
Classifying Loops for Space-Time Mapping

Martin Griebl and Christian Lengauer

Fakult~t f'fir Mathematik und Informatik
Universitgt Passau, D-94030 Passau, Germany

email: {griebl,lenga uer}@fmi, uni-passa u.de
WVCW: http://www, u ni-passa u.de/~lenga uer

Abstract. We propose a class hierarchy for loops in a loop nest. Its
purpose is to help identify the proper code generation methods for a
space-time mapped nest. We illustrate the hierarchy and its use on a
loop nest for computing the reflexive transitive closure of a graph.

1 I n t r o d u c t i o n

Traditional methods of space-time mapping apply to nests of for loops [15]. Given
a for loop nest, an optimizing search can identify at compile time a space-time
mapping which is minimal according to some stated metric (like the number of
execution steps, processors, communication links, etc.). This is so because all
information necessary for the search is static, i.e., available at compile time.

Lately researchers in loop parallelization have become interested in dynamic
properties of loop nests. One useful generalization is to admit while loops [16].
The upper bound of a while loop is, in general, not known before the loop starts
executing. However, it is not true that every space-time mapped for loop nest can
be t reated with traditional code generation methods and every nest containing
while loops cannot--e.g. , every for loop can be coded trivially as a while loop.

We propose a classification of loops and outline which code generation meth-
ods are necessary in each case. The crucial factors in the classification are when
the bounds of the loop can be determined and which form they take. In the case
of a (perceived) dynamic loop bound, different kinds of control dependences in
the loop nest's dependence graph must be considered, which has repercussions
on the potential parallelism and on the form of the target code. The data de-
pendences and space-time mappings need to be (piecewise) affine for all classes.
As in the Chomsky hierarchy of formal languages, the larger the class, the lower
the number we give it. We comment on ways of parallelizing each class, and on
the nature of the target code. In nests with loops of varying classes the general
rule is: consider the biggest class (the one with the lowest number). We suspect
that in many cases optimizations of this rule are possible.

2 C l a s s i f i c a t i o n o f L o o p s

We introduce five classes. As illustrating example imagine a double loop nest
whose outer loop is on i between 0 and, say, some problem size parameter n.
For each class, we shall give an example inner loop on j .

468

Class 4: Affine Loops. The bounds of these loops are affine expressions in the
indices of the outer loops and in the structure parameters (i.e., the parameters
which define the problem size). Nests with only affine loops can be treated well by
traditional methods [15], which are realized in a number of systems [2, 14, 22, 23].
Inner loop: for j := 0 to i + 5 do.

Class 3: Convex Loops. If the loop, together with the loops enclosing it, enu-
merates a (discrete) convex set (the execution space), then there must be a loop
nest which enumerates precisely the points of the set's image (the target space)
under the space-time mapping; we call this fact scannability [11]. But there is
no general mathematical framework (similar to Fourier-Motzkin elimination for
Class 4 [1]) for identifying this loop nest.

The requirement tha t the check for convexity must be possible at compile
t ime restricts the loop bounds to functions in the outer loop indices and structure
parameters. Inner loop: for j := 0 to ~ do.

Class 2: Arbitrary for Loops. The next larger class of loops contains loops whose
number of iterations is not known at compile time, but is known when the
execution of the loop commences. The bounds are closed expressions in arbi t rary
variables and parameters. (Here, we assume that the upper bounds are evaluated
once before the execution of the loop as in Pascal and Modula, not before every
iteration as in C.) These loops are usually written as for loops, even though the
bounds must be calculated at run time. Inner loop: for j := 0 to A[i] do, for

some array A.
If a loop of Class 2 is contained in a loop nest, then the image of the nest's

index set is, in general, unscannable [11]. Therefore, we must scan a superset of
the image and prevent the points which are not in the image from execution. For
this purpose, we consider control dependences with dependence vector 0 from
the computation of the loop bound to all statements of the loop body. These
dependences reflect that the maximal number of iterations can and must be
calculated before the operations of the body are executed.

For Classes 3 and 4 such control dependences need not be considered since
the transformed loop bounds capture all required information. However, if the
space-time mapped bounds of convex loops cannot be computed precisely but
only estimated at compile time, then enumerating a superset of the image and
taking explicitly care of the control dependences becomes necessary to exclude
the points from execution which are not in the image.

Class 1: Static while Loops. In the most wide-spread case of while loops, the
upper bound is also fixed when the while loop starts its execution--however,
it is not given explicitly as a closed expression but as a while condition which
does not hold in some iteration. Consequently, there is a while dependence, i.e.,
a control dependence from one iteration to the next iteration of the while loop.
Obviously the target loop bounds must be computed at run time. Inner loop:
for j := 0 whileA[i,j] > 0 do, where array A is not modified in the body.

