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Abs t rac t .  The bag of tasks structure permits dynamic partitioning for 
a wide class of parallel applications. This paper describes a fault-tolerant 
implementation of this structure using atomic actions (atomic transac- 
tions) to operate on persistent objects, which are accessed in a distributed 
setting via a Remote Procedure Call (RPC). The system is suited to 
parallel execution of data and compute intensive programs that require 
persistent storage and fault tolerance, and runs on stock hardware and 
software platforms, UNIX, C-I--l-. Its suitability is examined in the context 
of the measured performance of three applications; ray tracing, matrix 
multiplication and Cholesky factorization. 

1 I n t r o d u c t i o n  

Many computations manipulate very large amounts of data. Matrix calcula- 
tions represent one example class. In a Massively Parallel Processor (MPP) such 
a vast data set is typically partitioned statically between the very many dis- 
tributed processing elements and moved amongst them as necessary to perform 
the computation. Such an approach is exemplified in Cannon's algorithm for 
matrix multiplication [14]. One suggestion is that a Network Of Workstations 
(NOW) be modelled on such an architecture [2]. However, it may be that prob- 
lem size can exceed even the aggregate memory of all available machines. In such 
a situation, the problem cannot be statically partitioned between processors. 

As the problem size increases so too does the computation time in any given 
configuration, and in a NOW potentially so too does the number of nodes which 
may be employed. As the scale of a distributed computation is increased in this 
way, the possibility of a failure occurring which might affect the execution of the 
computat ion must increase. If it is not possible to tolerate such an event, it is 
necessary to restart the entire computation. 

The approach described here provides a solution for these problems by im- 
plementing a store on secondary storage which is shared between a collection of 
concurrent processes. A computation is organized as a bag of tasks type struc- 
ture [7] where the overall computation is divided up into a number of tasks which 
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are then scheduled dynamically between a potentially varying collection of con- 
current processes. Computation data, including the bag of tasks is located in the 
shared store, which is organized as a repository of objects and fault tolerant ac- 
cess to it supported through atomic actions operating on the contained objects. 
It is suggested that these mechanisms provide a clear model to the user. 

In this experiment, these facilities are supported through an established dis- 
tributed system which runs on many versions of UNIX and C++, without al- 
teration to either. The approach is investigated through implementation of ap- 
plications of scale appropriate to parallelization and fault-tolerance in a NOW. 
Performance is shown to be fundamentally limited only in hardware bandwidths. 

The paper continues with notes on related work in Sect. 2, a description of the 
applications and fault-tolerance mechanisms in Sect. 3, measured performance 
in Sect. 4 and summary in Sect. 5. 

2 Related Work 

The attraction of exploiting a readily available NOW to perform parallel compu- 
tations is widely acknowledged. It is also recognized that a NOW typically has 
disadvantages compared to a tightly coupled multiprocessor, including a lower 
performance interconnect and a greater need for fault-tolerance. 

Experiments have been performed to statically partition data intensive com- 
putations over a NOW, e.g. [5]. However, the size of the computation is bounded 
by aggregate memory of the machines. Structuring similar to the bag of tasks 
is often employed in practice, e.g. for seismic migration in [1], but with limited 
provision for fault-tolerance and for problems which are less intensive in data. 

Mechanisms to support fault-tolerance may be transparent to the application 
programmer, e.g. [12], [15]. However, a transparent scheme is unlikely to take 
advantage of points in an application where data to be saved is minimum, such 
as when data has just been written to disk for instance. 

One non transparent scheme for the static partitioning approach [17] main- 
tains a parity copy of distributed partitions of computation state. While perfor- 
mance for a Cholesky factorization of 5000 element square matrix, at 1700 seconds 
employing 17 Sparc-2 machines, is similar to that recorded here the computa- 
tion is bounded by total memory and the approach here which employs fewer 
machines is resilient to a greater number of failures. 

An early design study [4] considered the use of atomic actions as a mechanism 
to support fault-tolerant parallel programming over a NOW. 

Fault tolerance for a bag of tasks type structure has been considered before, 
e.g. [3], [8] but without providing access to large scale data on secondary storage. 
Plinda [11] which supports access to persistent tuple spaces and a transaction 
mechanism does have some similarity to this work. 

