. For instance j = 1
(cf (8)) for $2 and $5, which means that both scans are supposed to hie in the
direction of u 1. Rather than expressing this colinearity, it is easier to express that
each es has to be orthogonal to the g - 1 canonical vectors u J which describe
the supplementary subspaces of the subspace defined by uJs. In this way, one has
to compute g - 1 dot products per scan: es~ �9 u 1 = 0 and ess �9 u 1 = 0. Thus we
get the following conditions {e}~ = 0, e~s = 0} which complete the subsystem
S ' = S U s (9) must be confirmed by the solution of S ' . e ls~ r 0 is acceptable.
This combinat ion suits us. Otherwise we should choose another combination such

U 1 U 1) tu l u 2 ~ The second equation is: e~2 = e 2 The first combination (s2, s5 a s k $ 2 , S ~) " S ~ '

yields: e2 s~ = 0. (9) is still verified. We deduce S = S U g = {e d $2 = edh}"
On the other hand the second mentioned combination tul u 2 ~ would yield: t $ 2 ' S ~ !

{ e ~ = O, e2 s~ = 0}. It would have been rejected because (9) is not satisfied any
more. In this case ,S would remain unchanged.

When every equation has been processed, one has to replace the parameters
e} by their own values into the global system 3o using the last combination which
satisfies S. P is solved and the d th solution is applied to Ird. Thus we get:

1 �9 1 . �9 ks) ks ~I~_6(~,3)=i rrs.~(*2, k2) = k~ 7rs~(zh,35, = 1 .
2 - 2 - �9 ~rs2(~2,k2) = i2 rrs~(~5,1~,k~) = j5 rr~,~_6(i,J) = J

5 C o n c l u s i o n

We presented in this paper an algorithm which computes multidimensional
placement functions. It relies on da ta locality but also consider some special
da ta movements such as scans and reductions and their interdependences. It
enables to optimize mapping but also to produce an efficient target code. In this
way hardwired communicat ion primitives that are provided by many distributed

memory mnltiprocessors will be efficiently exploited.

R e f e r e n c e s

1. Barreteau, Feautrier: Automatic Mapping o/ Scans and Reductions. HPCS'95. 1995.
2. Feautrier: Dataflow Analysis of Scalar and Array References. Int. J. of Parallel

Programming, 20(1):23-53. 1991.
3. Feautrier: Toward Automatic Partitioning of Arrays on Distributed Memory Com-

puters. In ACM ICS'93 Tokyo pp.175-184, t993.
4. Redon, Feautrier: Detection of Reductions in Sequentials Programs with Loops.

PARLE, LNCS 694. Ed. Arndt Bode and Mike Reeve and Gottfried Wolf. 1993.