469

Class O: Dynamic while Loops. In the most general case of loops, the number of
iterations may be changed by the iterations of the loop body. The difference to
loops of Class I is a data dependence from a statement in the loop body to the
while condition. This has no consequences for the code generation. Inner loop:
for j := 0 whiIeA[i,j] > 0 do, where array A is modified in the body.

In the literature, a popular way of parallelizing loops of Class 1 is to exe-
cute the while loop--hopefully avoiding must of the computations in the loop
body--in order to evaluate the number of iterations, and then to insert this
number as the upper bound of an equivalent for loop [24]. This approach can
also be applied to loops of Class 0 which means dividing them into a "control"
and a "rest" part. We claim that the space-time mapping approach unifies and
generalizes other approaches to the parallelization of while loops [20, 24], and
that it yields the same pipelined solutions--or better ones, since one does not
add unnecessary data dependences and provided one uses the fastest available
by-statement scheduler [8, 9].

3 E x a m p l e P r o b l e m : T r a n s i t i v e C l o s u r e

Our illustrating example is a loop nest which computes the reflexive transitive
closure of a directed acyclic graph that is given by its adjacency list. More
formally, a graph is represented by a set node of nodes and, for every node, by
the number nrsuc of its successors and the set suc of successor nodes, rt of n is
the adjacency list of node n in the reflexive transitive closure. Figure 1 depicts
a graph and the data structure representing it.

()

l
r

n

node
n r s u c

8?to

rt

! 0 1 2 3 4
A B C D E
0 1 2 ! 0 i l

CA D
E

A B C D E
C A D
A E
ED
D

Fig. 1. A graph (left), its reflexive transitive closure (middle) and the adjacency
lists representing both (right)

470

4 S o u r c e P r o g r a m

4.1 A l g o r i t h m

The following source algori thm computes the reflexive transit ive closure, under
the assumption tha t the resulting adjacency lists rt are initially empty:

for every node n do
add n to rt of n
while there is a node m not yet considered in rt of n do

for every successor ms of m do
add ms to rt of n

Note tha t this algorithm may produce adjacency lists which contain some node
more than once. This is a suboptimal representation, but enforcing lists with
unique elements spoils the parallelism.

4.2 I m p l e m e n t a t i o n

Since the polyhedron model offers no methods for dealing with sets or lists (not
yet, anyway) but excels on arrays, we use arrays in our concrete representation.
node and nrsue are one-dimensionat arrays, suc and rt are two-dimensional. For
the computa t ion of the reflexive transit ive closure we need an auxiliary one-
dimensional array nxt which, for every n, provides a pointer to the next free
entry in the list of n ' s successors. Initially all undefined array elements contain
the value _L; rt and nxt are totally undefined. Here is the source program:

1: for n := 0 whilenode[n] r J_ do
2: ,'tin, 01 := no e[]
3: nxt[n] := 1
4: for d := 0 while rt[n, d] # _1_ do
5: if -,tag[n, rt[n, d]] then
6: rt[n, d]] :=
7: for k := 0 to nrsuc[r~[n, d]] - 1 do
8: rt[n, nxt[n]+k] := suc[rt[n, d], k]

end
9: nxt[n] := nxt[n] + nrsuc[rt[n, d]]

endif
end

end

The range of array node exceeds the number of nodes by 1 in order to accom-
modate the undefined element which forces termination of the outer while loop.

4.3 C l a s s i f i c a t i o n o f L o o p s

Let us classify the loops in this program.
The outermost loop is a typical member of Class I. If we had stored the

number of nodes in some variable, we would get a loop of Class 3, and if the

471

number of nodes were a structure parameter known at compile time, it would
even be a loop of Class 4. Target code enumerating the transformed index space
precisely can be generated, since it ks convex whether the outermost loop is a for
or a while loop. However, if we convert this loop to Class 3 or Class 4, we can
omit the unit and null control dependence vectors, which must be cited in loops
of Class 1. This may result in a better schedule.

The loop on d is of Class 0 since list rt[n], which determines its termination,
becomes longer as execution proceeds.

The innermost loop is of Class 2 since its number of iterations is fixed when
the loop starts, but is not known at compile time.

5 S p a c e - T i m e Mapping

To find a valid space-time mapping we compute all data dependences and insert
the necessary control dependences according to the analysis of the loops in the
previous section: all loops of Classes 4, 3 and 2 get a zero dependence vector
from the loop-controlling statement to every statement in the body, and all
loops of Classes 1 and 0 get, additionally, a unit dependence vector from the
loop-controlling statement to itself, modelling the while dependences.

Then, standard techniques can be used to determine a valid space-time map-
ping; techniques which do not consider the loop bounds (e.g., [6]) can be applied
to any loop nest without change, whereas more precise methods considering the
loop bounds (e.g., [8, 9]) must be adapted so as to deal with while loops (Classes
0 and 1).

