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Abstract. We propose a class hierarchy for loops in a loop nest. Its 
purpose is to help identify the proper code generation methods for a 
space-time mapped nest. We illustrate the hierarchy and its use on a 
loop nest for computing the reflexive transitive closure of a graph. 

1 I n t r o d u c t i o n  

Traditional methods of space-time mapping apply to nests of for loops [15]. Given 
a for loop nest, an optimizing search can identify at compile time a space-time 
mapping which is minimal according to some stated metric (like the number of 
execution steps, processors, communication links, etc.). This is so because all 
information necessary for the search is static, i.e., available at compile time. 

Lately researchers in loop parallelization have become interested in dynamic 
properties of loop nests. One useful generalization is to admit while loops [16]. 
The upper bound of a while loop is, in general, not known before the loop starts 
executing. However, it is not true that  every space-time mapped for loop nest can 
be t reated with traditional code generation methods and every nest containing 
while loops cannot--e.g. ,  every for loop can be coded trivially as a while loop. 

We propose a classification of loops and outline which code generation meth- 
ods are necessary in each case. The crucial factors in the classification are when 
the bounds of the loop can be determined and which form they take. In the case 
of a (perceived) dynamic loop bound, different kinds of control dependences in 
the loop nest's dependence graph must be considered, which has repercussions 
on the potential parallelism and on the form of the target code. The data  de- 
pendences and space-time mappings need to be (piecewise) affine for all classes. 
As in the Chomsky hierarchy of formal languages, the larger the class, the lower 
the number we give it. We comment on ways of parallelizing each class, and on 
the nature of the target code. In nests with loops of varying classes the general 
rule is: consider the biggest class (the one with the lowest number). We suspect 
that  in many cases optimizations of this rule are possible. 

2 C l a s s i f i c a t i o n  o f  L o o p s  

We introduce five classes. As illustrating example imagine a double loop nest 
whose outer  loop is on i between 0 and, say, some problem size parameter n. 
For each class, we shall give an example inner loop on j .  
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Class 4: Affine Loops. The bounds of these loops are affine expressions in the 
indices of the outer loops and in the structure parameters (i.e., the parameters 
which define the problem size). Nests with only affine loops can be treated well by 
traditional methods [15], which are realized in a number of systems [2, 14, 22, 23]. 
Inner loop: for j := 0 to i + 5 do. 

Class 3: Convex Loops. If the loop, together with the loops enclosing it, enu- 
merates a (discrete) convex set (the execution space), then there must be a loop 
nest which enumerates precisely the points of the set's image (the target space) 
under the space-time mapping; we call this fact scannability [11]. But there is 
no general mathematical  framework (similar to Fourier-Motzkin elimination for 
Class 4 [1]) for identifying this loop nest. 

The requirement tha t  the check for convexity must be possible at compile 
t ime restricts the loop bounds to functions in the outer loop indices and structure 
parameters.  Inner loop: for j := 0 to ~ do. 

Class 2: Arbitrary for Loops. The next larger class of loops contains loops whose 
number of iterations is not known at compile time, but is known when the 
execution of the loop commences. The bounds are closed expressions in arbi t rary 
variables and parameters. (Here, we assume that  the upper bounds are evaluated 
once before the execution of the loop as in Pascal and Modula, not before every 
iteration as in C.) These loops are usually written as for loops, even though the 
bounds must be calculated at run time. Inner loop: for j := 0 to A[i] do, for 

some array A. 
If a loop of Class 2 is contained in a loop nest, then the image of the nest's 

index set is, in general, unscannable [11]. Therefore, we must scan a superset of 
the image and prevent the points which are not in the image from execution. For 
this purpose, we consider control dependences with dependence vector 0 from 
the computation of the loop bound to all statements of the loop body. These 
dependences reflect that  the maximal number of iterations can and must be 
calculated before the operations of the body are executed. 

For Classes 3 and 4 such control dependences need not be considered since 
the transformed loop bounds capture all required information. However, if the 
space-time mapped bounds of convex loops cannot be computed precisely but  
only estimated at compile time, then enumerating a superset of the image and 
taking explicitly care of the control dependences becomes necessary to exclude 
the points from execution which are not in the image. 

Class 1: Static while Loops. In the most wide-spread case of while loops, the 
upper bound is also fixed when the while loop starts its execution--however, 
it is not given explicitly as a closed expression but as a while condition which 
does not hold in some iteration. Consequently, there is a while dependence, i.e., 
a control dependence from one iteration to the next iteration of the while loop. 
Obviously the target loop bounds must be computed at run time. Inner loop: 
for j := 0 whileA[i,j] > 0 do, where array A is not modified in the body. 
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Class O: Dynamic while Loops. In the most general case of loops, the number of 
iterations may be changed by the iterations of the loop body. The difference to 
loops of Class I is a data dependence from a statement in the loop body to the 
while condition. This has no consequences for the code generation. Inner loop: 
for j := 0 whiIeA[i,j] > 0 do, where array A is modified in the body. 