The experiments described here attempt to exploit parallelism in a NOW of 
modest scale to perform large scale computations in a fault-tolerant way without 

altering operating system or language. 
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3 I m p l e m e n t a t i o n  

3.1 F a u l t  T o l e r a n c e  

It is assumed that  a workstation fails by crashing and that then any data  in 
volatile storage is lost, but  that held on disk remains unaffected. It is also as- 
sumed that  the network does not partition. 

Atomic actions operating on persistent state provide a convenient frame- 
work for introducing fault-tolerance [10] through ensuring defined concurrent 
behaviour and fault-tolerance. Atomic actions have the well known properties of 
(1) serializability, (2) failure atomicity, and (3) permanence of effect. 

A convenient model is for this state to be encapsulated in the instance vari- 
ables of persistent objects and accessed through member functions. Within these 
functions the programmer places lock requests, e.g. read or write to suit the se- 
mantics of the operation, and typically surrounds the code within the function 
by an atomic action, starting with begin and ending with commit or abort. Op- 
erations thus enclosed which can include calls on other atomic objects are then 
perceived as a single atomic operation. The infrastructure manages the required 
access from and/or  to disk based state. Such objects may be distributed on sep- 
arate machines, e.g. for performance, and replicated to increase availability. The 
applications are implemented using the Arjuna tool kit [16], an object-oriented 
programming system that  implements in C + +  this object and action model. 

The following enhancements add fault-tolerance to a bag of tasks application. 

1. The slave begins an atomic action before fetching a task from the bag, and 
commits the action after writing the corresponding result. If the slave fails 
the action aborts, all work pertaining to the current task is recovered and 
the task itself becomes available again in the bag. 

2. The shared objects are replicated on at least k + 1 machines, so that  the 
failure of up to k of these machines may be tolerated. 

3. A computat ion object contains a description of the computation and data  
objects and the computat ion's  completion status. This object may be queried 
at any time to determine the status of the computation and may be replicated 
for availability. It is a convenient interface for a process to be started on an 
arbitrary machine to join in an ongoing computation. 

Arjuna requires an underlying RPC to implement distribution and object 
server process management; accessing these services through certain interface 
classes. The R P C  implementation employed here supports optional use of the 
T C P  protocol with connection establishment on a per-call basis. Some opti- 
mization of this RPC mechanism has been performed to exploit homogeneity 
of machines. The RPC also supports reuse of an existing server process. This 
facility is exploited in service of the main shared data objects in order to prevent 
excessive contention in the shared communications medium; the common server 
is single threaded and therefore serializes all slave requests. 
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In each application, the main operands are managed as collections of smaller 
objects. Each task entails computation of some part of the result, which may be 
one or more of such objects. 

At the start of the computation, the shared objects are installed in the object 
repository. In the fault-tolerant version, a fault-tolerant bag of tasks is created 
and all task descriptions stored in it. Then the chosen number of slaves is created 
on separate workstations. In the non fault-tolerant implementation, each slave is 
informed of a unique allocation of tasks to perform. In these initial experiments, 
a master process is employed to perform these functions and then wait for the 
completion of the slaves before performing any final processing to the output,  
such as converting to a desired file format, and finally reporting on the elapsed 
time. The master takes no active part during the main part of the application, so 
a shell script replacement is quite feasible. Also at this time the shared objects 
are not replicated. 

The fault-tolerant bag of tasks is implemented as a recoverable queue [6] 
which relaxes the usual FIFO ordering to suit its use in a transactional envi- 
ronment.  If an element is dequeued within a transaction, then it is write-locked 
immediately, but  only actually dequeued at the time the transaction commits. 
Similar use of recoverable queues in asynchronous transaction processing is de- 
scribed in [10]. The dequeue operation returns a status which allows the caller 
to distinguish between the situation where the queue is empty and that  where 
entries remain but are all locked by other users. 

3.2 Applications 

Three applications are implemented. The first is a port of a publicly available ray 
tracing package, rayshade [13]. Input data  comprises only scene description and 
output  is a two dimensional array of red-green-blue pixel values. A task is defined 
as computat ion of a number of rows of the output  array. To display the output  
image, it is convenient to copy it to the file format used in the original package, 
Utah Raster RLE format.  In this implementation, this operation is performed 
serially by the master process. A simple scene provided as an example in the 
package is traced for the purposes of the test. For comparison, the unaltered 
package is built and run as a sequential program on one of the workstations. 