6 T a r g e t Program

One of the most intricate problems in parallelizing general loops is to generate
code for the transformed program. Even for a set of loops of Class 4 which are
not per~'~.ctly nested the target code may become very complex, but there are
algorithn." for an automatic generation [13, 21].

In general, there may not even be a target program which enumerates pre-
cisely all tra rlsformed points of the execution space: the central problem is to
find computable bounds for the loops enumerating (a superset of) the execution
set.

6.1 Synchronous Paral le l ism

In general, a synchronous target program cannot be created with standard meth-
ods since, at compile time, there is no boundary on the outer, sequential loop
without knowledge of the maximal extent of some inner loop--in general, there
need not be a scannable transformation in the synchronous case [16]. Target
code enhancements which deal with this typical problem in both shared and dis-
tributed memory systems are given in [4, 12]. One can also employ a speculative

472

approach as described in [3]. However, these complex schemes are not necessary
for all classes of loops.

For Class 4, the computation space is known at compile time to be a poly-
tope. Therefore, code enumerating the target space can be generated easily with
s tandard methods like Fourier-Motzkin elimination [1] or PIP [7]. In principle,
loops of Class 3 can also be treated at compile time since their execution space
is convex but, at present, no code generation methods are known.

Loops of Class 2 result in non-convex execution spaces, but the compiler can
easily generate a guard for the execution of every iteration. The simplest version
of such a guard for a loop of Class 2 at some level r is:

lbr ~_ (T -1 * target-coordinates)It ~_ ubr

where lbr and ubr are the expressions for the lower and upper bound of loop
r, resp., and Ir denotes the projection of the r th coordinate of a vector. The
main property of this guard is that its applications in different iterations are
independent of each other and can therefore be executed simultanously.

For loops of Class 1 and 0, the full scheme must be used because the guard
can only be determined iteratively at run time.

6.2 A s y n c h r o n o u s P a r a l l e l i s m

For asynchronous programs one can always find a scannable transformation.
This transformation yields target code without any overhead--for any class. If,
for some reason, one prefers an unscannable transformation (e.g., in order to
obtain space optimality), the comments of Section 6.1 apply.

However, an asynchronous program can only be written in a very abstract
model, where we allow some outer loops in space to enumerate an infinite number
of processors. We know that the number of processes is given by an affine function
of time, i.e., the number of used processors grows affinely with time. But, since
the t ime coordinate is not known in the outer spatial loops, one must allocate
infinitely many processors initially.

In a real implementation, however, the problem of allocating an infinite num-
ber of processors at some time step is obsolete since, in general, all processors
must be allocated before the parallel program starts its execution. There, the un-
boundedness is solved by standard partitioning or folding techniques [5, 18, 19].

This explains the non-existence of a whileall construct (a parallel while loop
with an upper bound given by an arbitrary boolean expression); whileall would
have to activate a set of processors in one time step (like forall) but would have
to test a linearly large set of conditions, which cannot be done in constant time.

7 A n A l t e r n a t i v e C l a s s i f i c a t i o n

Our classification is based on the question of how one can decide whether or not
at some given point (in a superset of the target space) a computation must be
applied. An alternative criterion, just as important for target code generation as

473

ours, is whether target loop bounds can be determined which are functions in
the outer target loop indices (if any) and structure parameters only.

This is feasible for loops of Class 4 with Fourier-Motzkin and for while loops
(Classes 0 and 1), since their while dependences allow termination detection at
run time [10, 12]. Thus, these classes would not change.

Classes 2 and 3, however, would in the alternative classification be divided
orthogonally: in both classes there are loop nests for which target loop bounds
can be found at compile time (e.g., any source loop nest under scannable trans-
formations) and loop nests for which this is not possible--either because of a
lack of mathematical methods or because of theoretically unsolvable problems at
compile time (e.g., bounds depending on variables whose values vary during the
program's execution). In the latter case, mathematical methods might (hope-
fully) provide conservative estimates of the loop bounds, (e.g., for monotonic
functions); in the worst case, the loop bounds must be computed at run time.

We prefer our classification, since the classification of loops should only be
based on properties of the source loop nest--but scannability is determined by
the shape of the space-time matrix [11].

8 C o n c l u s i o n s

We hope to have demonstrated that space-time mapping methods, which in
their original form from systolic design [17] can handle only a subset of Class 4
(perfect nests with uniform dependences), are becoming more and more generally
applicable. Recent extensions are pushing the limit of current data dependence
analysis technology: dependence tests for data structures other than static arrays
are required.

