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Abstrac t .  A new cooperative caching mechanism, PACA, along with 
a caching algorithm, LRU-Interleaved, and an aggressive prefetching al- 
gorithm, Full-File-On-Open, are presented. The caching algorithm is es- 
pecially targeted to parallel machines running a microkernel-based op- 
erating system. It avoids the cache coherence problem with no loss in 
performance. Comparing our algorithm with another cooperative cache 
one (N-Chance Forwarding), in the above environment, better results 
have been obtained by LRU-Interleaved. We also evaluate an aggressive 
prefetching algorithm that highly increases read performance taking ad- 
vantage of the huge caches cooperative caching offers. 

1 Introduction and Related Work 

In this paper we present PACA, a specific cooperative caching mechanism built 
on top of a microkernel-architecture operating system. PACA defines a single 
parallel global cache built from the union of all the small local caches across the 
different nodes. As part of PACA, we have studied several caching and prefetch- 
ing policies. From all the considered policies, special interest will be placed on 
LRU-Interleaved (caching algorithm with no cache coherence problems) and Full- 
File-On-Open (aggressive prefetching) algorithms. 

All performance data presented in this paper is obtained through simulation. 
In order to understand the advantages our algorithm has, we compare it with the 
one presented by Dahlia et al. [4]. In addition to the simulation results presented 
in this paper, a working prototype has been implemented on top of the PAROS 
operating system microkernel [9][14]. 

Most of the work along this line has not been done on parallel machines 
but on networks of workstations running a Unix-like operating system which 
offers most services. Left et al. studied the impact distributing cached objects 
over the network could have [11]. A more practical project was done by Dahlin 
et al. [4] as part of the xFS file system [1]. They proposed several cooperative 
caching algorithms and simulated their performance. In their work, N-Chance 

* This work has been supported by the Spanish Ministry of Education (CICYT) under 
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Forwarding was identified as the best algorithm. Our work differs from the one 
presented by Dahlin et al. in two main issues. First, only read operations are 
studied in their work while both reads and writes are covered in this paper. 
The second difference is the environment the cooperative caching algorithm will 
work on. In both previous works, the test bed was a network of workstation 
running a full Unix-like operating system, We work on a parallel machine with a 
microkernel-based operating system on each node. Most services, hike file system 
operations, are implemented by a user-level server. 

Similar approaches to cooperative caching have been taken in data base im- 
plementation [7], remote memory paging [13, 12] and memory management  [6]. 

2 Target Environment 

The parallel machine this file system is targeted for is made of several nodes 
with local memory. Full connectivity is offered by the interconnection network. 
Besides, each node may have none, one or even several disks. 

In this work, a couple of differences between parallel machines and network of 
workstations are assumed. While the second one needs reasonable fault tolerance 
mechanisms, a parallel machine works as a unit and a node failure means whole 
machine failure. Besides, parallel machines have a higher interconnection network 
bandwidth than a network of workstations have. 

In our environment, a parallel machine runs a microkernel-based operating 
system instead of a full Unim-like one. All functionalities not offered by the kernel 
are implemented by servers. This is also the case for the file system operations. 

This work started as a file system cache prototype for the PAROS operating 
system microkernel [9]. This target platform defined the environment we work 
with. In order to be able to implement our distributed cache, the underlying mi- 
crokernel should offer, besides the usual abstractions, a memory_copy operation. 
This mechanism will be used to transfer data between nodes. Our assumption is 
that  any processor can set up a data transfer between any other two processors. 
The processor that  invokes the copy is charged with all the overhead. When we 
refer to a memory copy the copy request and copy itself are all included. 

