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A b s t r a c t .  Distributed memory multiprocessors are extremely sensitive 
to communication costs. Some global communications such as scans and 
reductions are of special interest since their cost is much lower than for 
point to point communications. Our paper focuses on an algorithm which 
efficiently takes the mapping of sca~s into account. 

1 I n t r o d u c t i o n  

Communicat ions  remain the most  critical aspect of performance in efficiently 
p rogramming  distributed memory  multiprocessors. Hence minimizing commu- 
nications is an indispensable task. A static placement may be obtained in two 
different ways: one may  ask the user to insert annotations to specify da ta  map-  
ping ~ la HPF.  Our approach is to leave this work to the compiler (see 2). 
However such a placement will not be sufficient if some particularities of the 
target  machine are not taken into account, for instance if communicat ion prim- 
itives with low overhead are not used. In this paper, we propose a method to 
compute  a placement which efficiently exploits interprocessor da ta  movements  
such as scans and reductions. Especially we detail the Cholesky example to make 
the reader sensitive to the interdependences of scans. Neglecting them yields a 
mapping  which may  be incompatible with the minimization of communications.  

2 A u t o m a t i c  p a r a l l e l i z a t i o n  

Automat ic  parallelization consists of extracting from the source program all 
restrictions on its potential  parallelism. The Data  Flow Graph (DFG) depicts 
the results of this analysis, i.e. the da ta  movements  between sets of operations 
[2]. A System of Affine Recurrence Equations (SARE) is built from the DFG. It  
is suitable for detecting recurrences [41. We will consider the foIIowing SALVE of 
three equations, which is extracted from a Cholesky decomposition program: 

Ins_2[i, k] = { 

Ins_5[i,j,k] = { 

Scan({ i2 ,k2  I (3 < i 2 < n) ^ (1 < k2) A (1 < i 2 -- k2)}, 
([0 1]), "4- , - Ins -6[kz , i2 ]  2, In i tS2)[ i ,k  ] 

i] (~ < ,~) ̂  (2 _< k) ^ (~ < i - k) 
~ [ i , i ]  - (~ [<  r k])~ i," (2 _< i < .,~) A (~ = 1) 

8ean ( f i 5 , J5 ,k5  I (a < i5) ^ (J5 < n) ^ (1 < ks) 
^(1 _< i 5 - ks)  A ( l  < j5 -- i5)}, ([0 0 1]), +, 
- -  (Ins-6[kh, Jh] * Ins-6[k5, i5]), In i tS  5)[i, j, k] if (j < n ) ^  (2 < k) A (1 < i - - k ) ^  (1 < j - i )  

4< 5] - ((4< J] /~  k]), (a[k, ~ ] / ~  k])) 
ff (2< 0 ^ ( J  <~)^  (k = 1)^(1 - < J - 0  
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{ I~_5[i ,  j, i - 1 ] / I , ~ _ 2 [ i ,  i - 1] 
lns_6[i,j] = if (2 _< i) ^ (j _< n) ^ (1 _< j - i) 

3 S c a n s  &: R e d u c t i o n s  

Since scans and reductions are particular recurrences due to their associative op- 
erator, they may  be computed in a parallel way using a binary tree. A reduction 
is a special scan in which only the final result is used. We only consider unidi- 
rectional scans, i.e. scans whose accumulation follows a unique direction in their 
i teration space. Let us remember  the semantics of the unidirectional operator  
S c a n  (~Ps, v s ,  (~,Ds, Gs) : Z)s describes the accumulation space, v s  is the direc- 
tion vector, Q a binary and associative operator,  Ds the expression of the da ta  
to be reduced and Gs are initial values. Scan computes a value for each integral 
point of :Ps, i.e. a multidimensional array S. Some so-called virtual processors 
are in charge of these computat ions.  They define the virtual processors space. 

Two scans S~ and $5 whose direction vectors are vs~ = (0, 1) and vs~ = 
(0, 0, 1) have been detected in our SARE. $2 computes the array S2: V (3 _< 
i~ _< .) A (1 < k~) A (~ _ i~ -- k~), S~[i~, ks] = S2[i~, k~ - 1] + (-I.~_6[k~, i~]~). 

