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Abstract.  In many concurrent programming languages, concurrent pro- 
grams are difficult to extend and modify: small changes in a concurrent 
program may require re-implementations of a large number of its compo- 
nents. In this paper a novel concurrent program composition mechanism 
is presented in which implementations of computations and synchroniza- 
tions are completely separated. Separation of implementations facilitates 
extensions and modifications of programs by allowing one to change im- 
plementations of both computations and synchronizations. The paper 
also describes a concurrent programming model and a programming lan- 
guage that support the proposed approach. 

1 I n t r o d u c t i o n  

Complex software systems are evolutionary in general. They change during 
the initial development stage, and often after they have been deployed. These 
changes may occur due to changes in the requirements, in the hardware configu- 
ration, and/or in the execution environment. Programming languages must sup- 
port methodologies that allow implementations of evolutionary systems. Specif- 
ically, small changes in the implementations of such systems should be localized, 
and should require modifications of a small number of components. 

In this paper we show that many concurrent programming languages do not 
adequately support implementation of evolutionary concurrent systems: changes 
in the implementations of a small number of components may affect the imple- 
mentations of a disproportionately large number of components. More impor- 
tantly, concurrent program abstractions cannot be composed easily with existing 
program abstractions. This has implications on the re-usability of program ab- 
stractions and on concurrent programming language design. Specifically, the in- 
ability to compose concurrent program abstractions causes breakdowns in many 
of the programming language composition mechanisms. 

A novel structuring scheme for concurrent programs is presented in this pa- 
per. In this scheme, implementations o/ computations and synchronizations are 
completely separated. A concurrent program is, thus, composed from separate 
implementations of computations and synchronizations. This is unlike most ex- 
isting approaches where implementations of computations and synchronizations 
are embedded within the implementations of components. 
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Separation of implementations of computations and synchronizations has di- 
rect implications on the extensibility and modifiability of programs. Concurrent 
programs can be easily extended and modified by adding and modifying im- 
plementations of either computations, synchronizations, or both. Further, the 
approach advocates a programming design methodology where concurrent pro- 
grams can be quickly constructed from existing implementations of computations 
and synchronizations. We briefly describe a concurrent programming model and 
a concurrent programming language that supports this programming methodol- 
ogy. The model defines general mechanisms for representing computations, inter- 
actions, and program compositions. The object-oriented programming language, 
CYES-C++, supports extensibility and modifiability of concurrent programs as 
well as re-usability of specifications of computations and interactions. 

This paper is organized as follows: In Section 2, we show that there is poor 
support for implementation of evolutionary concurrent systems in many existing 
approaches. In Section 3, we analyze the reasons for the problems, and show 
how some of these problems can be resolved. In Section 4, the details of a 
concurrent programming model and a language that support the programming 
methodology are presented. A brief survey of the related work is presented in 
Section 5. Section 6 contains concluding remarks and the status of the research. 

2 M o d i f i c a t i o n s  o f  C o n c u r r e n t  P r o g r a m s  

In this section we show that it is difficult to change the implementation of a 
concurrent system implemented using traditional approaches to concurrent pro- 
gramming. In a majority of concurrent programming languages, the approach 
to implementing a concurrent program involves partitioning a problem into a 
set of components, each implemented as a process, task, or thread. An imple- 
mentation of a component contains operations that implement its computations, 
synchronization with other components, data decomposition and distributions 
and task scheduling algorithms. We show that concurrent programs specified 
in this manner are difficult to change and modify: extensions and modifications 
in a concurrent program may require that a large number of its components 
be modified. We illustrate this by showing that extensions and modifications 
of a simple concurrent program require re-implementation of some or all of its 
components. Note that the conclusions of this exercise are independent of the 

example. 