The remaining applications are dense matr ix  computations, matr ix  multi- 
plication and Cholesky factorization. A preliminary description of the former 
was given in [19]. In linear algebra computations it is common to employ block 
structuring to benefit from increased locality [9]. In the implementation of both 
matr ix  computations here, matrices are composed of square blocks and a task 
defined as the computation of a single block of the result. 

In the case of matr ix  multiplication, a task entails a block dot product of a row 
of blocks in the first and column of blocks in the second operand matrices. The 
implementation of Cholesky factorization employs the Pool-of-T~sks algorithm 
of [9],w The required inter task coordination is ultimately implemented 
through a two dimensional array of flags which indicate whether corresponding 
blocks in the output  matr ix have been written or not. Concurrent operations 
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on the flags are controlled through locks obtained within the scope of atomic 
actions and are therefore recoverable. A fuller description appears in [18]. 

4 P e r f o r m a n c e  

Each experiment  is conducted during off peak t ime in a cluster of HP9000/710 
(HP710) machines each with 32 Mbyte memory  and 64 Kbyte cache, connected 
by 10 Mbi t / s  Ethernet.  A small number  of HP9000/730 (HP730) machines with 
64 Mbyte memory  and 256 Kbyte  cache have sizeable temporary  disk space space 
available. For the mat r ix  computat ions a cluster containing a HP730 is used, and 
the shared objects located on it, but  HP710 machines are used otherwise. In this 
way computa t ions  with da ta  requirements of about  200 Mbyte are performed. 

4.1 C o s t  o f  Q u e u e  Acces s  

An indication of the failure free overhead cost may be obtained by comparing 
fault tolerant and non fault tolerant sequential computat ions running within a 
single workstation. This is done for matr ix  multiplication by locating a single 
slave and the da ta  objects on the same host, a HP730 machine. The measured 
results are shown in Tab. 1 for a range of task sizes. 

Table  1. Cost of employing queue in sequential multiplication of 3000 square matrices. 
The times in columns 3 and 4 are averages rounded to integer values. 

Execution time Fault tolerance Cost 
Items Block Fault- Non During After Total as 

of width tolerant fault- queue queue % 
work (elements) (seconds) tolerant Creation creation of total 

(seconds) (seconds) (seconds) time 

9 1000 2201 2152 6.5 41.5 2.2 
16 750 2254 2224 10.3 20.3 1.4 
25 600 2215 2171 iS 29 2 
36 500 2313 2252 22 38.3 2.7 
144 250 3068 2917 93,8 58.1 5.2 
225 200 3579 3352 154 73.5 6.8 

The fault-tolerance costs represent the following operations: 

- The cost of creating the queue and enqueueing one entry per block of the 
output  matr ix  within a surrounding action, and commit t ing that  ac t ion  

- The cost incurred by the slave of binding to the queue object, essentially 
server creation, and then dequeuing an entry describing each piece of work. 
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The queue entries are simply small job descriptions and their size is inde- 
pendent of the data  size so the cost of using the queue should be dependent 
on the number of tasks, rather than data size. Therefore percentage overheads 
should reduce for larger scale computations, but even for the size of computation 
performed, fault tolerance does not appear to be the significant cost. 

The queue is implemented as a collection of separately lockable persistent 
objects, and some breakdown of the costs associated with the use of atomic 
actions on individual persistent objects is given in [16]. 

4 .2  P a r a l l e l  E x e c u t i o n  

The parallel performance of the applications is shown in Fig. 1. 
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Fig. 1. Performance of parallel applications, comparing fault-tolerant (solid line) and 
non fault-tolerant (dashed line) versions for indicated task sizes. 

In the event of slave failure and immediate resumption, or replacement by 
a spare, the failure free execution time is increased by a recovery time due to 
the loss of aborted work. This recovery time is the cost of between zero and one 
task executions, the average recovery being half of the maximum. A computat ion 
with non uniform tasks may still be characterized by a simple average recovery 
cost, though this may be misleading if the cost varies very considerably. If data  
are cached at a slave which fails, then the slave that  takes over the aborted 
task incurs an extra cost in cache misses. If a slave fails and does not resume 
and there is no spare, then the increase in overall execution time depends on 
the exact point of failure, but may be regarded as comprising two components. 
First, there is the cost of redoing the failed task and secondly, the execution of 
the remaining tasks is slowed since there is then one less slave. 