In the literature, a popular way of parallelizing loops of Class 1 is to exe- 
cute the while loop--hopefully avoiding must of the computations in the loop 
body--in order to evaluate the number of iterations, and then to insert this 
number as the upper bound of an equivalent for loop [24]. This approach can 
also be applied to loops of Class 0 which means dividing them into a "control" 
and a "rest" part. We claim that the space-time mapping approach unifies and 
generalizes other approaches to the parallelization of while loops [20, 24], and 
that it yields the same pipelined solutions--or better ones, since one does not 
add unnecessary data dependences and provided one uses the fastest available 
by-statement scheduler [8, 9]. 

3 E x a m p l e  P r o b l e m :  T r a n s i t i v e  C l o s u r e  

Our illustrating example is a loop nest which computes the reflexive transitive 
closure of a directed acyclic graph that is given by its adjacency list. More 
formally, a graph is represented by a set node of nodes and, for every node, by 
the number nrsuc of its successors and the set suc of successor nodes, rt of n is 
the adjacency list of node n in the reflexive transitive closure. Figure 1 depicts 
a graph and the data structure representing it. 
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Fig. 1. A graph (left), its reflexive transitive closure (middle) and the adjacency 
lists representing both (right) 
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4 S o u r c e  P r o g r a m  

4.1 A l g o r i t h m  

The  following source algori thm computes the reflexive transit ive closure, under 
the assumption tha t  the resulting adjacency lists rt are initially empty: 

for every node n do 
add n to rt of n 
while there is a node m not yet considered in rt of n do 

for every successor ms of m do 
add ms to rt  of n 

Note tha t  this algorithm may produce adjacency lists which contain some node 
more than  once. This is a suboptimal  representation, but enforcing lists with 
unique elements spoils the parallelism. 

4.2 I m p l e m e n t a t i o n  

Since the polyhedron model offers no methods for dealing with sets or lists (not 
yet, anyway) but excels on arrays,  we use arrays in our concrete representation. 
node and nrsue are one-dimensionat arrays, suc and rt are two-dimensional. For 
the  computa t ion  of the reflexive transit ive closure we need an auxiliary one- 
dimensional array nxt which, for every n, provides a pointer to the next free 
entry in the list of n ' s  successors. Initially all undefined array elements contain 
the value _L; rt and nxt are totally undefined. Here is the source program: 

1: for n := 0 whilenode[n] r J_ do 
2: ,'tin, 01 :=  no e[ ] 
3: nxt[n] := 1 
4: for d := 0 while rt[n, d] # _1_ do 
5: if -,tag[n, rt[n, d]] then 
6: rt[n,  d]] := 
7: for k := 0 to nrsuc[r~[n, d]] - 1 do 
8: rt[n, nxt[n]+k] := suc[rt[n, d], k] 

end 
9: nxt[n] := nxt[n] + nrsuc[rt[n, d]] 

endif 
end 

end 

The range of array node exceeds the number of nodes by 1 in order to accom- 
modate  the undefined element which forces termination of the outer while loop. 

4.3 C l a s s i f i c a t i o n  o f  L o o p s  

Let us classify the loops in this program. 
The outermost loop is a typical member of Class I. If we had stored the 

number of nodes in some variable, we would get a loop of Class 3, and if the 
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number of nodes were a structure parameter known at compile time, it would 
even be a loop of Class 4. Target code enumerating the transformed index space 
precisely can be generated, since it ks convex whether the outermost loop is a for 
or a while loop. However, if we convert this loop to Class 3 or Class 4, we can 
omit the unit and null control dependence vectors, which must be cited in loops 
of Class 1. This may result in a better schedule. 

The loop on d is of Class 0 since list rt[n], which determines its termination, 
becomes longer as execution proceeds. 

The innermost loop is of Class 2 since its number of iterations is fixed when 
the loop starts, but is not known at compile time. 

5 S p a c e - T i m e  Mapping 

To find a valid space-time mapping we compute all data dependences and insert 
the necessary control dependences according to the analysis of the loops in the 
previous section: all loops of Classes 4, 3 and 2 get a zero dependence vector 
from the loop-controlling statement to every statement in the body, and all 
loops of Classes 1 and 0 get, additionally, a unit dependence vector from the 
loop-controlling statement to itself, modelling the while dependences. 

Then, standard techniques can be used to determine a valid space-time map- 
ping; techniques which do not consider the loop bounds (e.g., [6]) can be applied 
to any loop nest without change, whereas more precise methods considering the 
loop bounds (e.g., [8, 9]) must be adapted so as to deal with while loops (Classes 
0 and 1). 

