
A System for Fault-Tolerant Execution of Data
and Compute Intensive Programs over a

Network of Workstations

J.A.Smith and S.K.Shrivastava

Department of Computing Science,
The University of Newcastle upon Tyne,

Newcastle upon Tyne,
NE1 7RU UK

{jim.smith,santosh.shrivastava} @newcastle.ac.uk

Abs t rac t . The bag of tasks structure permits dynamic partitioning for
a wide class of parallel applications. This paper describes a fault-tolerant
implementation of this structure using atomic actions (atomic transac-
tions) to operate on persistent objects, which are accessed in a distributed
setting via a Remote Procedure Call (RPC). The system is suited to
parallel execution of data and compute intensive programs that require
persistent storage and fault tolerance, and runs on stock hardware and
software platforms, UNIX, C-I--l-. Its suitability is examined in the context
of the measured performance of three applications; ray tracing, matrix
multiplication and Cholesky factorization.

1 I n t r o d u c t i o n

Many computations manipulate very large amounts of data. Matrix calcula-
tions represent one example class. In a Massively Parallel Processor (MPP) such
a vast data set is typically partitioned statically between the very many dis-
tributed processing elements and moved amongst them as necessary to perform
the computation. Such an approach is exemplified in Cannon's algorithm for
matrix multiplication [14]. One suggestion is that a Network Of Workstations
(NOW) be modelled on such an architecture [2]. However, it may be that prob-
lem size can exceed even the aggregate memory of all available machines. In such
a situation, the problem cannot be statically partitioned between processors.

As the problem size increases so too does the computation time in any given
configuration, and in a NOW potentially so too does the number of nodes which
may be employed. As the scale of a distributed computation is increased in this
way, the possibility of a failure occurring which might affect the execution of the
computat ion must increase. If it is not possible to tolerate such an event, it is
necessary to restart the entire computation.

The approach described here provides a solution for these problems by im-
plementing a store on secondary storage which is shared between a collection of
concurrent processes. A computation is organized as a bag of tasks type struc-
ture [7] where the overall computation is divided up into a number of tasks which

488

are then scheduled dynamically between a potentially varying collection of con-
current processes. Computation data, including the bag of tasks is located in the
shared store, which is organized as a repository of objects and fault tolerant ac-
cess to it supported through atomic actions operating on the contained objects.
It is suggested that these mechanisms provide a clear model to the user.

In this experiment, these facilities are supported through an established dis-
tributed system which runs on many versions of UNIX and C++, without al-
teration to either. The approach is investigated through implementation of ap-
plications of scale appropriate to parallelization and fault-tolerance in a NOW.
Performance is shown to be fundamentally limited only in hardware bandwidths.

The paper continues with notes on related work in Sect. 2, a description of the
applications and fault-tolerance mechanisms in Sect. 3, measured performance
in Sect. 4 and summary in Sect. 5.

2 Related Work

The attraction of exploiting a readily available NOW to perform parallel compu-
tations is widely acknowledged. It is also recognized that a NOW typically has
disadvantages compared to a tightly coupled multiprocessor, including a lower
performance interconnect and a greater need for fault-tolerance.

Experiments have been performed to statically partition data intensive com-
putations over a NOW, e.g. [5]. However, the size of the computation is bounded
by aggregate memory of the machines. Structuring similar to the bag of tasks
is often employed in practice, e.g. for seismic migration in [1], but with limited
provision for fault-tolerance and for problems which are less intensive in data.

Mechanisms to support fault-tolerance may be transparent to the application
programmer, e.g. [12], [15]. However, a transparent scheme is unlikely to take
advantage of points in an application where data to be saved is minimum, such
as when data has just been written to disk for instance.

One non transparent scheme for the static partitioning approach [17] main-
tains a parity copy of distributed partitions of computation state. While perfor-
mance for a Cholesky factorization of 5000 element square matrix, at 1700 seconds
employing 17 Sparc-2 machines, is similar to that recorded here the computa-
tion is bounded by total memory and the approach here which employs fewer
machines is resilient to a greater number of failures.

An early design study [4] considered the use of atomic actions as a mechanism
to support fault-tolerant parallel programming over a NOW.