Practical  implementat ions of the S c a n  operator allow only direction vectors 
which are parallel to the canonical axes of the virtual processors grid. A correct 
determinat ion of the orientation of scans is necessary to avoid some additional 
communicat ions related to non local data. But most  of the t ime it depends on 
interactions between scans. Hence, the problem is to find out an efficient orienta- 
tion of all the scans when placement binds them together. To this end we recall 
the successive stages of the mapping  algorithm introduced in [3], which will be 
modified in order to solve our problem. 

4 P l a c e m e n t  a l g o r i t h m  

A placement function ~rc, which is applied to a set of operations defined by an 
equation C of iteration vector iv,  gives the name of the virtual processor on 
which C has to be executed. As regards geometry, a grid of virtual processors 
whose dimension g is given (9 = 2 for Cholesky), has been elected. For each 
equation and for each scan, an affine placement function with g components has 
to be computed:  for all dimension d (1 <_ d <_ g), 7rd(ic) = H d . i c  + Kdv.n + 1 d 
where unknowns are the coefficients Pc  of the 9 x ]iv] matr ix  H,  ~'c of the 
9 x In[ mat r ix  K and ~c of the vector 1. The vector of structure parameters  is 
n (n belongs to it). tvl gives the number of components of a vector v. 

Ex: 7 r ~ ( i , k )  d,1 i -  d2 k a,1 n- -  d -~" Pln~-2"  -1- PZ~s-2" + l]ins_ 2. "1- ~In~-2 

4 . 1  P l a c e m e n t  c o n d i t i o n s  

First let us consider usual placement conditions that  are given by the DFG: 

= ~I~_5(z, 3, i - 1 )  r l~rns_6 = P• PI~_5, PI~s_6 =Pzn~-51 (1) 
r d,1 d,1 ~_ d,2 d,2 ~ _ d i ,  j)=~/%.~(i,i-1) * ~.~_0=.~._~ .~._~,.~._~=0} (2) 
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Then let us add the scan placement conditions which are developed in [1]: 

1. Data  alignment along the scan: V C(ic) e Ds(is), rrs(is) = ~rc(ic) 
7g d [i k ~ 7r d [k  i \ " r a,1 d,2 a,2 d,1 s~t 2, 2)= I~e_6~, 2, 2) ~" ~Ps2 =Pi,~_6,tt& =ttZns_6J" (3) 

d " ' k d . "d ,1  d , 2  d , 2  d , 3  d 1 rrss(,~,35 , 5)=rrin._6(ks,as)@ { .  & = 0 , . &  =#*~._6,P& =U,;,_6} (4) 
d ' �9 d " d~ l  d , 2  d , 2  ~ d~3 d , 1  "1 

= ~z~ ._ 6 (k~ ,  ,~) ~ {us~ =uz.._~, Us~ ~ 5  (,~, a~, k~) (5) 
2. Results collection from the scan to any variable X such as X[ix] -- S[/(ix)] 

with l(ix) = Ps.lx + Qs : ~x(ix) = ~sq(ix)) 
d,1 d,1 i..td,2 __l..td,2"L d (i ,k) C ~ { p z . . ~ = . s ~ ,  r , ~ - -  s=. (6) 

�9 �9 d , 1  d , 1  d,2 d , 2  d,3 d,31 

3. As regards the placement condition on computations which consists of find- 
ing for each scan an orientation following a j direction in the virtual proces- 
sors grid: 3 j (1 <_ j <_ g) such that  Has.vs # 0 and V i r j ,  H ~ . v s  = 0 (8), 
it should have priority to ensure an efficient computation. For each scan, g 
conditions H d.vs  = e d are at the top of the system P of placement equations 
in order to satisfy the strategy of the solution algorithm described below. The 
projection of v s  by H s  in the virtual processors grid is es .  The components 
of es  are orientation parameters. All of them are equal to zero except one: 
g S, e s  = k . u s  where k 6 7/* and us  is a canonical vector (9) 

Hs=.vs~ = es2 r {p~'~ 1 2,2 2 = es=, Us= = es=} (10) 
-- ess, Ps5 = es~} (11) 

Most of the placement conditions have to be satisfied in order to minimize 
communications. A greedy algorithm based on the Gauss-Jordan elimination 
takes the edges that  transfer the most important  data  volume first into account. 
This is their weight. In this way placement equations which are associated to 
these edges have a high probability to be cut and taken part in the solution of 
P .  (The order of edges to be considered according to their weight - as computed 
by our p r o t o t y p e - i s :  (7),(4),(5),(1),(3),(6) and (2).) 