Example  2.1. (Extensibility and Modifiability of Concurrent Programs). Below 
we show a concurrent program, examprogl, that is composed from two compo- 
nents: producer and consumer. The producer component repeatedly produces 
data, which are consumed by the consumer component. The components in- 
teract through the send and rece ive  primitives over a mailbox [1] in which 
programs can deposit and retrieve information in a FIFO manner. Primitives 
send and rece ive  respectively are non-blocking and blocking. 
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examprogl () { 
channe l  bur ; 
producer (buf )  I I consumer(bur)  ; 

} 

producer  ( channe l  bur) { consumer ( channe l  bur) { 
w h i l e  (TRUE) { w h i l e  (TRUE) { 

i n f o  -- produce () ; i n f o  = r e c e i v e ( b u r )  ; 
s end(bur ,  i n f o )  ; consume( in fo )  ; 

}} }} 

A simple extension of examprogl involves adding another consumer compo- 
nent, for instance because consumer is slow relative to p roducer ,  such that  data  
are now shared between the two consumer components alternately. There are 
many possible implementations of the extended program. However, in all imple- 
mentations, p r o d u c e r ,  c o n s u m e r ,  or both must be re-implemented in order to 
implement the altered interaction among the p r o d u c e r  and the two c o n s u m e r  
components. 

Similarly, a modification of examprogl may involve defining additional syn- 
chronization constraints - -  for instance, p roduce r  must wait after N un-consumed 
data  - -  between p r o d u c e r  and consumer. Again, as in the case of the extension, 
either or both components must be re-implemented in order to implement the 
altered interaction. �9 

Even though the above program contains two simple components, implications 
of simple changes in the program are widespread. Simple extensions and modifi- 
cations in a concurrent program may there]ore affect implementations of a large 
number o] its components. Implementations of component are not encapsulated 
from each other. Changes in a concurrent program may be visible in some or 
possibly all components. 

Also, specifications of components cannot be reused easily. For instance, in 
three versions of the example program, much of the behavior of p r o d u c e r  and 
c o n s u m e r  remains unchanged. However, different versions of the components 
are created by duplicating much of the code from one version to another. In 
addition, synchronization, task scheduling, data  mapping, and data  distribu- 
tion algorithms cannot be reused easily because they are embedded procedurally 
inside the implementations of components. 

Fhrther, modifications in components often involve making modifications in 
existing source code. Such modifications in source programs are error prone. 
Indeed, they are one of the major sources of errors in concurrent programs. 

More importantly, the example underlines the problem associated with con- 
structing new concurrent program abstractions in terms of existing program 
abstractions. 

D e f i n i t i o n  2.1. (Program Composition Anomaly). The program composition 
anomaly denotes the phenomenon in which the concurrent program composition 
of program abstractions requires changes and modifications in some of all of the 
program abstractions. �9 
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Example 2.1 shows an occurrence of the program composition anomaly. The 
program composition anomaly highlights the inability to compose concurrent 
program abstractions from existing program abstractions. Since programming 
languages use many composition mechanisms for defining abstractions in terms 
of other abstractions, the presence of the program composition anomaly causes 
breakdowns in many of these composition mechanisms. We enumerate two such 
cases below. 

Object-oriented programming languages support two fundamental composi- 
tion mechanisms: aggregation and inheritance. Aggregation is used to define 
the structure of an object in terms of its component Objects. Inheritance, on 
the other hand, is used to extend the structure of an object. In a concurrent 
object-oriented programming languages, we can think of a concurrent object as 
a concurrent program, whose composition is defined in terms of its methods 
and interactions among the methods. Both aggregation and inheritance can be 
viewed as implicit concurrent program composition mechanisms: aggregation as 
defining the concurrent program associated with an object, as a composition of 
programs associated with its component objects, and inheritance as a means 
for extending the program composition of concurrent objects. We show that 
instances of the program composition anomaly occur when defining the two 
composition mechanisms. 

Aggregation anomaly: The aggregation anomaly occurs when an object defines 
additional interaction behavior for methods of its componem objects. 