Fault tolerance for a bag of tasks type structure has been considered before,
e.g. [3], [8] but without providing access to large scale data on secondary storage.
Plinda [11] which supports access to persistent tuple spaces and a transaction
mechanism does have some similarity to this work.

The experiments described here attempt to exploit parallelism in a NOW of
modest scale to perform large scale computations in a fault-tolerant way without

altering operating system or language.

489

3 I m p l e m e n t a t i o n

3.1 F a u l t T o l e r a n c e

It is assumed that a workstation fails by crashing and that then any data in
volatile storage is lost, but that held on disk remains unaffected. It is also as-
sumed that the network does not partition.

Atomic actions operating on persistent state provide a convenient frame-
work for introducing fault-tolerance [10] through ensuring defined concurrent
behaviour and fault-tolerance. Atomic actions have the well known properties of
(1) serializability, (2) failure atomicity, and (3) permanence of effect.

A convenient model is for this state to be encapsulated in the instance vari-
ables of persistent objects and accessed through member functions. Within these
functions the programmer places lock requests, e.g. read or write to suit the se-
mantics of the operation, and typically surrounds the code within the function
by an atomic action, starting with begin and ending with commit or abort. Op-
erations thus enclosed which can include calls on other atomic objects are then
perceived as a single atomic operation. The infrastructure manages the required
access from and/or to disk based state. Such objects may be distributed on sep-
arate machines, e.g. for performance, and replicated to increase availability. The
applications are implemented using the Arjuna tool kit [16], an object-oriented
programming system that implements in C + + this object and action model.

The following enhancements add fault-tolerance to a bag of tasks application.

1. The slave begins an atomic action before fetching a task from the bag, and
commits the action after writing the corresponding result. If the slave fails
the action aborts, all work pertaining to the current task is recovered and
the task itself becomes available again in the bag.

2. The shared objects are replicated on at least k + 1 machines, so that the
failure of up to k of these machines may be tolerated.

3. A computat ion object contains a description of the computation and data
objects and the computat ion's completion status. This object may be queried
at any time to determine the status of the computation and may be replicated
for availability. It is a convenient interface for a process to be started on an
arbitrary machine to join in an ongoing computation.

Arjuna requires an underlying RPC to implement distribution and object
server process management; accessing these services through certain interface
classes. The R P C implementation employed here supports optional use of the
T C P protocol with connection establishment on a per-call basis. Some opti-
mization of this RPC mechanism has been performed to exploit homogeneity
of machines. The RPC also supports reuse of an existing server process. This
facility is exploited in service of the main shared data objects in order to prevent
excessive contention in the shared communications medium; the common server
is single threaded and therefore serializes all slave requests.

490

In each application, the main operands are managed as collections of smaller
objects. Each task entails computation of some part of the result, which may be
one or more of such objects.

At the start of the computation, the shared objects are installed in the object
repository. In the fault-tolerant version, a fault-tolerant bag of tasks is created
and all task descriptions stored in it. Then the chosen number of slaves is created
on separate workstations. In the non fault-tolerant implementation, each slave is
informed of a unique allocation of tasks to perform. In these initial experiments,
a master process is employed to perform these functions and then wait for the
completion of the slaves before performing any final processing to the output,
such as converting to a desired file format, and finally reporting on the elapsed
time. The master takes no active part during the main part of the application, so
a shell script replacement is quite feasible. Also at this time the shared objects
are not replicated.

The fault-tolerant bag of tasks is implemented as a recoverable queue [6]
which relaxes the usual FIFO ordering to suit its use in a transactional envi-
ronment. If an element is dequeued within a transaction, then it is write-locked
immediately, but only actually dequeued at the time the transaction commits.
Similar use of recoverable queues in asynchronous transaction processing is de-
scribed in [10]. The dequeue operation returns a status which allows the caller
to distinguish between the situation where the queue is empty and that where
entries remain but are all locked by other users.

3.2 Applications

Three applications are implemented. The first is a port of a publicly available ray
tracing package, rayshade [13]. Input data comprises only scene description and
output is a two dimensional array of red-green-blue pixel values. A task is defined
as computat ion of a number of rows of the output array. To display the output
image, it is convenient to copy it to the file format used in the original package,
Utah Raster RLE format. In this implementation, this operation is performed
serially by the master process. A simple scene provided as an example in the
package is traced for the purposes of the test. For comparison, the unaltered
package is built and run as a sequential program on one of the workstations.

