
Im
ll

e

Im
le

~
L

'n
l "

�8
4

C
~

�9

0 C
D

PACA: A Cooperative File System Cache for
Parallel Machines*

Toni Cortes, Sergi Girona and Jesds Labarta

Departament d'Arquitectura de Computadors
Universitat Polit~cnica de Catalunya - Barcelona

E-mail: {toni, sergi, jesus}@ac.upc.es
URL: http://www.ae.upc.es/hpc

Abstrac t . A new cooperative caching mechanism, PACA, along with
a caching algorithm, LRU-Interleaved, and an aggressive prefetching al-
gorithm, Full-File-On-Open, are presented. The caching algorithm is es-
pecially targeted to parallel machines running a microkernel-based op-
erating system. It avoids the cache coherence problem with no loss in
performance. Comparing our algorithm with another cooperative cache
one (N-Chance Forwarding), in the above environment, better results
have been obtained by LRU-Interleaved. We also evaluate an aggressive
prefetching algorithm that highly increases read performance taking ad-
vantage of the huge caches cooperative caching offers.

1 Introduction and Related Work

In this paper we present PACA, a specific cooperative caching mechanism built
on top of a microkernel-architecture operating system. PACA defines a single
parallel global cache built from the union of all the small local caches across the
different nodes. As part of PACA, we have studied several caching and prefetch-
ing policies. From all the considered policies, special interest will be placed on
LRU-Interleaved (caching algorithm with no cache coherence problems) and Full-
File-On-Open (aggressive prefetching) algorithms.

All performance data presented in this paper is obtained through simulation.
In order to understand the advantages our algorithm has, we compare it with the
one presented by Dahlia et al. [4]. In addition to the simulation results presented
in this paper, a working prototype has been implemented on top of the PAROS
operating system microkernel [9][14].

Most of the work along this line has not been done on parallel machines
but on networks of workstations running a Unix-like operating system which
offers most services. Left et al. studied the impact distributing cached objects
over the network could have [11]. A more practical project was done by Dahlin
et al. [4] as part of the xFS file system [1]. They proposed several cooperative
caching algorithms and simulated their performance. In their work, N-Chance

* This work has been supported by the Spanish Ministry of Education (CICYT) under
the TIC-94-537 and TIC-95-0429 contracts.

478

Forwarding was identified as the best algorithm. Our work differs from the one
presented by Dahlin et al. in two main issues. First, only read operations are
studied in their work while both reads and writes are covered in this paper.
The second difference is the environment the cooperative caching algorithm will
work on. In both previous works, the test bed was a network of workstation
running a full Unix-like operating system, We work on a parallel machine with a
microkernel-based operating system on each node. Most services, hike file system
operations, are implemented by a user-level server.

Similar approaches to cooperative caching have been taken in data base im-
plementation [7], remote memory paging [13, 12] and memory management [6].

2 Target Environment

The parallel machine this file system is targeted for is made of several nodes
with local memory. Full connectivity is offered by the interconnection network.
Besides, each node may have none, one or even several disks.

In this work, a couple of differences between parallel machines and network of
workstations are assumed. While the second one needs reasonable fault tolerance
mechanisms, a parallel machine works as a unit and a node failure means whole
machine failure. Besides, parallel machines have a higher interconnection network
bandwidth than a network of workstations have.

In our environment, a parallel machine runs a microkernel-based operating
system instead of a full Unim-like one. All functionalities not offered by the kernel
are implemented by servers. This is also the case for the file system operations.

This work started as a file system cache prototype for the PAROS operating
system microkernel [9]. This target platform defined the environment we work
with. In order to be able to implement our distributed cache, the underlying mi-
crokernel should offer, besides the usual abstractions, a memory_copy operation.
This mechanism will be used to transfer data between nodes. Our assumption is
that any processor can set up a data transfer between any other two processors.
The processor that invokes the copy is charged with all the overhead. When we
refer to a memory copy the copy request and copy itself are all included.

