
On the I m p l e m e n t a t i o n of a Replay M e c h a n i s m

Michiel Ronsse* and Luk Levrouw

Department of Electronics and Information Systems
Universiteit Gent, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Abs t rac t . Parallel programs can be nondeterministic: consecutive r u n s

with the same input can result in different executions. Therefore we
cannot use cyclic debugging techniques. In order to be able to use those
techniques we need a tool that traces information about an execution
so it can be replayed for debugging. Because the recording interferes
with the program, possibly perturbating the execution, we must limit
the amount of information and keep the algorithm simple. This paper
presents an implementation of the ROLT replay mechanism for a multi-
threaded operating system (Solaris).

1 I n t r o d u c t i o n

The debugging of most parallel programs is a time-consuming task due to the
complex nature of parallel programs. Moreover, most parallel programs are non-
deterministic, limiting the use of cyclic debugging techniques. These techniques
are based on the fact that re-executions of a program will result in the same
program flow if we supply the same inpu t? During those re-executions we can
analyze the program execution by setting breakpoints and watching variables

until we find the error.

2 R e p l a y M e c h a n i s m s

If we can force re-executions to be 'equivalent' to the execution that contains
an error, we can still use cyclic debugging techniques. This can be accomplished
using a replay mechanism: we trace a program execution (record phase), and
use those traces to force subsequent executions (replay phase) to be 'equivalent '
t o the traced one. As these forced re-executions will be deterministic, we can
use intrusive debugging techniques (breakpoints, collecting data, . . .) . To be
practical, it is important that the trace mechanism produces small trace files

and has a small overhead.
Recently, a new replay method called ROLT (Reconstruction Of Lamport

Timestamps) was introduced [LAV94]. The mechanism produces smaller trace

* Michiel Ronsse is supported by a grant from the Flemish Institute for the Promotion
of the Scientific-Technological l~esearch in the Industry (IWT).

2 For the remainder of this paper, we will assume that the user input, file input, system
calls, . . . return the same result during subsequent executions.

71

files and is much less intrusive than comparable mechanisms [Net93, LM87]. The
implementat ion described in this paper traces the order of the synchronisation
operations. Forcing these operations to occur in the same order during replay
will yield the same execution as long as the program is data race free. A data race
is an unsynchronized access to a shared variable by two processors when at least
one modifies the variable. This is the caused by a lack of synchronization (or the
wrong synchronization). As there is no synchronization, no information will be
stored during the record phase. So, during replay, we will be unable to force the
accesses to occur in the same order as in the record phase. This doesn' t mean
that the mechanism is totally unusable in the presence of a data race. A replay
of an execution that contains a data race will yield an equivalent re-execution
up to the point were the data race occured. Therefore, an (intrusive) da ta race
detection method can be used during replay to find the race.

The ROLT mechanism uses Lamport clocks [Lam78] to at tach logical times-
tamps to synchronization operations. As logical t imestamps may not reflect the
actual real-time order of the operations and because it is required that operations
on the same synchronization variable have consistent t imestamps (the times-
tamps of all operations on the same object should reflect their execution order)
a simple update scheme is used at every synchronisation operation [LAV94].

During replay, the Lamport t imestamps of the original execution are used
to add sufficient synchronization for a correct replay: operations with a lower
Lamport t imestamp are executed first. To be able to do this, the same Lamport
t imestamps as in the original execution must be attached to the correspond-
ing operations. Some of these t imestamps can be deterministically recomputed
during replay, the others were traced.

3 I m p l e m e n t a t i o n

Solaris offers the parallel programmer different synchronization types. These fa-
cilities are build using a layered approach. The lowest layer consists of a synchro-
nization facility directly supported by the Sparc processors: l d s t u b (load-store
unsigned byte). This is a simple read-modify-write instruction. The next layer
(offered by l i b c) consists of two functions: - l o c k _ t r y and - l o c k _ c l e a r . The
first one tries to lock a byte and returns the result (succeeded or not), the last
one clears a lock. The next layer consists of the four different synchronization
types offered by the thread library (l i b t h r e a d) . These are: mutual exclusion
(mutex) locks, condition variables (condvar) , counting semaphores (sema) and
multiple readers, single writer locks (rwlock).

The replay mechanism was implemented using the dynamic linking facility
of Solaris: we wrote two new l i b t h r e a d libraries, one for the record phase, and
one for the replay phase. By using the dynamic linking facilities, the user doesn't
have to do anything to use the replay mechanism. He doesn't have to recompile or
relink his program, he can use whatever interactive debugger he likes (gdb, dbx,
debugger ). Moreover, a user can add his own synchronization primitives

72

(e.g. barriers) and use the instrumented Solaris functions in the record library
to implement them.