The remaining applications are dense matr ix computations, matr ix multi-
plication and Cholesky factorization. A preliminary description of the former
was given in [19]. In linear algebra computations it is common to employ block
structuring to benefit from increased locality [9]. In the implementation of both
matr ix computations here, matrices are composed of square blocks and a task
defined as the computation of a single block of the result.

In the case of matr ix multiplication, a task entails a block dot product of a row
of blocks in the first and column of blocks in the second operand matrices. The
implementation of Cholesky factorization employs the Pool-of-T~sks algorithm
of [9],w The required inter task coordination is ultimately implemented
through a two dimensional array of flags which indicate whether corresponding
blocks in the output matr ix have been written or not. Concurrent operations

491

on the flags are controlled through locks obtained within the scope of atomic
actions and are therefore recoverable. A fuller description appears in [18].

4 P e r f o r m a n c e

Each experiment is conducted during off peak t ime in a cluster of HP9000/710
(HP710) machines each with 32 Mbyte memory and 64 Kbyte cache, connected
by 10 Mbi t / s Ethernet. A small number of HP9000/730 (HP730) machines with
64 Mbyte memory and 256 Kbyte cache have sizeable temporary disk space space
available. For the mat r ix computat ions a cluster containing a HP730 is used, and
the shared objects located on it, but HP710 machines are used otherwise. In this
way computa t ions with da ta requirements of about 200 Mbyte are performed.

4.1 C o s t o f Q u e u e Acces s

An indication of the failure free overhead cost may be obtained by comparing
fault tolerant and non fault tolerant sequential computat ions running within a
single workstation. This is done for matr ix multiplication by locating a single
slave and the da ta objects on the same host, a HP730 machine. The measured
results are shown in Tab. 1 for a range of task sizes.

Table 1. Cost of employing queue in sequential multiplication of 3000 square matrices.
The times in columns 3 and 4 are averages rounded to integer values.

Execution time Fault tolerance Cost
Items Block Fault- Non During After Total as

of width tolerant fault- queue queue %
work (elements) (seconds) tolerant Creation creation of total

(seconds) (seconds) (seconds) time

9 1000 2201 2152 6.5 41.5 2.2
16 750 2254 2224 10.3 20.3 1.4
25 600 2215 2171 iS 29 2
36 500 2313 2252 22 38.3 2.7
144 250 3068 2917 93,8 58.1 5.2
225 200 3579 3352 154 73.5 6.8

The fault-tolerance costs represent the following operations:

- The cost of creating the queue and enqueueing one entry per block of the
output matr ix within a surrounding action, and commit t ing that ac t ion

- The cost incurred by the slave of binding to the queue object, essentially
server creation, and then dequeuing an entry describing each piece of work.

492

The queue entries are simply small job descriptions and their size is inde-
pendent of the data size so the cost of using the queue should be dependent
on the number of tasks, rather than data size. Therefore percentage overheads
should reduce for larger scale computations, but even for the size of computation
performed, fault tolerance does not appear to be the significant cost.

The queue is implemented as a collection of separately lockable persistent
objects, and some breakdown of the costs associated with the use of atomic
actions on individual persistent objects is given in [16].

4 .2 P a r a l l e l E x e c u t i o n

The parallel performance of the applications is shown in Fig. 1.

oo

r
E
'1o
==
D .

LLI

1500

1000

500

~) Matdx multiplic~ion
5000 , , ,

(a) Ray trace
| ! = =

. n t . ! a J

8
I I I |

2 4 6 8 10
- Number of slaves

4000

3000

. . . . --"%.*

750

4000

3000

2000

1000

0

;) Cholesky factorization
i J i

80O

0 I I I I I I

2 4 6 2 4 6 8
Number of slaves Number of slaves

Fig. 1. Performance of parallel applications, comparing fault-tolerant (solid line) and
non fault-tolerant (dashed line) versions for indicated task sizes.