Example  2.2. (Aggregation anomaly). Assume that an object of class TwoBufs 
contains two objects: LarBuf and SmBuf of a concurrent class AtBuf. Class AtBuf 
defines two methods: Read and Write. The two methods synchronize with each 
other while accessing common data structures of AtBuf. Let Class TuoBufs 
define addition constraints on invocations of Read and Write over LarBuf and 
SmBuf objects: Write invocations on LarBuf have higher priority than Write 
invocations on SmBuf. Since the synchronization operations of Write are em- 
bedded inside the implementation of Write, the new synchronization behavior 
can be specified only by re-implementing the methods in htBuf, thereby requir- 
ing redefinition of AtBuf. U 

In this example, class TwoBufs is used to compose two instances of abstrac- 
tion AtBuf along with additional synchronization constraint. However, such a 
composition requires changes in the abstraction (AtBuf). 

Inheritance anomaly: The second problem, termed the inheritance anomaly [16], 
arises due to the diverse synchronization requirements of a class and its sub- 

classes. 

Example  2.3. (Inheritance anomaly). Let class NBur extend class htBuf by 
defining a new method GetLst. Method GetLst interacts with Read and Write of 
htBuf. This implies that synchronization properties of Read and Write change. 
Since the implementations of Read and Write include synchronization opera- 
tions, the interaction behaviors of the methods Can be implemented only by 
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re-implementing the methods. This can be achieved either by re-implementing 
t tBuf  or by re-implementing Read and Write in NBuf. In the latter case~ imple- 
mentations of Read and Write cannot be inherited in NBu~. �9 

The inheritance anomaly is another instance of the program composition anomaly. 
Here, a subclass extends the program composition associated with a concurrent 
object either by adding new methods or by modifying inherited methods. Such 
extensions require changes in the composition, which, in this case, means redef- 
inition of methods. 

3 S u p p o r t  f o r  E x t e n s i b i l i t y  a n d  M o d i f i a b i l i t y  

We first examine the reason for occurrence of the program composition anomaly. 
There are two distinct behaviors of a component: computational behavior and 
interaction behavior. The computational behavior of a component specifies the 
operations performed during an execution of the component. For instance, com- 
putational behavior of the producer  component is to produce data. The inter- 
action behavior of a component determines the manner in which the component 
affects or is affected by other components. It represents a semantic relationship 
among components. For instance, the interaction behavior of consumer (ex- 
ample 2.1) specifies that every invocation of consume depends on a preceding 
invocation of produce, representing a data dependency relationship among the 
operations. 

The program composition anomaly arises because implementations of both 
- -  computational and interaction - -  behaviors of a component are embedded 
within an implementation of the component. Any changes (either through ex- 
tension or modification) in a concurrent program tend to change the existing 
interaction relationships among the components. Since implementations of the 
relationships are distributed in the implementation of the components, changes 
in an interaction relationship can be effected only by re-implementing all com- 
ponents that implement the relationship. 

3.1 C o n c u r r e n t  Program Composition 

Our approach, which we call evolution through separation, is based on a novel 
structuring technique for concurrent programs. It advocates a programming 
methodology in which implementations of computational and interaction behav- 
iors are completely separated. A concurrent program is, thus, composed from 
separate implementations of computational and interaction behaviors. 

Def in i t ion  3.1. (Constrained concurrent program composition). The expression 

C = (el II C2 II ..- I1 Ca) where r 

specifies a concurrent program C. Program C is composed from components 
C1, C2, . . . ,  and Cn and expression r that represents relationship among the 
operations of the components. �9 
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The semantics of the composition is that during an execution of C, operations of 
components Ca, C2, .. �9 and Cn occur in parallel by default. However, there are 
invocations of operations that interact. Executions of these invocations must sat- 
isfy all interaction relationships specified by r Concurrent program examprogl 
is thus defined as: 

examprogl = (producer II consumer) where consexpl 

In this definition, components producer and consumer define only their compu- 
tational behavior. Expression consexpl defines interaction among operations of 
producer and consumer. 