6 T a r g e t  Program 

One of the most intricate problems in parallelizing general loops is to generate 
code for the transformed program. Even for a set of loops of Class 4 which are 
not per~'~.ctly nested the target code may become very complex, but there are 
algorithn." for an automatic generation [13, 21]. 

In general, there may not even be a target program which enumerates pre- 
cisely all tra rlsformed points of the execution space: the central problem is to 
find computable bounds for the loops enumerating (a superset of) the execution 
set. 

6.1 Synchronous  Paral le l ism 

In general, a synchronous target program cannot be created with standard meth- 
ods since, at compile time, there is no boundary on the outer, sequential loop 
without knowledge of the maximal extent of some inner loop--in general, there 
need not be a scannable transformation in the synchronous case [16]. Target 
code enhancements which deal with this typical problem in both shared and dis- 
tributed memory systems are given in [4, 12]. One can also employ a speculative 
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approach as described in [3]. However, these complex schemes are not necessary 
for all classes of loops. 

For Class 4, the computation space is known at compile time to be a poly- 
tope. Therefore, code enumerating the target space can be generated easily with 
s tandard methods like Fourier-Motzkin elimination [1] or PIP [7]. In principle, 
loops of Class 3 can also be treated at compile time since their execution space 
is convex but, at present, no code generation methods are known. 

Loops of Class 2 result in non-convex execution spaces, but the compiler can 
easily generate a guard for the execution of every iteration. The simplest version 
of such a guard for a loop of Class 2 at some level r is: 

lbr ~_ (T  -1 * target-coordinates)It ~_ ubr 

where lbr and ubr are the expressions for the lower and upper bound of loop 
r,  resp., and Ir denotes the projection of the r th  coordinate of a vector. The 
main property of this guard is that  its applications in different iterations are 
independent of each other and can therefore be executed simultanously. 

For loops of Class 1 and 0, the full scheme must be used because the guard 
can only be determined iteratively at run time. 

6.2 A s y n c h r o n o u s  P a r a l l e l i s m  

For asynchronous programs one can always find a scannable transformation. 
This transformation yields target code without any overhead--for any class. If, 
for some reason, one prefers an unscannable transformation (e.g., in order to 
obtain space optimality), the comments of Section 6.1 apply. 

However, an asynchronous program can only be written in a very abstract 
model, where we allow some outer loops in space to enumerate an infinite number 
of processors. We know that  the number of processes is given by an affine function 
of time, i.e., the number of used processors grows affinely with time. But, since 
the t ime coordinate is not known in the outer spatial loops, one must allocate 
infinitely many processors initially. 

In a real implementation, however, the problem of allocating an infinite num- 
ber of processors at some time step is obsolete since, in general, all processors 
must be allocated before the parallel program starts its execution. There, the un- 
boundedness is solved by standard partitioning or folding techniques [5, 18, 19]. 

This explains the non-existence of a whileall construct (a parallel while loop 
with an upper bound given by an arbitrary boolean expression); whileall would 
have to activate a set of processors in one time step (like forall) but  would have 
to test a linearly large set of conditions, which cannot be done in constant time. 

7 A n  A l t e r n a t i v e  C l a s s i f i c a t i o n  

Our classification is based on the question of how one can decide whether or not 
at some given point (in a superset of the target space) a computation must be 
applied. An alternative criterion, just as important  for target code generation as 
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ours, is whether target loop bounds can be determined which are functions in 
the outer target loop indices (if any) and structure parameters only. 

This is feasible for loops of Class 4 with Fourier-Motzkin and for while loops 
(Classes 0 and 1), since their while dependences allow termination detection at 
run time [10, 12]. Thus, these classes would not change. 

Classes 2 and 3, however, would in the alternative classification be divided 
orthogonally: in both classes there are loop nests for which target loop bounds 
can be found at compile time (e.g., any source loop nest under scannable trans- 
formations) and loop nests for which this is not possible--either because of a 
lack of mathematical methods or because of theoretically unsolvable problems at 
compile time (e.g., bounds depending on variables whose values vary during the 
program's execution). In the latter case, mathematical methods might (hope- 
fully) provide conservative estimates of the loop bounds, (e.g., for monotonic 
functions); in the worst case, the loop bounds must be computed at run time. 

We prefer our classification, since the classification of loops should only be 
based on properties of the source loop nest--but scannability is determined by 
the shape of the space-time matrix [11]. 

8 C o n c l u s i o n s  

We hope to have demonstrated that space-time mapping methods, which in 
their original form from systolic design [17] can handle only a subset of Class 4 
(perfect nests with uniform dependences), are becoming more and more generally 
applicable. Recent extensions are pushing the limit of current data dependence 
analysis technology: dependence tests for data structures other than static arrays 
are required. 
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