In the event of slave failure and immediate resumption, or replacement by
a spare, the failure free execution time is increased by a recovery time due to
the loss of aborted work. This recovery time is the cost of between zero and one
task executions, the average recovery being half of the maximum. A computat ion
with non uniform tasks may still be characterized by a simple average recovery
cost, though this may be misleading if the cost varies very considerably. If data
are cached at a slave which fails, then the slave that takes over the aborted
task incurs an extra cost in cache misses. If a slave fails and does not resume
and there is no spare, then the increase in overall execution time depends on
the exact point of failure, but may be regarded as comprising two components.
First, there is the cost of redoing the failed task and secondly, the execution of
the remaining tasks is slowed since there is then one less slave.

Table 2 summarizes the performance of the parallel implementations, showing
for each application a measure of the performance achieved and estimate of the

493

average recovery time. The table also indicates the total data: input (input),
written (put) and read collectively by slaves during the computation (get).

Table 2. Fault-tolerant application parallel performance summary. The speedup shown
for ray tracing is absolute, i.e. relative to that of the sequential implementation.

Application Tasks Task Data access Minimum Performance Average
size (Mbyte) time (speedup recovery

(elements) input get put (seconds) or rate) (seconds)

Ray Trace 256 2 • 512 small 6.3 483 2.3
(5122) 64 8• 204 5.5

Matrix
Multiplication I00 3002 1440 2545 21 Mflop/s
(30002) 16 7502 144 576 72 1353 40Mflop/s

Cholesky
Fac~orization 78 4002 99 1198 99 1879 20Mflop/s
(48002) 21 800 ~ 108 645 108 1512 24Mflop/s

1.5
9.6

24
102

23
74

For all three experiments it is seen that increasing the task size improves the
performance. In the matr ix computations, the increase in total data read with
decreasing block size seems to be the overwhelming effect. In the ray tracing ex-
ample little data is read, but at 25 KByte and 98 Kbyte the task output is not so
large as to be bandwidth limited and so the larger task is cheaper proportionally.

Noting that the data format conversion for ray tracing mentioned earlier takes
about 23 and 13 seconds respectively for the task sizes, 2 and 8, the performance
of this easy application appears promising.

The performance of the matr ix computations is not exciting, though in the
one case the peak performance of the memory based matr ix multiplication on a
single HP710, measured at 33 Mflop/s, is exceeded. Some intuition for the cost of
the parallel computations may be gained by considering the cost of accessing the
data. Each data access entails both a memory to memory copy between slave
and server machine and a local disk, or filesystem cache access on the server
machine. Some potential benefit exists both in pipelining data accesses and in
caching blocks at slave machines but neither is a t tempted here. For block sizes
above 250, the low level transfer rates for local memory to remote memory, local
disk read and local disk write (new data) are found to be roughly constant at
about 1, 1.6 and 0.2 Mbyte/s. Assuming no benefit is gained from caching blocks
between tasks, an estimate for the total t ime involved in transfers for the matrix
multiplication application with larger block size is 1368 seconds. This would then
be a lower bound on the parallel computation time and since the implementation
described almost achieves this minimum time it seems possible that bandwidth
limitation is being observed. Fuller analysis [18] finds that the benefit gained in

494

this particular situation from involuntary filesystem caching is likely to be small,
strengthening the case for bandwidth limitation.

5 S u m m a r y

The work described here considers the implementation of certain large scale com-
putations each structured as a bag of tasks over a NOW employing Persistent
objects and atomic actions to support fault-tolerance. The first application is a
public domain ray tracing package with moderate demands for space. Experi-
ment suggests that respectable performance can be achieved if a suitably large
granularity is chosen. The other two applications are both dense matrix com-
putations where the space requirement can exceed available memory. In such
a case a model which employs a relatively small number of machines sharing
large secondary storage space has some attraction. For this type of execution, a
realistic all-be-it prototype implementation has shown that the cost of introduc-
ing fault-tolerance is small and performance gain through parallelism is limited
essentially by hardware bandwidths.