3.2 I m p l i c a t i o n s  o f  s e p a r a t i o n  

Separation of implementations of computational and interaction behaviors have 
direct implications on extensibility and modifiability of concurrent programs, as 
well as re-usability of components. 

Concurrent programs can be extended easily. Additions of components may 
require definition of new interaction behaviors, and possible modifications of 
existing ones. For instance, examprogl can be extended easily: 

examprog2 = (producer II consumer II consumer) where consexp2 

Expression consexp2 represents the new interaction relationship among the 
three components. Implementations of either producer or consumer do not 
change. 

A concurrent program can be modified easily either by modifying computa- 
tional behavior of its components or their interaction behaviors. For instance, 
the following program 

examprog3 = (producer II consumer) where consexp3 

is composed from the same components as examprogl except that consexp3 
implements a different interaction behavior among the components. The ap- 
proach supports encapsulation of implementations of both computational and 
interaction behaviors. For instance, producer can be re-implemented, in isola- 
tion, from the implementations of consumer and the interaction behavior. Even 
if this implementation implies changes in concurrent program, only the imple- 
mentations of interaction behaviors needs to be changed. The computational 
behavior of consumer remains unaffected. Separation of implementations there- 
fore localizes the effects of changes in a concurrent program. Further, it supports 
re-usability of implementations of both computational and interaction behaviors. 
For instance, different versions of examprogl can be constructed by combining 
producer and consumer in many different ways. Indeed, it advocates a pro- 
gramming design methodology in which concurrent programs can be quickly 
constructed from existing implementations of computational and interaction be- 
haviors. 
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Verification of concurrent programs is also facilitated by the separation of the 
implementations. The approach allows one to verify properties of the system by 
looking at the implementations of computational and interaction behaviors in 
isolation. 

Separation also forms the basis for the resolution of the aggregation and 
inheritance anomalies. In the case of inheritance anomaly, interaction behavior 
of inherited methods can be extended and/or modified by defining interaction 
behaviors in a subclass [21]. The inheritance anomaly has been studied in great 
detail and many solutions [14, 26, 23, 25] have been proposed. Most of these 
solutions are based on the separation of synchronization constraints from the 
method specifications as well. 

Separation of implementations facilitates programming language design as 
well. By supporting mechanisms for defining abstractions for computational and 
interaction behaviors, a concurrent programming language can provide support 
for constructing powerful concurrent program abstractions by simply extending 
the existing composition mechanisms. The design of CYES-C++(Section 4.3) 
clearly benefited from this approach. 

4 S u p p o r t  f o r  C o n c u r r e n t  P r o g r a m m i n g  

We now describe a concurrent programming model and a programming language 
that support the proposed programming methodology. We first present a model 
of concurrent computation, called the C-YES model [20]. The C-YES model 
defines representation mechanisms for computational and interaction behaviors. 
It has been used to define a compositional model for concurrent object-oriented 
languages [21], and a concurrent object-oriented programming language, CYES- 
C ++  [22]. Due to the lack of space, we outline only the fundamental aspects of 
the model and the language. The details can be found in [19]. 

4.1 Representation of  computational behavior 

Given that implementations of components do not include implementations of in- 
teraction behaviors, the question is: how are component programs implemented 
so that their interaction behaviors can be specified in a concurrent program? 

The execution behavior of a component is to repeatedly execute operations, 
and occasionally interact with its environment (other components) during the 
execution of certain operations. For instance, producer interacts with its en- 
vironment during executions of produce operations. We call such operations 
interaction points. An interaction point denotes a set of possible invocations of 
operations where interaction may occur. A component in the C-YES model is 
therefore represented by its computations and interaction points. We call each 
invocation of an operation an event. An interaction point therefore denotes a 
set of possible events. 
We represent an event by 0 p e r a t i o n [ S e l e c t o r ] .  Here, the term S e l e c t o r  is 
used to uniquely identify an occurrence of Operation. We use the notion of event 



640 

occurrence number as a selector. An event occurrence number, i, of an event 
specifies that  the event is the ith invocation of an operation in a computation. 
For instance, term produce  [0] denotes the first invocation of produce.  