3 Design

3.1 PACA (PArallel CAche)

PACA is a specific cooperative caching mechanism built on top of a microkernel-
architecture operating system. PACA defines a single parallel global cache build
from the union of all the nodes' local cache. This global management can lead to
high performance through a high global hit ratio and good adaptabili ty to the
changing needs of the nodes. This will increase the overall system performance.
When this mechanism is used we can observe two kinds of cache hits. If the
requested block is kept in the local memory we will have a local hit. If this block

is kept on a remote node we will have a remote hit.

479

As a first step, we have studied the behavior of a centralized single server. A
centralized control should be able to cope with a reasonable number of proces-
sors. The simulation results show that, in most of the parallel machine installa-
tions (with less that 50 nodes), the single server should not cause a bottleneck.
The causes behind this reasonable scalability are little server overhead and dis-
t r ibuted da ta transfers. Regardless of these results, work on the distribution of
PACA for larger systems is ongoing.

3.2 LRU-Inter leaved Algor i thm

LRU-Interleaved is a very simple algorithm designed to work as a caching method
of PACA. It uses all the available cache in the system as a single cache. It also
takes advantage of the parallelism and the high data transfer bandwidth offered
by a parallel machines.

We use a set associative block placing algorithm. The number of sets equals
the number of nodes and the size of each set is the size of each local cache
measured in blocks. When the server has to cache a new block, it applies a hash
function to the file name (or file-id) and block number. The result of this function
indicates which node will cache the block. Next, a place in the local cache of tha t
node is found using a LRU replacement algorithm. If the hash function is good
enough, one of the oldest blocks in the cache will be replaced and the behavior
will be an approximation to a global LRU replacement algorithm [3].

As performance is a very important issue in the design of LRU-Interleaved,
we have taken several steps in order to increase it as much as possible. The first
step towards it consists of designing a simple algorithm. We have eliminated
all replication and cache coherence mechanisms. A second step consists of using
the potential communication parallelism. When a user requests more than one
cache block, these blocks, if in cache, can be sent to the client node in parallel.
This parallelization decreases the overhead produced by bringing the data from
a remote node.

3.3 P r e f e t e h i n g

Cooperat ive caching on a parallel machine allows the system to have huge caches.
Given these cache sizes, it takes many hours to fill the cache and most of the
cached data is more than several hours old. In our simulations (50 nodes and
16MB local caches) the cache needed 13 hours to be filled. This leads us to
believe that huge caches should be used for aggressive prefetching. It is well
known tha t prefetching is not always a good idea as it may end up delaying the
application if many mispredictions are made [16] [8]. Nevertheless, if the cache
is big enough, these mispredictions will not affect the overall cache performance
as prefetched blocks will replace very old data. In this work we have studied two
different prefetching algorithms: One-Block-Ahead and Full-File-On-Open.

One-Block-Ahead queues the next block to the prefetching queue after each
read or write operation. As soon as the disk becomes idle, the first block in the
prefetching queue will be fetched.

480

The best aggressive policy we have simulated so far is the one presented
in this paper (Full-File-On-Open). It consists of queuing the whole file on the
prefetching queue as soon as the file is opened. With this mechanism most blocks
are already in the cache when the application requests them. This algori thm may
be too aggressive if the files are very large. As no problems have been detected
with the used workload we have not taken this into account.

4 N - C h a n c e F o r w a r d i n g A l g o r i t h m

In order to test how good our algorithm is, we compare it with N-Chance For-
warding [4] which is one of the latest cooperative cache algorithms found in
the bibliography. This algorithm divides the cache a workstation has, into two
parts. The first one is used to cache the local data and the second one will hold
da ta cached by remote workstations. The size of these two parts is not fixed but
dynamical ly adjusted depending on the node I / O activity.