3 Design 

3.1 PACA (PArallel CAche) 

PACA is a specific cooperative caching mechanism built on top of a microkernel- 
architecture operating system. PACA defines a single parallel global cache build 
from the union of all the nodes' local cache. This global management can lead to 
high performance through a high global hit ratio and good adaptabili ty to the 
changing needs of the nodes. This will increase the overall system performance. 
When this mechanism is used we can observe two kinds of cache hits. If the 
requested block is kept in the local memory we will have a local hit. If this block 

is kept on a remote node we will have a remote hit. 
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As a first step, we have studied the behavior of a centralized single server. A 
centralized control should be able to cope with a reasonable number of proces- 
sors. The simulation results show that,  in most  of the parallel machine installa- 
tions (with less that  50 nodes), the single server should not cause a bottleneck. 
The causes behind this reasonable scalability are little server overhead and dis- 
t r ibuted da ta  transfers. Regardless of these results, work on the distribution of 
PACA for larger systems is ongoing. 

3.2 LRU-Inter leaved  Algor i thm 

LRU-Interleaved is a very simple algorithm designed to work as a caching method 
of PACA. It  uses all the available cache in the system as a single cache. It also 
takes advantage of the parallelism and the high data  transfer bandwidth offered 
by a parallel machines. 

We use a set associative block placing algorithm. The number  of sets equals 
the number  of nodes and the size of each set is the size of each local cache 
measured in blocks. When the server has to cache a new block, it applies a hash 
function to the file name (or file-id) and block number. The result of this function 
indicates which node will cache the block. Next, a place in the local cache of tha t  
node is found using a LRU replacement algorithm. If  the hash function is good 
enough, one of the oldest blocks in the cache will be replaced and the behavior 
will be an approximation to a global LRU replacement algorithm [3]. 

As performance is a very important  issue in the design of LRU-Interleaved, 
we have taken several steps in order to increase it as much as possible. The first 
step towards it consists of designing a simple algorithm. We have eliminated 
all replication and cache coherence mechanisms. A second step consists of using 
the potential  communication parallelism. When a user requests more than one 
cache block, these blocks, if in cache, can be sent to the client node in parallel. 
This parallelization decreases the overhead produced by bringing the data  from 
a remote node. 

3.3 P r e f e t e h i n g  

Cooperat ive caching on a parallel machine allows the system to have huge caches. 
Given these cache sizes, it takes many  hours to fill the cache and most  of the 
cached data  is more than several hours old. In our simulations (50 nodes and 
16MB local caches) the cache needed 13 hours to be filled. This leads us to 
believe that  huge caches should be used for aggressive prefetching. It  is well 
known tha t  prefetching is not always a good idea as it may  end up delaying the 
application if many  mispredictions are made [16] [8]. Nevertheless, if the cache 
is big enough, these mispredictions will not affect the overall cache performance 
as prefetched blocks will replace very old data. In this work we have studied two 
different prefetching algorithms: One-Block-Ahead and Full-File-On-Open. 

One-Block-Ahead queues the next block to the prefetching queue after each 
read or write operation. As soon as the disk becomes idle, the first block in the 
prefetching queue will be fetched. 
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The best aggressive policy we have simulated so far is the one presented 
in this paper  (Full-File-On-Open). It  consists of queuing the whole file on the 
prefetching queue as soon as the file is opened. With this mechanism most  blocks 
are already in the cache when the application requests them. This algori thm may  
be too aggressive if the files are very large. As no problems have been detected 
with the used workload we have not taken this into account. 

4 N - C h a n c e  F o r w a r d i n g  A l g o r i t h m  

In order to test how good our algorithm is, we compare it with N-Chance For- 
warding [4] which is one of the latest cooperative cache algorithms found in 
the bibliography. This algorithm divides the cache a workstation has, into two 
parts.  The first one is used to cache the local data  and the second one will hold 
da ta  cached by remote workstations. The size of these two parts  is not fixed but  
dynamical ly adjusted depending on the node I / O  activity. 

In order to adapt  this algorithm to our environment some changes have been 
made.  The most  significant modification is due to the microkernel architecture 
we work with. In the original version of N-Chance Forwarding algorithm, a local 
hit had no need to access a remote node. The workstat ion's  operating system 
recognized the requested block as a local hit and delivered it directly to the local 
client. In our model, as the file system is managed by a server, all requests have to 
be sent to a possibly remote server. We have to notice that  this implementat ion 
will increase the local hit access t ime and decrease the remote hit one. Each local 
hit will be increased the t ime needed to send the message to the server. On the 
other side, remote hits will only send one message to the server per user request 
instead of one message for each remote hit. 