Components are represented by extending the interfaces of procedures to in- 
corporate the notion of interaction points. In CYES-C++,  interaction points of 
a component are derived from the parameter variables: all methods on objects 
denoted by the variables are the interaction points of the component. (We as- 
sume that  the parameters represent objects). For instance, the implementations 
of p r o d u c e r  and consumer are shown below: 

producer(buffer  info){ consumer(buffer info) { 
while (TRUE) { while (TRUE) { 

info.produce(); info.consume(); 
} } 

} } 

Interaction points of p r o d u c e r  are represented by the term i n f o . p r o d u c e ( ) ,  
which denotes the set of all possible invocations of p roduce  during an execution 
of p roduce r .  Interaction behaviors of components are defined in terms of their 
interaction points. 

4.2 Interaction specification 

Interaction among programs is specified by an expression, called the event or- 
dering constraint expression. An event ordering constraint expression is used 
to represent semantic dependencies among events of component programs by 
specifying execution orderings - -  deterministic or nondeterministic - -  among 
the events. An event ordering constraint expression is constructed from a set 
of primitive ordering constraint expressions and a set of interaction composition 
operators. 

Primitive event ordering constraint expression: A primitive event ordering con- 
straint expression ( e l  < e2) specifies the constraint tha t  event e l  must occur 
before event e2 

Interaction composition operators: There are four operators for composing event 
ordering constraint expressions: 
i) And constraint operator ( ~ ) "  An execution of a program satisfies event or- 
dering constraint expression (El ~ E2) containing ~ if it satisfies both E1 and 

E2. 
ii) Or constraint operator(I I): An execution of a program satisfies event ordering 
constraint expression (El II E2) if it satisfies at least one of event ordering 
constraint expressions E1 or E2. 
iii) forall operator: The f o r a l l  operator extends ~ in order to specify ordering 
constraints over sets of events. There are two ways in which the f o r a l l  operator 
can be specified. The first 

forall vat v in S { E(v) } 
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specifies that  event ordering constraint expression E (v) holds true for all events 
v in event set S. In this expression, variable v iterates over the events of S. The 
second 

forall occ i in S { E(S[exp(i)]) } 

specifies tha t  event ordering constraint expression E (S [exp ( i ) ]  ) holds true for 
all events S [exp(i)] of S. In this expression, variable i ranges over the occurrence 
numbers of events of S. Expression exp ( i )  determines the occurrence number 
of the event for which E must hold. 
iv) Exists operator: The e x i s t s  operator is similar to f o r a l l  in that  it extends 
the I I constraint operator over a set of events. 

The interaction specification mechanism is declarative in nature. Its power 
stems from the ability to decompose global interactions among programs into a 
set of local interactions, each represented by event ordering constraint expres- 
sions, and combined with suitable interaction composition operators. One of the 
implications of the modularity property of event ordering constraint expressions 
is that  interaction behaviors of programs can be changed by modifying only the 
relevant and local interaction specifications. Further, the interaction specifica- 
tion mechanism is is not based on the semantic properties of any synchronization 
primitive. It can be used to specify any interaction behavior for any invocation 
of any operation. 

E x a m p l e  4.1. (Interaction specification). We now present an example that  il- 
lustrates the manner in which event ordering constraint expressions can be used 
for specifying interaction relationships. In this example, we show different in- 
stances of event ordering constraint expressions for the producer/consumer ex- 
ample. 