In order to adapt this algorithm to our environment some changes have been
made. The most significant modification is due to the microkernel architecture
we work with. In the original version of N-Chance Forwarding algorithm, a local
hit had no need to access a remote node. The workstat ion's operating system
recognized the requested block as a local hit and delivered it directly to the local
client. In our model, as the file system is managed by a server, all requests have to
be sent to a possibly remote server. We have to notice that this implementat ion
will increase the local hit access t ime and decrease the remote hit one. Each local
hit will be increased the t ime needed to send the message to the server. On the
other side, remote hits will only send one message to the server per user request
instead of one message for each remote hit.

N-Chance Forwarding allows each node to cache the blocks its applications
request. This algori thm a t tempts to avoid discarding unreplicated blocks (sin-
glets) from the cache. When a client discards a block, the server checks to see
if that block is the last copy in the whole cache. If the block is a singlet, rather
than discarding it, it forwards the data to a random peer. The peer that receives
the data adds the block to its LRU list as if it had been recently referenced. This
forwarding can only take place N times before the block is referenced again. Af-
ter N forwardings, if nobody references it, the block is discarded. If a client has
a remote hit, the block is replicated from the remote cache to the local one of

the requesting client.
In this paper we have used two different values for N. The first one, N=0,

implements a cache where remote hits are possible but no coordination between
nodes is done (Greedy policy). The second value, N=2, is used because it was

described as the best choice in [4].
Our N-Chance Forwarding version has been implemented as a single server

to avoid worrying about cache coherence. In this centralized version, the cache
coherence algorithm will not need to communicate different servers decreasing
the control traffic between nodes. This simplification has to be taken into account

as it may speed write operations.

481

5 A l g o r i t h m s C o m p a r i s o n

Before getting into performance details, it would be very useful to compare both
cooperative caching algorithms: LRU-Interleaved and N-Chance Forwarding.

LRU-Interleaved is a very simple algorithm. The way blocks are distributed
among the nodes makes searching a block very easy and efficient. Straight block
location is achieved without using large directory tables. In N-Chance Forward-
ing there is a special cost on maintaining information about where the blocks
are placed. They also have to keep track of which blocks are replicated in order
to detect if a block is a singlet or not.

In LRU-Interleaved, much more interest is placed in obtaining full utiliza-
tion of the cache and avoiding replication than minimizing the amount of data
transfer between nodes. On the other hand, the N-Chance Forwarding algorithm
places special interest in local hits trying to minimize the number of block trans-
ferences between nodes.

A third important difference is the cost remote hits have on both algorithms.
On N-Chance Forwarding a remote hit implies a remote copy from the remote
cache to the local cache and a local copy from the local cache to the user. On
the other hand, a remote copy in LRU-Interleaved only implies a remote copy
from the remote cache to the user.

Another difference between the algorithms is the way the cache coherence
problem is solved. In our proposal no replication is allowed and thus no cache
coherence problems appear. In N-Chance Forwarding some kind of cache coher-
ence algorithm has to be implemented.

6 S i m u l a t i o n M e t h o d o l o g y

6.1 S i m u l a t o r

The file-system cache simulator used in this work is part of DIMEMAS 2 [10], a
distributed memory parallel machine simulator.

We will not get into detail of the simulator functionality but the communi-
cation model should be explained in order to understand the figures presented
in this work. Communications are divided into two parts: a startup and a data
transfer. The startup is constant for each type of communication (port or mere-
ory_copy) and it is assumed to require CPU activity. The data transfer time is
proportional to the size of the data sent and the intercommunication network
bandwidth. In our model, all communications are synchronous. Asynchronous
communication can be achieved by creating new threads.

6.2 I m p l e m e n t a t i o n De ta i l s

Although we don't want to get into many implementation details, some of them
are very important in order to understand the results presented in this paper.

2 DIMEMAS is a performance prediction simulator developed by CEPBA-UPC and
it is commercially available from PALLAS

482

The file server is a high-priority mult i- threaded application which shares the
node with other applications.