N-Chance Forwarding allows each node to cache the blocks its applications 
request. This algori thm a t tempts  to avoid discarding unreplicated blocks (sin- 
glets) from the cache. When a client discards a block, the server checks to see 
if that  block is the last copy in the whole cache. If  the block is a singlet, rather  
than discarding it, it forwards the data  to a random peer. The peer that  receives 
the data  adds the block to its LRU list as if it had been recently referenced. This 
forwarding can only take place N times before the block is referenced again. Af- 
ter N forwardings, if nobody references it, the block is discarded. If  a client has 
a remote hit, the block is replicated from the remote cache to the local one of 

the requesting client. 
In this paper  we have used two different values for N. The first one, N=0,  

implements  a cache where remote hits are possible but  no coordination between 
nodes is done (Greedy policy). The second value, N=2, is used because it was 

described as the best choice in [4]. 
Our N-Chance Forwarding version has been implemented as a single server 

to avoid worrying about  cache coherence. In this centralized version, the cache 
coherence algorithm will not need to communicate  different servers decreasing 
the control traffic between nodes. This simplification has to be taken into account 

as it may  speed write operations. 
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5 A l g o r i t h m s  C o m p a r i s o n  

Before getting into performance details, it would be very useful to compare both 
cooperative caching algorithms: LRU-Interleaved and N-Chance Forwarding. 

LRU-Interleaved is a very simple algorithm. The way blocks are distributed 
among the nodes makes searching a block very easy and efficient. Straight block 
location is achieved without using large directory tables. In N-Chance Forward- 
ing there is a special cost on maintaining information about where the blocks 
are placed. They also have to keep track of which blocks are replicated in order 
to detect if a block is a singlet or not. 

In LRU-Interleaved, much more interest is placed in obtaining full utiliza- 
tion of the cache and avoiding replication than minimizing the amount  of data  
transfer between nodes. On the other hand, the N-Chance Forwarding algorithm 
places special interest in local hits trying to minimize the number of block trans- 
ferences between nodes. 

A third important  difference is the cost remote hits have on both algorithms. 
On N-Chance Forwarding a remote hit implies a remote copy from the remote 
cache to the local cache and a local copy from the local cache to the user. On 
the other hand, a remote copy in LRU-Interleaved only implies a remote copy 
from the remote cache to the user. 

Another difference between the algorithms is the way the cache coherence 
problem is solved. In our proposal no replication is allowed and thus no cache 
coherence problems appear. In N-Chance Forwarding some kind of cache coher- 
ence algorithm has to be implemented. 

6 S i m u l a t i o n  M e t h o d o l o g y  

6.1 S i m u l a t o r  

The file-system cache simulator used in this work is part of DIMEMAS 2 [10], a 
distributed memory parallel machine simulator. 

We will not get into detail of the simulator functionality but the communi- 
cation model should be explained in order to understand the figures presented 
in this work. Communications are divided into two parts: a startup and a data 
transfer. The startup is constant for each type of communication (port or mere- 
ory_copy) and it is assumed to require CPU activity. The data transfer time is 
proportional to the size of the data sent and the intercommunication network 
bandwidth. In our model, all communications are synchronous. Asynchronous 
communication can be achieved by creating new threads. 

6.2 I m p l e m e n t a t i o n  De ta i l s  

Although we don't  want to get into many implementation details, some of them 
are very important  in order to understand the results presented in this paper. 

2 DIMEMAS is a performance prediction simulator developed by CEPBA-UPC and 
it is commercially available from PALLAS 
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The file server is a high-priority mult i- threaded application which shares the 
node with other applications. 

It  is impor tant  to note that  cleaning or forwarding a block is done after the 
operat ion is finished and the user has been notified. This takes the overhead 
away from the critical path  of the operation. From now on, we will refer to these 
situations as delayed clean and delayed forward. These delayed operations will 
be possible as long as the file server does not run out of auxiliary buffers. 

As we want to optimize the critical path  of the read and write operations we 
give them higher priority over prefetching operations. 