Simple data dependency: In example 2.1, the synchronization constraint specifies 
that  the ith invocation of consume cannot execute until the ith invocation of 
p roduce  has occurred. Let the terms produce  and consume respectively denote 
the interaction points of p r o d u c e r  and consumer. The following expression 
implements the data  dependency relationship between p r o d u c e r  and consumer: 

ConsExpl = forall occ i in produce { (produce[i] < consume[i]) } 

Extended concurrent program: In this example, we consider interaction between 
a single producer and two consumers. Assume that  the data  produced by 
p r o d u c e r  are shared between the two consumer components alternately. Also, 
assume that  consumel and consume2 denote the interaction points of the two 
consumer components. The interaction relationship between the components is 
derived by implementing two relationships: one between odd events of p roduce  
and events of one consumer, and the other between even events of p roduce  and 
events of the other consumer. The two relationships are implemented by the 
following expression: 

TwoRel = (produce[2*i-l] < consumel [i])~(produce[2*i] < consume2[i]) 
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The above relationship is true for all events of produce, which represents the 
interaction relationship among the components: 

ConsExp2 = forall occ i in produce { TwoRel } 

Modification of concurrent program: In this example, the interaction relationship 
between producer and consumer of example 2.1 is modified by defining an addi- 
tional constraint: there are at most N unconsumed values. Component producer  
therefore must wait for consumer if there are N unconsumed values. The modi- 
fied interaction relationship among the events of producer  and consumer can be 
implemented by simply extending the existing interaction relationship (as im- 
plemented by Coas~.xpi) with suitable event ordering constraint expression that 
represents the additional constraint: 

ConsExp3 = ConsExpl ~ 
forall occ i in consume { (consume[i] < produce[i+N]) } 

4.3 Design of  a Programming Language 

The C-YES model is a general model of concurrent computation in that it can be 
applied to define many concurrent programming languages. In our research, we 
combined it with the object-oriented model [27] in order to design a concurrent 
extension of C++ [24], called CYES-C++ [22]. The design of CYES-C++ is fa- 
cilitated, and in parts driven, by the notion of separation. In CYES-C++, both 
computations and interactions are defined as abstractions. CYES-C++ supports 
powerful concurrent programming abstractions by extending existing C++  ab- 
stractions that combine computational and interaction behavior abstractions in 
different ways. We briefly enumerate them below (See [22] for detail): 

Concurrent class: CYES-C++extends the notion of a C++  class in order to 
define concurrent objects. In CYES-C++, a concurrent object is represented 
as a composition of a set of methods and a set of event ordering constraint 
expressions. The event ordering constraint expressions represent interaction re- 
lationships such as semantic dependencies, data consistency, and priority among 
the methods. Concurrent classes allow one to model concurrent objects that 
permit multiple concurrent activities to occur at the same time. 

Inheritance: In CYES-C++, inheritance is a mechanism for extending the pro- 
gram composition of concurrent objects. Separation of implementations of com- 
putational and interaction behaviors allows one to extend and modify either 
components of a concurrent class. CYES-C++ supports inheritance of imple- 
mentations of both computational and interaction behaviors. 

Genericity: C + +  provides the template mechanism for implementing generic 
data structures. CYES-C++ extends the notion of template classes in order 
define generic concurrent classes. Generic concurrent classes capture common 
computational and interaction behavior specifications of methods of concurrent 
classes. They can be instantiated with user classes to associate computational 
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and interaction behaviors with user defined abstractions. Separation of imple- 
mentations of computational and interaction behaviors allows either or both 
behaviors to be instantiated with a class. 

Coordination Structure: Open software systems are often characterized by sets 
of autonomous and distributed objects whose execution behaviors must be co- 
ordinated. We have developed a coordination structure, called object space. An 
object space is a composition of a set of objects and a set of event ordering 
constraint expressions that define coordinate constraints among invocations of 
methods on the objects of an object space. 

5 R e l a t e d  W o r k  

In most approaches to concurrent programming, implementations of computa- 
tions and synchronization are embedded within the implementation of compo- 
nents. Separation of implementation of computational and interaction behaviors 
has been proposed for the resolution of the inheritance anomaly [16]. However, 
focus here has mostly been on resolving a specific instance of the program compo- 
sition anomaly. It has not been studied within the general context of concurrent 
program composition. Svend and Agha [10] also use the notion of separation 
of implementations of object and coordination constraints in order to define a 
distributed coordination structure. However, the focus here is on re-usability of 
object and coordination constraints, and not on the modifiability and extensi- 
bility of concurrent programs in general. Foster [8] also introduces the notion 
of separation of implementations of architectural elements from task implemen- 
tations in order to support re-usability of implementations of the architectural 
specifications, and portability of concurrent programs. However, in the proposed 
approach, specifications of synchronization is not separated from computations. 