The system described here provides a practical solution to the question as
to how to exploit commonly available clusters of workstations for running com-
pute and data intensive programs by providing much needed support for fault-
tolerance and moderate speedup. Since the toolkit developed here does not re-
quire any special hardware or software facilities other than those already avail-
able, it can readily be adapted to exploit new generations of hardware. [18] de-
scribes detailed performance analysis of applications reported here and enables
prediction of the expected performance under higher network bandwidth. For ex-
ample, if the communications media is replaced by fast ethernet, at 100 Mbits/s,
but the configuration remains otherwise unchanged a performance of 80 Mfiop/s
is anticipated for matrix multiplication using 4 slaves.

The overall conclusion is that objects and actions as employed in the com-
putations described seem to be a convenient way to express fault tolerance in
parallel applications, and for appropriate scale of computation impose small cost.

A c k n o w l e d g e m e n t s

The work reported here has been supported in part by research and studentship
grants from the UK Ministry of Defence, Engineering and Physical Sciences
Research Council (Grant Number GR/H81078) and ESPRIT project BROAD-
CAST (Basic Research Project Number 6360). The support of the Arjuna team
is acknowledged, and in particular the assistance of M. Little, G. Parrington,
and S. Wheater with implementation issues relevant to this work.

R e f e r e n c e s

1. George S. Almasi and Allan Gottlieb. Highly Parallel Computing.
jamin/Cummings, 2nd edition, 1994. ISBN 0-8053-0443~6.

Ben-

495

2. Thomas E. Anderson, David E. Culler, and David A. Patterson. A case for NOW
(Networks of Workstations). IEEE Micro, 15(1):54-64, February 1995.

3. David Edward Bakken. Supporting Fault-Tolerant Parallel Programming in Linda.
PhD thesis, Department of Computer Science, The University of Arizona, August
1994.

4. Henri E. Bal. Fault tolerant parallel programming in Argus. Concurrency: Practice
and Experience, 4(1):37-55, February 1992.

5. A. Benzoni and M. L. Sales. Concurrent matrix factorizations on workstation net-
works. In A. E. Fincham and B. Ford, editors, Parallel Computation, pages 273-
284. Clarendon Press, 1991.

6. Philip A. Berustein, Meichun Hsu, and Bruce Mann. Implementing recoverable
requests using queues. A CM SIGMOD, pages 112-122, 1990.

7. Nicholas Carriero and David Geleruter. How To Write Parallel Programs: A First
Course. MIT Press, 1991. ISBN 0-262-03171-X.

8. Timothy Clark and Kenneth P. Birman. Using the ISIS resource manager for dis-
tributed, fault-tolerant computing. Technical Report 92-1289, Cornell University
Computer Science Department, June 1992.

9. Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins
University Press, second edition, 1989. ISBN 0-8018-3772-3.

10. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaugman, 1993.

11. Karpjoo Jeong. Fault-Tolerant Parallel Processing Combining Linda, Checkpoint-
ing, and Transactions. PhD thesis, New York University, Department of Computer
Science, January 1996.

12. M. Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S. Tanenbaum.
Transparent fault-tolerance in parallel Orca programs. In Proceedings of the Sym-
posium on Experiences with Distributed and Multiprocessor Systems III, pages 297-
312, Newport Beach, CA, March 1992.

13. Craig Kolb. rayshade, ftp://ftp.cs.yale.edu, May 1990. version 3.0.
14. Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction

to Parallel Computing. Benjamin Cummings, 1994. ISBN 0-8053-3170-0.
15. Juan Leon, Allan L. Fisher, and Peter Steenkiste. Fail-safe PVM: A portable

package for distributed programming with transparent recovery. Technical Re-
port CMU-CS-93-124, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, February 1993.

16. G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C. Little. The design
and implementation of Arjtma. USENIX Computing Systems Journal, 8(3):225-
308, summer 1995.

17. James S. Plank, Yotmgbae Kim, and Jack J. Dongarra. Algorithm-based disk_less
checkpointing for fault tolerant matrix operations. Technical Report CS-94-268,
University of Tennessee, December 1994.

18. J. Smith. Fault Tolerant Parallel Applications Using a Network Of Workstations.
PhD thesis, University of Newcastle upon Tyne, Department of Computing Science,
1996. In Preparation.

19. J. Smith and Santosh Shrivastava. Fault-tolerant execution of computationally
and storage intensive programs over a network of workstations: A case study. In
ESPRIT Basic Research Project 6360 Third Year Report, July 1995.