7 P e r f o r m a n c e  

7.1 S p r i t e  W o r k l o a d  

In order to get the results presented in this paper, we have used the Sprite work- 
load [2]. These traces contain the activity of 48 client machines and some servers 
over two day period measured in the Sprite operating system. All measures pre- 
sented in this paper are taken from the 15th hour to the 48th hour in order to 
study the behavior of a warm cache. We have used this trace as we believe tha t  
parallel machines should not only be used for parallel applications but  also for 

Unix-like ones in a t ime sharing manner.  

7.2 Genera l  In format ion  and S imula t ion  Parameters  

In the following subsections, most  of the parameters  used in the simulation are 
fixed. Unless otherwise specified, all runs simulated a 50 nodes machine with a 
16MB of local cache, 8KB cache blocks, no prefetching and a 30 seconds sync. 

We assume disk t ime accesses as described by Ruemmler  and Wilkes [15]. 
Reading a 8KB disk block takes 14.7 milliseconds while writing it takes 18.3 
milliseconds. All measures in this paper  are taken with only one disk connected 
to the node where the centralized file server runs. 

Unless otherwise specified, nodes are connected through a 155 Mbi ts /s  inter- 
connection network and local copies are done at 320 Mbits/s.  We assumed a 100 
microseconds port  s tar tup and a memory  copy one of 50 microseconds. 

In the following subsections we will use a few short expressions in order to 
identify several common situations. When a user requests a block that  it is not 
in the cache it is called cache miss. This requested block has to replace another 
block already cached. This replaced block may have been modified since its last 
update  to disk, or may not have. We will refer to the first si tuation as a miss on 
dirty and to the second one as a miss on clean. 

7.3 R e a d  and Write  Performance  

In this subsection we will study the performance of read and write operations 
with LRU-Interleaved, N-Chance Forwarding and Greedy policies (Fig. 1). 
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Fig. 1. Average READ and WRITE time for the various caching policies. 

An important  result is that both cooperative caching algorithms nearly dou- 
ble the read operations bandwidth if compared to non cooperative ones (Greedy 
and no cache). 

If LRU-Interleaved and N-Chance Forwarding are compared, a 3.1% gain 
from the first algorithm over the second one is observed. Even though Dahlin's 
algorithm has a much higher local hit ratio no proportional gain is observed due 
to two main reasons: different costs of remote operations and forwardings. 

A remote  hit in N-Chance Forwarding takes longer than in LRU-Interleaved 
as was explained in Section 5. 

There are also quite a few block forwardings that cannot be delayed due to 
a lack of auxiliary buffers. They have to be included in the critical path of the 
operation. This usually happens with large requests (100KBytes or more). We 
have to recall that  there is a limit of 16 auxiliary buffers per node. 

In Figure 1, we also observe that  a write operation with LRU-Interleaved is 
14% faster than with N-Chance Forwarding. In order to explain this difference 
we should first explain why Greedy is also faster than N-Chance Forwarding. 
The main difference between these two algorithms is that  the first one does not 
forward blocks while the second one does. The overhead due to not delayed 
forwardings increases the write time a lot. A not delayed forwarding implies an 
extra remote memory copy in the write operation. As write operations are very 
fast, this extra time affects the overall write time significantly. 

LRU-Interleaved is also faster than Greedy because of the dirty blocks. As 
N-Chance Forwarding and Greedy algorithms clean a dirty block just before 
forwarding it [5], the syncer does not have enough time to clean all blocks before 
being forwarded. This does not happen in LRU-Interleaved as blocks are cleaned 
once they are completely discarded. The overhead of block cleaning is higher than 
the time lost because of remote hits. 

Finally, another important  issue is the different cost remote  hi~s have in 
LRU-Interleaved compared to N-Chance Forwarding and Greedy. The same ex- 
planation as in the read operations applies. 
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Fig. 2. Average read and write times due to the PREFETCHING policy. 

7.4 P r e f e t c h i n g  I n f l u e n c e  o n  R e a d  a n d  W r i t e  O p e r a t i o n s  

The traditional prefetching policy One-Block-Ahead (OBA) decreases the read 
time a little bit (Fig. 2). With this algorithm not much gain is obtained. This is 
because starting to prefetch a block just after accessing the previous one is not 
early enough. When the user needs the prefetching block, it is still on its way 
from the disk. 