There has been extensive work done in the area of concurrent programming. 
Most of this work has focussed on developing methodologies, languages, and 
tools for implementing concurrent programs. Most languages have added con- 
structs for specifying concurrency and synchronization in a base languages. An 
extensive survey of these constructs is given in [19]. Examples of synchro- 
nization mechanisms are: semaphores [5, 3], write-once-read-many variables 
[6], data flow based data dependencies [13], signal variables, enable-based ap- 
proaches [11, 18, 25, 17, 7, 12], disable based approaches [9], and behavior ab- 
straction based approaches [14, 15]. 

Our proposed interaction specification mechanism differs from most approaches 
in that it is declarative, and compositional. It supports abstractions for defin- 
ing interaction behaviors. The abstractions can be modified and extended in 
isolation from other abstractions. Further, they can composed with other com- 
putational abstractions in many different ways to construct powerful program 
abstractions. An example of a declarative mechanism is Path Expression [4]. 
Event ordering constraint expressions differ from Path Expressions in that they 
are used to specify the ordering constraints that must be satisfied. Path Expres- 
sions, on the other hand, are used to specify the valid sequences of operations 
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through a regular expression. Further, Bloom [2] shows that path expressions 
do not adequately support modular development of interaction specifications 
because path expressions do not contain general mechanisms for directly rep- 
resenting states of objects, and for specifying interactions that depend on the 
states. States in event ordering constraints expressions can be easily captured 
through event sets [22]. 

6 Conclusion and Status 

Concurrent programs can be easily modified and extended if implementations 
of both computational and interaction behaviors are separated. Separation sup- 
ports encapsulation of implementations of both computational and interaction 
behaviors. It localizes the effects of changes in a concurrent program to specific 
implementations of computational and interaction behaviors. ~lrther, imple- 
mentations of both computational and interaction behaviors can be reused. In 
addition, implementations of computational and interaction behaviors can each 
be represented as separate abstractions. These abstractions can be combined 
with other programming language composition mechanisms such as aggregation, 
inheritance, and genericity to construct new and powerful concurrent program- 
ming abstractions. 

A prototype implementation for CYES-C++ currently runs on a network of 
RS/6000 workstations. 

References 

1. Gregory R. Andrews. Concurrent Programming. The Benjamin/Cummings Pub- 
lishing Company, Redwood City, CA, 1991. 

2. Toby Bloom. Evaluating Synchronization Schemes. In Proc. 7th Symposium on 
Operating Systems Principles, pages 24-32. ACM, 1979. 

3. Peter A. Buhr and Richard A. Strossbosscher. #C-H- Annotated Reference Man- 
ual. Technical Report Version 3.7, University of Waterloo, Waterloo, Ontario, 
Canada, N2L 3G1, June 1993. 

4. R. H. Campbell and A. N. Habermann. The Specification of Process Synchroniza- 
tion by Path Expressions. In Lecture Notes on Computer Sciences, volume 16, 
pages 89-102. Springer Verlag, 1974. 

5. R. Chandra, A. Gupta, and J. L. Hennessy. COOL: A Language for Parallel 
Programming. In Languages and Compilers for Parallel Computing Conference, 
pages 126-147. Springer Verlag, 1992. 

6. K. Mazai Chandy and Carl Kesselman. Compositional C++: Compositional Par- 
allel Programming. Technical Report Caltech-CS-TR*92-13, Cal Tech, 1992. 

7. D. Dechouchant, S. Krakowiak, M. Meyesmbourg, M. Riveill, and X. Rousset 
de Pina. A Synchronization Mechanism for Typed Objects in a Distributed 
Systems. In Workshop on Object-based Concurren~ Programming, pages 105-107. 
ACM SIGPLAN, ACM, Sept. 1989. 