Table 2 summarizes the performance of the parallel implementations, showing 
for each application a measure of the performance achieved and estimate of the 
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average recovery time. The table also indicates the total data: input (input), 
written (put) and read collectively by slaves during the computation (get). 

Table 2. Fault-tolerant application parallel performance summary. The speedup shown 
for ray tracing is absolute, i.e. relative to that of the sequential implementation. 

Application Tasks Task Data access Minimum Performance Average 
size (Mbyte) time (speedup recovery 

(elements) input get put (seconds) or rate) (seconds) 

Ray Trace 256 2 • 512 small 6.3 483 2.3 
(5122 ) 64 8• 204 5.5 

Matrix 
Multiplication I00 3002 1440 2545 21 Mflop/s 
(30002) 16 7502 144 576 72 1353 40Mflop/s 

Cholesky 
Fac~orization 78 4002 99 1198 99 1879 20Mflop/s 
(48002) 21 800 ~ 108 645 108 1512 24Mflop/s 

1.5 
9.6 

24 
102 

23 
74 

For all three experiments it is seen that  increasing the task size improves the 
performance. In the matr ix  computations, the increase in total data read with 
decreasing block size seems to be the overwhelming effect. In the ray tracing ex- 
ample little data  is read, but at 25 KByte and 98 Kbyte the task output  is not so 
large as to be bandwidth limited and so the larger task is cheaper proportionally. 

Noting that  the data  format conversion for ray tracing mentioned earlier takes 
about 23 and 13 seconds respectively for the task sizes, 2 and 8, the performance 
of this easy application appears promising. 

The performance of the matr ix  computations is not exciting, though in the 
one case the peak performance of the memory based matr ix multiplication on a 
single HP710, measured at 33 Mflop/s, is exceeded. Some intuition for the cost of 
the parallel computations may be gained by considering the cost of accessing the 
data. Each data  access entails both a memory to memory copy between slave 
and server machine and a local disk, or filesystem cache access on the server 
machine. Some potential benefit exists both in pipelining data accesses and in 
caching blocks at slave machines but neither is a t tempted here. For block sizes 
above 250, the low level transfer rates for local memory to remote memory, local 
disk read and local disk write (new data) are found to be roughly constant at 
about 1, 1.6 and 0.2 Mbyte/s.  Assuming no benefit is gained from caching blocks 
between tasks, an estimate for the total t ime involved in transfers for the matrix 
multiplication application with larger block size is 1368 seconds. This would then 
be a lower bound on the parallel computation time and since the implementation 
described almost achieves this minimum time it seems possible that bandwidth 
limitation is being observed. Fuller analysis [18] finds that the benefit gained in 
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this particular situation from involuntary filesystem caching is likely to be small, 
strengthening the case for bandwidth limitation. 

5 S u m m a r y  

The work described here considers the implementation of certain large scale com- 
putations each structured as a bag of tasks over a NOW employing Persistent 
objects and atomic actions to support fault-tolerance. The first application is a 
public domain ray tracing package with moderate demands for space. Experi- 
ment suggests that respectable performance can be achieved if a suitably large 
granularity is chosen. The other two applications are both dense matrix com- 
putations where the space requirement can exceed available memory. In such 
a case a model which employs a relatively small number of machines sharing 
large secondary storage space has some attraction. For this type of execution, a 
realistic all-be-it prototype implementation has shown that the cost of introduc- 
ing fault-tolerance is small and performance gain through parallelism is limited 
essentially by hardware bandwidths. 

The system described here provides a practical solution to the question as 
to how to exploit commonly available clusters of workstations for running com- 
pute and data intensive programs by providing much needed support for fault- 
tolerance and moderate speedup. Since the toolkit developed here does not re- 
quire any special hardware or software facilities other than those already avail- 
able, it can readily be adapted to exploit new generations of hardware. [18] de- 
scribes detailed performance analysis of applications reported here and enables 
prediction of the expected performance under higher network bandwidth. For ex- 
ample, if the communications media is replaced by fast ethernet, at 100 Mbits/s, 
but the configuration remains otherwise unchanged a performance of 80 Mfiop/s 
is anticipated for matrix multiplication using 4 slaves. 

The overall conclusion is that objects and actions as employed in the com- 
putations described seem to be a convenient way to express fault tolerance in 
parallel applications, and for appropriate scale of computation impose small cost. 
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