Another problem this algorithm has is that  random accesses see very little 
gain. If blocks are accessed in a random way, the block prefetched are not the 
ones the application needs. 

These problems found in One-Block-Ahead have lead us to implement the 
Full-File-On-Open policy (FFOO). If we start  prefetching the file once it is open, 
the probability to have finished the prefetching of a block before it is needed 
increases. Besides, if a random access is performed, most blocks in the first part  
of the file will have been prefetched before requested. 

The Greedy algorithm improves much more than any other as its hit ratio is 
very low when no prefetching is done. 

If we move to the write operations, the first thing we notice is that  no reaI 
gain is obtained with either algorithm. This is because increasing the hit ratio 
does not increase the write performance. A miss on clean takes the same or even 
less amount  of time than a cache hit. For instance, remote hits on N-Chance 
Forwarding are even more expensive than misses on clean [3]. 

Another problem appears when the block to be written is being prefetched. 
This write will take some of the disk read time. 

On the other hand, if a block is prefetched very few misses on dirty will 
happen increasing the write-operation performance. One thing outweighs the 
other and not much difference is seen on write operations due to prefetching. 

7.5 I n t e r c o n n e c t i o n  N e t w o r k  B a n d w i d t h  I n f l u e n c e  

In this section, we study the influence the local-remote bandwidth ratio has on 
the already shown results. Figure 3 presents the percentage gain obtained by 
LRU-Interleaved over N-Chance Forwarding when the local-remote bandwidth 
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ratio is modified. The most  favorable case for our algorithm is where there is no 
difference between a local and a remote transfer. From this point we decrease the 
remote bandwidth until N-Chance Forwarding reads and writes become faster. 

This figure shows that  the results presented in this paper  are valid even 
with lower interconnection bandwidths. It also shows that  after a certain point 
N-Chance Forwarding is the way to go. 

7.6 C a c h e  Size  I n f l u e n c e  

In this work we were also interested in studying the effect local cache sizes had 
on both algorithms (Fig. 4). We can observe that  LRU-Interleaved works much 
better  than N-Chance Forwarding when small local caches are used. This is 
because a higher global hit ratio is obtained by our algorithm due to a bet ter  
cache utilization. As no replication is allowed, the whole cache contains useful 
blocks. Dahlin's algorithm loses part  of the cache with replicated blocks and 
it behaves as a smaller one. The benefit of the local hits cannot outweight the 
higher hit ratio obtained by our a lgor i thm.  

It  is also impor tan t  to examine the behavior of the write operations. When 
N-Chance Forwarding is used with small caches the probabili ty to forward a 
dirty block is very high. This dirty block has to be cleaned before sending it to 
the new node increasing the write operation time. 

8 C o n c l u s i o n s  

In this paper  we have presented a distributed-cache-oriented file system designed 
to work on a parallel machine running a microkernel-based operating system. 
Simplicity, scalability and performance have been the three main objectives in 
the design. While simplicity and performance have been clearly achieved, more 
work has to be done if a fully scalable file system is to be obtained. 

We have shown that  a very simple algorithm obtains similar read bandwidth 
and a bet ter  write performance than more complex ones. 
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We have also seen that in our environment, as long as the local bandwidth 
is less than 5 times the interconnection network one, LieU-Interleaved obtains 
very good results. From this point on N-Chance Forwarding is the way to go. 

The Figures have shown some important aspects we should take in account 
when designing a distributed cache. First, if a relatively fast interconnection 
network is available, the importance of remote and local hits can be outweighted 
by other factors like avoiding block forwarding and reducing the number of 
cleans. Second, remote write hits do not increase write performance and may 
even decrease it. 

We have seen that aggressive prefetching in large cooperative caches may 
increase the hit ratio and thus decrease the average read time. We have also 
shown that prefetching very rarely increases the write bandwidth. 

More information may be found in the longer version of this paper [3]. 
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