8. Inn T. Foster. Information Hiding in Parallel Programs. Technical Report MCS- 
P290-0292, Argonne National laboratory, 1992. 



645 

9. Svend Frolund. Inheritance of Synchronization Constraints in Concurrent Object- 
Oriented Programming Languages. In ECOOP '92, LNCS 615, pages 185-196. 
Springer Verlag, 1992. 

10. Svend Frolund and Gul Agha. A Language Framework for Multi-Object Coordi- 
nation. In Proceedings of the ECOOP'93, pages 346-360, 1993. 

11. Narain H. Gehani. Capsules: A Shared Memory Access Mechanism for Concurrent 
C /C++ .  IEEE Transactions on Parallel and Distributed Systems, 4(7):795-810, 
July 1993. 

12. J. E. Grass and R. H. Campbell. Mediators: A Synchronization Mechanism. In 
Sixth International Conference on Distributed Computing Systems, pages 468-477, 
1986. 

13. Andrew S. Grimshaw. Easy-to-Use Object-Oriented Parallel Processing with Men- 
tat. IEEE Computer, 26(6):39-51, 1993. 

14. Dennis Kafura and Keung Lee. Inheritance in Actor based Concurrent Object- 
Oriented Languages. In Proceedings ECOOP'89, pages 131-145. Cambridge Uni- 
versity Press, 1989. 

15. Satoshi Matsuoka. Language Features for Re-use and Extensibility in Concurrent 
Object-Oriented Programming. PhD thesis, The University of Tokyo, Japan, June 
1993. 

16. Satoshi Matsuoka, Keniro Taura, and Akinori Yonezawa. Highly Efficient and En- 
capsulated Re-use of Synchronization Code in Concurrent Object-Oriented Lan- 
guages. In OOPSLA'93, pages 109-126. ACM SIGPLAN, ACM Press, 1993. 

17. Ciaran McHale, Bridget Walsh, Se~n Baker, and Alexis Donnelly. Scheduling 
Predicates. In Object-Based Concurrent Computing Workshop, ECOOP'91, LNCS 
612, pages 177-193. Springer Verlag, 1991. 

18. Christian Neusius. Synchronizing Actions. In ECOOP '91, pages 118-132. Springer 
Verlag, 1991. 

19. Raju Pandey. A Compositional Approach to Concurrent Programming. PhD thesis, 
The University of Texas at Austin, August 1995. 

20. Raju Pandey and James C. Browne. Event-based Composition of Concurrent 
Programs. In Workshop on Languages and Compilers for Parallel Computation, 
Lecture Notes in Computer Science 768. Springer Verlag, 1993. 

21. Raju Pandey and James C. Browne. A Compositional Approach to Concurrent 
Object-Oriented Programming. In IEEE International Conference on Computer 
Languages. IEEE Press, May 1994. 

22. Raju Pandey and James C. Browne. Support for Extensibility and Reusability 
in Concurrent Object-Oriented Programming Languages. In Proceedings of the 
International Parallel Processing Symposium, pages 241-248. IEEE, 1996. 

23. S. Crespi Reghizzi and G. Galli de Paratesi. Definition of Reusable Concurrent 
Software Components. In ECOOP '91, pages 148-165. Springer-Verlag, 1991. 

24. Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, Second 
Edition edition, 1991. 

25. Laurent Thomas. Extensibility and Reuse of Object-Oriented Synchronization 
Components. In Parallel Architecture and Languages Europe, LNCS 605, pages 
261-275. Springer Verlag, 1992. 

26. Chris Tomlinson and Vineet Singh. Inheritance and Synchronization with Enabled 
Sets. In OOPSLA '89 Conference on Object-Oriented Programming, pages 103- 
112. ACM Press, 1989. 

27. Peter Wegner. Dimensions of Object-Based Language Design. In OOPSLA '87, 
page 168. ACM Press, 1987. 