It is impor tant to note that cleaning or forwarding a block is done after the
operat ion is finished and the user has been notified. This takes the overhead
away from the critical path of the operation. From now on, we will refer to these
situations as delayed clean and delayed forward. These delayed operations will
be possible as long as the file server does not run out of auxiliary buffers.

As we want to optimize the critical path of the read and write operations we
give them higher priority over prefetching operations.

7 P e r f o r m a n c e

7.1 S p r i t e W o r k l o a d

In order to get the results presented in this paper, we have used the Sprite work-
load [2]. These traces contain the activity of 48 client machines and some servers
over two day period measured in the Sprite operating system. All measures pre-
sented in this paper are taken from the 15th hour to the 48th hour in order to
study the behavior of a warm cache. We have used this trace as we believe tha t
parallel machines should not only be used for parallel applications but also for

Unix-like ones in a t ime sharing manner.

7.2 Genera l In format ion and S imula t ion Parameters

In the following subsections, most of the parameters used in the simulation are
fixed. Unless otherwise specified, all runs simulated a 50 nodes machine with a
16MB of local cache, 8KB cache blocks, no prefetching and a 30 seconds sync.

We assume disk t ime accesses as described by Ruemmler and Wilkes [15].
Reading a 8KB disk block takes 14.7 milliseconds while writing it takes 18.3
milliseconds. All measures in this paper are taken with only one disk connected
to the node where the centralized file server runs.

Unless otherwise specified, nodes are connected through a 155 Mbi ts /s inter-
connection network and local copies are done at 320 Mbits/s. We assumed a 100
microseconds port s tar tup and a memory copy one of 50 microseconds.

In the following subsections we will use a few short expressions in order to
identify several common situations. When a user requests a block that it is not
in the cache it is called cache miss. This requested block has to replace another
block already cached. This replaced block may have been modified since its last
update to disk, or may not have. We will refer to the first si tuation as a miss on
dirty and to the second one as a miss on clean.

7.3 R e a d and Write Performance

In this subsection we will study the performance of read and write operations
with LRU-Interleaved, N-Chance Forwarding and Greedy policies (Fig. 1).

483

Fig. 1. Average READ and WRITE time for the various caching policies.

An important result is that both cooperative caching algorithms nearly dou-
ble the read operations bandwidth if compared to non cooperative ones (Greedy
and no cache).

If LRU-Interleaved and N-Chance Forwarding are compared, a 3.1% gain
from the first algorithm over the second one is observed. Even though Dahlin's
algorithm has a much higher local hit ratio no proportional gain is observed due
to two main reasons: different costs of remote operations and forwardings.

A remote hit in N-Chance Forwarding takes longer than in LRU-Interleaved
as was explained in Section 5.

There are also quite a few block forwardings that cannot be delayed due to
a lack of auxiliary buffers. They have to be included in the critical path of the
operation. This usually happens with large requests (100KBytes or more). We
have to recall that there is a limit of 16 auxiliary buffers per node.

In Figure 1, we also observe that a write operation with LRU-Interleaved is
14% faster than with N-Chance Forwarding. In order to explain this difference
we should first explain why Greedy is also faster than N-Chance Forwarding.
The main difference between these two algorithms is that the first one does not
forward blocks while the second one does. The overhead due to not delayed
forwardings increases the write time a lot. A not delayed forwarding implies an
extra remote memory copy in the write operation. As write operations are very
fast, this extra time affects the overall write time significantly.

LRU-Interleaved is also faster than Greedy because of the dirty blocks. As
N-Chance Forwarding and Greedy algorithms clean a dirty block just before
forwarding it [5], the syncer does not have enough time to clean all blocks before
being forwarded. This does not happen in LRU-Interleaved as blocks are cleaned
once they are completely discarded. The overhead of block cleaning is higher than
the time lost because of remote hits.

Finally, another important issue is the different cost remote hi~s have in
LRU-Interleaved compared to N-Chance Forwarding and Greedy. The same ex-
planation as in the read operations applies.

484

Fig. 2. Average read and write times due to the PREFETCHING policy.