As mentioned before, we will generate trace information about a particular
execution during the tracing. The information is stored in a buffer in memory,
and written to disk when the buffer is full. We have to consider four different
cases :

T h e p r o g r a m e x i t s n o r m a l l y , a n d t h e r e s u l t is c o r r e c t . This means that
this particular program execution is correct. We can discard the traces, or
we can use them to force a deterministic replay and collect more information
about the program execution.

T h e p r o g r a m e x i t s n o r m a l l y , b u t t h e r e s u l t is n o t c o r r e c t . In that case,
we can use the traces to force a replay. Using an interactive debugger we can
find the error using watchpoints, breakpoints, ...

T h e p r o g r a m e n d s , b u t a t a w r o n g e x i t p o i n t (i t c r a s h e s) . As the trac-
ing is performed by the library, the tracing mechanism will crash together
with the application. This means that the information that is still in the
memory buffer is lost. To tackle this problem, we use a Unix-daemon that
controls and owns the memory used by the library. It checks on a regular
base if one of the programs it provides with memory has crashed, and saves
the memory to disk if necessary.

T h e p r o g r a m n e v e r e n d s (d e a d l o c k , i n f i n i t i v e l o o p) . In this case, we have
to force a program crash (i.e. sending a kill signal using ^C).

Record Phase During the record phase, we have to trace the execution order of
the synchronization operations. As Solaris provides different levels of synchro-
nization primitives, we can trace at different levels:

- we can trace at the lowest level (lock level). This will force all levels above
this level to be replayed in the correct order;

- we can trace at the mutex level. All levels above this level will be replayed
in the correct order, the level beneath it (lock level) won't. As it is possible
that mutex functions have to call _ lock_t ry several times before the lock is
grabbed, this will diminish the number of operations to be traced;

- we can trace at the highest level: the synchronization operations (mutex,
rwlock, condvar, sema) performed by the application are traced, the syn-
chronization operations called by the rwlock, condvar and sema operations

aren't .

Replay Phase Every thread recomputes its Lamport t imestamps during replay.
When a thread wants to perform a synchronization operation, the thread waits
until M1 other threads have executed the operations with smaller Lampor t clocks.
This adds the extra synchronization needed to yield an equivalent execution.

73

4 Exper imenta l Evaluation

Up to now, only l imited experiments were performed with a parallel implemen-
ta t ion of the Max i m um Likelihood Expectat ion Maximizat ion algori thm. The
program was executed on a Sun with 4 processors. The following table shows
the number of synchronization operations performed, the size of the trace files
and the execution time.

level ~opera t ions logsize (b) real t ime (s)
sema 2406 11824 44.98
mutex 7140 12424 45.11
lock 7791 17056 45.51

I t is clear that , as expected, we have to log less, and tha t the overhead is smaller
if we trace at a higher abstract ion level. The tota l execution t ime for a normal
execution was 44.23 seconds, for a traced execution 44.98 seconds and for a
re-execution 48.42 seconds (mean values for 100 program runs; sema level). As
we will be using an interactive debugger during the program re-executions, the
increase in execution t ime causes no harm.

5 Conclusions

This paper showed tha t it is necessary to use a replay mechanism if one wishes to
use cyclic debugging techniques for the debugging of non-deterministic parallel
programs. An implementat ion of the ROLT mechanism for Solaris was proposed.
It generates small logfiles and has a low overhead.

References

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications o/the ACM, 21(7):558-565, July 1978.

[LAV94] Luk J. Levrouw, Koenraad M. Audenaert, and Jan M. Van Campenhout. A
new trace and replay system for shared memory programs based on Lamport
Clocks. In Proceedings of the Second Euromicro Workshop on Parallel and
Distributed Processing, pages 471-478. IEEE Computer Society Press, January
1994.

[LM87] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel pro-
grams with Instant Replay. IBEE Transactions on Computers, C-36(4):471-
482, April 1987.

Robert H.B. Netzer. Optimal tracing and replay for debugging shared-
memory parallel programs. In Proceedings A CM/ONR Workshop on Parallel
and Distributed Debugging, pages 1-11, May 1993.
M.A. Ronsse, L.J. Levrouw, and K. Bastiaens. Efficient coding of execution-

traces of parallel programs. In J. P. Veen, editor, Proceedings of the ProRISC
/ IEEE Benelux Workshop on Circuits, Systems and Signal Processing, pages
251-258. STW, Utrecht, March 1995.

[Net93]

[RLBg~]