A c k n o w l e d g e m e n t s

The first author is grateful to Max Geigl for numerous extremely helpful discus-
sions and careful readings of the paper. This work is part of the DFG project
RecuR and received travel funds from the DAAD exchange program PROCOPE.

R e f e r e n c e s

1. U. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer, 1993.

2. P. Boulet, M. Dijon, E. Lequiniou, and T. Risset. Reference manual of the
Bouclettes parallelizer. Technical Report 94-04, Laboratoire de l'Informatique du
ParaU~lisme, Ecole Normale Sup~rieure de Lyon, October 1994.

3. J.-F. Collard. Automatic parallelization of while-loops using speculative execu-
tion. Int. J. Parallel Programming, 23(2):191-219~ 1995.

4. J.-F. Collard and M. Griebl. Generation of synchronous code for automatic
parallelization of while loops. In S. Haxidi, K. All, and P. Magnusson, editors,
EURO-PAR '95 Parallel Processing, Lecture Notes in Computer Science 966, pages
315-326. Springer-Verlag, August 1995.

474

5. A. Darte. Regular partitioning for synthesizing fixed-size systolic arrays. INTE-
GRATION, 12(3):293-304, December 1991.

6. A. Darte and F. Vivien. Automatic parallelization based on multi-dimensional
scheduling. Technical Report 94-24, Laboratoire de l'Informatique du Parall~lisme,
Ecole Normale Sup6rieure de Lyon, September 1994.

7. P. Feautrier. Parametric integer programming. Operations Research,
22(3):243-268, 1988.

8. P. Feautrier. Some efficient solutions to the affine scheduling problem. Part I. One-
dimensional time. Int. J. Parallel Programming, 21(5):313-348, October 1992.

9. P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II. Mul-
tidimensional time. Int. J. Parallel Programming, 21(6):389-420, October 1992.

10. M. Griebl and J.-F. Collard. Generation of synchronous code for automatic paral-
lelization of while loops. In S. Haridi, K. All, and P. Magnusson, editors, EURO-
PAR '95, Lecture Notes in Computer Science 966, pages 315-326. Springer-Verlag,
1995.

11. M. Griebl and C. Lengauer. On the space-time mapping of WHILE-loops. Parallel
Processing Letters, 4(3):221-232, September 1994.

12. M. Griebl and C. Lengauer. A communication scheme for the distributed execution
of loop nests with while loops. Int. J. Parallel Programming, 23(5):471-495, 1995.

13. W. Kelly, W. Pugh, and E. Resser. Code generation for multiple mappings. Tech-
nical Report CS-TR-3317, Dept. of Computer Science, Univ. of Maryland, 1994.

14. H. Le Verge, C. Mauras, and P. Quinton. The ALPHA language and its use for
the design of systolic arrays. J. VLSI Signal Processing, 3:173-182, 1991.

15. C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor,
CONCUR'93, Lecture Notes in Computer Science 715, pages 398-416. Springer-
Verlag, 1993.

16. C. Lengauer and M. Griebl. On the parallelization of loop nests containing while
loops. In N. N. Mirenkov, Q.-P. Gu, S. Peng, and S. Sedukhin, editors, Proc.
ist Aizu Int. Syrup. on Parallel Algorithm/Architecture Synthesis (pAs'95), pages
10-18. IEEE Computer Society Press, 1995.

17. P. Quinton and Y. Robert. Systolic Algorithms and Architectures. Prentice-Hall,
1990.

18. J.-P. Sheu and T.-H. Tai. Partitioning and mapping nested loops on multiprocessor
systems. IEEE Trans. on Parallel and Distributed Systems, 2:430-439, 1991.

19. J. Teich and L. Thiele. Partitioning of processor arrays: A piecewise regular ap-
proach. INTEGRATION, 14(3):297-332, 1993.

20. P. P. Tirumalai, M. Lee, and M. S. Schlansker. Parallelization of while loops on
pipelined architectures. J. Supercomputing, 5:119-136, 1991.

21. S. Wetzel, Automatic code generation in the polytope model. Diplomarbeit,
Fakult~t fiir Mathematik und Informatik, Uulversit~t Passau, 1995.

22. R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lain, and J. L.
Hennessy. SUIF: An infrastructure for research on parallelizing and optimizing
compilers. In Proc. Fourth ACM SIGPLAN Syrup. on Principles f~ Practice of
Parallel Programming (PPoPP), pages 31-37. ACM Press, 1994.

23. M. Wolfe, The Tiny loop restructuring research tool. In H. D. Schwetman, editor,
Proc. Int. Conf. on Parallel Processing, volume II, pages 46-53. CRC Press, 1991.

24. Y. Wu and T. G. Lewis. Parallelizing while loops. In D. A. Padua, editor, Proc. Int.
Conf. on Parallel Processing, volume II, pages 1-8. Pennsylvania State University
Press, 1990.