7.4 P r e f e t c h i n g I n f l u e n c e o n R e a d a n d W r i t e O p e r a t i o n s

The traditional prefetching policy One-Block-Ahead (OBA) decreases the read
time a little bit (Fig. 2). With this algorithm not much gain is obtained. This is
because starting to prefetch a block just after accessing the previous one is not
early enough. When the user needs the prefetching block, it is still on its way
from the disk.

Another problem this algorithm has is that random accesses see very little
gain. If blocks are accessed in a random way, the block prefetched are not the
ones the application needs.

These problems found in One-Block-Ahead have lead us to implement the
Full-File-On-Open policy (FFOO). If we start prefetching the file once it is open,
the probability to have finished the prefetching of a block before it is needed
increases. Besides, if a random access is performed, most blocks in the first part
of the file will have been prefetched before requested.

The Greedy algorithm improves much more than any other as its hit ratio is
very low when no prefetching is done.

If we move to the write operations, the first thing we notice is that no reaI
gain is obtained with either algorithm. This is because increasing the hit ratio
does not increase the write performance. A miss on clean takes the same or even
less amount of time than a cache hit. For instance, remote hits on N-Chance
Forwarding are even more expensive than misses on clean [3].

Another problem appears when the block to be written is being prefetched.
This write will take some of the disk read time.

On the other hand, if a block is prefetched very few misses on dirty will
happen increasing the write-operation performance. One thing outweighs the
other and not much difference is seen on write operations due to prefetching.

7.5 I n t e r c o n n e c t i o n N e t w o r k B a n d w i d t h I n f l u e n c e

In this section, we study the influence the local-remote bandwidth ratio has on
the already shown results. Figure 3 presents the percentage gain obtained by
LRU-Interleaved over N-Chance Forwarding when the local-remote bandwidth

485

20

I0

..= 0

-10

-20

i ~ Read 80(10
} ~ W r i t e

4000

2000

0
(Local Bandwidth)/(Remo~ Bandwidth)

Ratio

Fig. 3. Influence of the local/remote
transference bandwidth.

LRU-lnterleaved Read
LRU-lnterleaved Write

4:,, -~. N - C h ~ Read

1'0 1'5
Mbytes per Node

Fig. 4. Read and write performance using
different local CACHE SIZES.

ratio is modified. The most favorable case for our algorithm is where there is no
difference between a local and a remote transfer. From this point we decrease the
remote bandwidth until N-Chance Forwarding reads and writes become faster.

This figure shows that the results presented in this paper are valid even
with lower interconnection bandwidths. It also shows that after a certain point
N-Chance Forwarding is the way to go.

7.6 C a c h e Size I n f l u e n c e

In this work we were also interested in studying the effect local cache sizes had
on both algorithms (Fig. 4). We can observe that LRU-Interleaved works much
better than N-Chance Forwarding when small local caches are used. This is
because a higher global hit ratio is obtained by our algorithm due to a bet ter
cache utilization. As no replication is allowed, the whole cache contains useful
blocks. Dahlin's algorithm loses part of the cache with replicated blocks and
it behaves as a smaller one. The benefit of the local hits cannot outweight the
higher hit ratio obtained by our a lgor i thm.

It is also impor tan t to examine the behavior of the write operations. When
N-Chance Forwarding is used with small caches the probabili ty to forward a
dirty block is very high. This dirty block has to be cleaned before sending it to
the new node increasing the write operation time.

8 C o n c l u s i o n s

In this paper we have presented a distributed-cache-oriented file system designed
to work on a parallel machine running a microkernel-based operating system.
Simplicity, scalability and performance have been the three main objectives in
the design. While simplicity and performance have been clearly achieved, more
work has to be done if a fully scalable file system is to be obtained.

We have shown that a very simple algorithm obtains similar read bandwidth
and a bet ter write performance than more complex ones.