In order to avoid the mapping of every operation on a unique processor 
(experience shows that  it often happens when all the equations are satisfied), a 
heuristic is adopted. This is the triviality test: it only accepts an equation if the 
current solution of P (this equation included) is still able to generate g linearly 
independent solutions for each placement function. 

d , 1  d , 2  The triviality test accepts for instance p& = 0 from (4). But #$5 = 0 is 
rejected because one cannot build for Ins_5 g (i.e. 2) linearly independent 

�9 de d,2 from (7) and .d~_5 = 0 from (7) and (4)). solutmns any more (PI~.z = P& 

4.2 I n t e r a c t i o n s  b e t w e e n  scans  

The pivot element of each equation is chosen to find out interactions between 
scans. As no assumption about relations on the coefficients #s  can be made, we 
reject the problem to the relations S between the orientation parameters es.  

i j  d,2 d,2 i..t d,1 d,3 i~_6 = "$5,  z~_6 = . &  according to (4) and (3) impfies <2 <1 
~Ins_6  -~- ldS2 , d,t d,2 d,1 d,2 d,2 d,3 

PI~_6 = Ps2" Thus we get Ps2 = P& and p& : Pss" Finally ed2 : e d 
from (10) and (11). s5 
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The constraint to be satisfied for building $ comes straightforward from (8): let 
( u l , . . . ,  u Q  be the canonical vectors which describe the g directions of the virtual 
processors space, then S must  guarantee that  each es  follows any canonical axis 
of the processors grid, i.e. each es  must  be colinear to one u j .  

Let us consider the equation E: at first e~2 = e 1 since equations are processed 
$5 

dimension per dimension. Then a combination of canonical vectors uJs which 
represents the direction of reorientation vectors es  is chosen. For instance j = 1 
(cf (8)) for $2 and $5, which means that  both scans are supposed to hie in the 
direction of u 1. Rather  than expressing this colinearity, it is easier to express that  
each es  has to be orthogonal to the g - 1 canonical vectors u J which describe 
the supplementary subspaces of the subspace defined by uJs. In this way, one has 
to compute  g - 1 dot products per scan: es~ �9 u 1 = 0 and ess �9 u 1 = 0. Thus we 
get the following conditions {e}~ = 0, e~s = 0} which complete the subsystem 
S '  = S U s (9) must  be confirmed by the solution of S ' .  e ls~ r 0 is acceptable. 
This combinat ion suits us. Otherwise we should choose another combination such 

U 1 U 1 ) tu l  u 2 ~ The second equation is: e~2 = e 2 The first combination ( s2, s5 a s  k $ 2 ,  S ~ ) "  S ~ '  

yields: e2 s~ = 0. (9) is still verified. We deduce S = S U g = {e d $2 = edh}" 
On the other hand the second mentioned combination tul  u 2 ~ would yield: t $ 2 '  S ~ !  

{ e ~  = O, e2 s~ = 0}. It  would have been rejected because (9) is not satisfied any 
more. In this case ,S would remain unchanged. 

When every equation has been processed, one has to replace the parameters  
e} by their own values into the global system 3o using the last combination which 
satisfies S. P is solved and the d th solution is applied to Ird. Thus we get: 

1 �9 1 . �9 ks) ks ~I~_6(~,3)=i  rrs.~(*2, k2) = k~ 7rs~(zh,35, = 1 . 
2 - 2 - �9 ~rs2(~2,k2 ) = i2 rrs~(~5,1~,k~) = j5 rr~,~_6(i,J) = J 

5 C o n c l u s i o n  

We presented in this paper an algorithm which computes multidimensional 
placement  functions. It  relies on da ta  locality but  also consider some special 
da ta  movements  such as scans and reductions and their interdependences. It 
enables to optimize mapping  but also to produce an efficient target code. In this 
way hardwired communicat ion primitives that  are provided by many  distributed 

memory  mnltiprocessors will be efficiently exploited. 
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