486

We have also seen that in our environment, as long as the local bandwidth
is less than 5 times the interconnection network one, LieU-Interleaved obtains
very good results. From this point on N-Chance Forwarding is the way to go.

The Figures have shown some important aspects we should take in account
when designing a distributed cache. First, if a relatively fast interconnection
network is available, the importance of remote and local hits can be outweighted
by other factors like avoiding block forwarding and reducing the number of
cleans. Second, remote write hits do not increase write performance and may
even decrease it.

We have seen that aggressive prefetching in large cooperative caches may
increase the hit ratio and thus decrease the average read time. We have also
shown that prefetching very rarely increases the write bandwidth.

More information may be found in the longer version of this paper [3].

A c k n o w l e d g m e n t s

We owe special thanks to Michael D. Dahlia, E. Markatos and Maite Ortega for
their help and useful comments. Weare also grateful to the people at Berkeley
who gathered the Sprite traces used in this work.

R e f e r e n c e s

1. T.E. Anderson, M.D. Dahlia, J.M Neefe, D.A Patterson e ta[. " Serverless Network File Systems,"

15th SOSP, December 1995, pp. 109-126
2. M.G. Baker, J.H. t ta r tman, M.D. Kupfer et al. "Measurements of a distr ibuted File System,"

Proc. O] the 131h SOSP, 1991, pp. 198-212
3. T. Cortes, S. Girona and 3. Lab~rta "PACA: A Cooperative File System Cache for Parallel

Machines," UPC-CEPBA Technical Report RR-UPC. CEPBA-J996-07
4. M.D. Dahlia, R.Y Wang, T.E. Anderson and D.A Pat terson "Cooperat ive Caching: Using Remote

Client Memory to Improve File System Performance," OSDI'94, pp. 267-280
5. M.D. Dahlin Personal communication - 1994
6. M.J. Feeley, W.E. Morgan, F.H. Pighin et al. "Implementing Global Memory Management in a

Workstat ion Cluster," 15th SOSP, December 1995
7. M.3. Franklin, M.3. Carey and M. Livny. "Global Memory Management in Cliente-Server DBMS

Architectures," ICVLDB, 1992. pp. 596-609
8. D. Kotz "Prefetehing and Caching Techniques in File Systems for MIMD Multiprocessors," PhD

Thesis from Duke University, Dept. of Computer Science, 1991
9. J. Labarta, J. Gimenez, C. Pujol, T. Jove and J.t. Navarro "PAI~OS: Operat ing System Kernel

for Distr ibuted Memory Parallel," PACTA, Barcelona 1992
10. J. Labarta, S. Girona, V. Pinet, T. Cortes, L. Gregoris "DiP : A Parallel Program Development,"

l~uro-Par'96, Lyon, August 1996
11. A. Leff, J.L. Wolf and P.S. Yu "l~eplication Algorithms in a Remote Caching Architecture,"

[EEE Trans. on Parallel ~ Distributed Systems, vol. 4, No. 1i, 1993, pp. 1185-1204
12. A. Left, J.L. Wolf and P.S. Yu "Efficient LRU-Based Buffering inn LAN l~emmote Caching

Architecture," II~NE Trans. on Parallel f2 Distributed Systems, rot. 7, No. 2, 1996, pp. 191-296
13. t~.P. Mark~tos, G. Dramitiaos and K. papachristos "Implementat ion and Evaluation of a Remote

Memory Pager," FoRTH-ICS Technical Report TR-IN9, 1995
14. M. Ortega, T. Cortes and J. Labar ta "Implementat ion of a Cooperative File System Cache on

pAI~OS," UPC-DAC Technical Report UPC-DAC-96/I 6, 1996
15. C. Ruemmler and 3. Wilkes "UNIX Disk Access Patterns," HP Laboratories Technical Report,

HPL-92-15~, 1992
16. A.J. Smith "Disk cache- Miss I~ation Analysis and DesignConsiderat ions," ACM Transactions

o~ Computer Systems, vol. 3, No. 3, 1985, pp. 161-203

