
T P a s c a l - A L a n g u a g e for Task P a r a l l e l
P r o g r a m m i n g

Ansgar Briill and Herbert Kuchen

Lehrstuhl fib Informatik I/II, RWTH Aachen, D-52056 Aachen, Germany
emaih {brue l l , herbert}@i2, in:format ik. rwth-aachen, de

Abs t rac t . The programming language TPascalis designed for the pro-
gramming of MIMD computers with distributed memory in a task par-
allel way using explicit message passing. In contrast to traditional mes-
sage passing libraries major problems like deadlocks are abeady avoided
in the definition of the language. The message passing and the creation
of processes is fully integrated into the language making compile time
checking and optimization possible. TPascal enriches a sequential pro-
gramming language similar to PASCAL with the concept of topologies
which are sets of processes arranged in a specific way.

1 Introduction

Programming MIMD computers with distributed memory is still difficult, er-
ror prone and time consuming. Mostly, traditional sequential programming lan-
guages together with a message passing library like P~, PVM or MPI (see [2]
for references) are used. Such library calls allow only very limited compile-time
checking and optimization of the communication. Various of the mentioned li-
braries t ransmit da ta as strings making even run-time checking impossible.

In contrast to the explicit use of message passing routines, different languages
have been developed achieving a higher degree of abstraction from the under-
lying system, e.g. High Performance Fortran (HPF) [5]. The programmer can
distribute data over virtual SPMD processes and perform data parallel opera-
tions on arrays of arbitrary shape. All communication statements necessary to
execute such programs on truly parallel computers are inserted by the compiler.

Deadlocks cannot occur.
While the number of data parallel applications is quite large, many appli-

cations and algorithms can be better thought of as a number of independent
processes connected and communicating in a specific way. This task parallel par-
adigm has been used as the basis of a number of languages. E.g. SVM Fortran
[1] uses parallel sections and parallel loops where each section and each loop it-
eration is an independent process. Synchronization and data exchange between
the processes can be achieved by global data that has to be shared between the
processes and is realized by means of virtual memory. To regulate the data access
the programmer has to make use of standard low level synchronization methods
like semaphores and atomic updates making deadlocks possible. The approach
taken by Fortran M [6] is based on explicit message passing. The programmer

655

can declare processes which can exchange data through typed channels. These
channels connect two arbitrary processes, again enabling deadlocks. A more sta-
tic approach for the communication has been chosen within FX [7], where tasks
can communicate only through arguments at the time of creation and termina-
tion. The advantage of all these languages over the traditional message passing
libraries is that the data exchange protocol can be type checked by the compiler.
However, programs may still run into deadlocks.

To avoid them, TPascal takes an approach quite similar to skeletons [4] in
functional programming. A skeleton can be regarded as a parameterized tem-
plate of a specific parallel operation. The implementation of a skeleton is hidden
from the programmer and therefore the programmer does not need to tackle the
'low level problems' of parallelism. Within TPascal these templates are repre-
sented by topologies which are sets of processes being connected to each other
in a particular way, e.g. pipes, rings etc. Topologies can be nested enabling the
construction of large collections of processes. A similar scheme has been used in
P3L [3] where the result of a Computation is transferred to a different process by
variables that are shared between the processes. TPascal however, uses explicit
message passing. Only processes being connected can exchange data in a well
defined, topology dependent way. For each topology only certain ways for a data
exchange exist, making the occurrence of deadlocks impossible. Through the in-
tegration of the primitives into the language the compiler can perform many
optimizations. Additionally, the data exchange protocol between two connected
processes can be verified by the compiler and the runtime system with respect
to the types of the data being exchanged.

2 A D e s c r i p t i o n o f T P a s c a l

TPascal consists of two parts. The first one, the host language, is made up
of a sequential programming language containing usual constructs like loops,
conditionals etc. The second component is the coordination part of the language
consisting of constructs to set up parallel processes and to exchange data between
them. Let us first consider an example.

The program in Fig. 1 computes the sum of an array of integers. It consists
of a ring of five processes. Each process initializes its local sum by an argu-
ment received at its creation. Then, it stores the local sum into two auxiliary
variables, SUM1 and SUM2, which are then used to exchange these values with
the neighbor processes. The EXCHANGE_NB operation has for each neighbor
an argument list telling what to send to (OUT) and what to receive from this
neighbor (IN). The received values are added to the local sum, and then passed
to the opposite neighbor in the next step. Thus, in the i-th iteration, the initial
local value reaches the neighbors with distance i.

2.1 The Coord ina t ion Language

The constructs from the coordination language are used for expressing paral-
lelism within a program by setting up parallel processes and for exchanging data

656

PROGRAM ADD
VAR Data : ARRAY [1..5] OF INTEGER;

PROCEDURE Calc(A: INTEGER)
VAR I,SUM,SUM1,SUM2:INTEGER;
BEGIN

SUM:--A; SUM1 := SUM; SUM2 := SUM;
FOR I := l TO 2 DO
BEGIN

EXCHANGE_NB([IN SUM1, OUT SUM2],[OUT SUM1, IN SUM2]);
SUM :---- SUM + SUM1 q- SUM2;

END
END

BEGIN
/* Start of the main program, Initialization of array Data, . . . */
RING(Catc(Data[1]), Calc(Data[2]), Calc(Data[3]), Calc(Data[4]), Calc(Data[5]));

END

Fig. 1. A simple TPascal program.

between these processes.
Parallelism is expressed by explicitly creating topologies, which are sets of

parallel processes called tasks connected in a specific way. An atomic task is a
procedure call started as a separate process with its own address space. Topolo-
gies are established by constructs consisting of a keyword describing the con-
nection and a corresponding list of tasks. The constructs are integrated into the
host language as statements. The interconneetions between the tasks within a
topology determine the way of exchanging data. Only connected tasks can com-
municate. The programmer can choose between different predefined topologies.

C o m m u n i c a t i o n P r i m i t i v e s . Depending on the topology certain tasks are
connected and can exchange data by two primitives. To exchange data with all
connected tasks (called neighbor tasks), EXCHANGE_NB can be used. These
tasks are referred to as. A non-empty list of expressions has to be supplied to
the primitive for each connected task together with an attribute that specifies
whether the data will be received from (IN attribute) or send (OUT attribute)
to a connected task. Another operation EXCHANGE (only available for some
topologies) allows to communicate with one selected neighbor. Implementation
aspects are discussed in [2].

C r e a t i n g T o p o l o g i e s . In TPascal constructs are available for the most conve-
nient topologies like parallel independent tasks, rings of tasks, pipelines of tasks
etc. (see Fig. 2). For each type of topology a construct is available that has as
parameter a list of topologies together with their actual parameters. When a
new topology is created by executing a task construct, the parts of the state of
the starting task needed for the new tasks are duplicated. Within TPascal tasks
will not necessarily be executed on the same physical processor in which case
the runtime system is responsible for creating an initial state on the processors

PIPE(A(), B0)

A B

PAR(A(), B 0, C 0)

oo~O.~
C~~~176176176

A

FARM(Master(), S O, S 0 S0)

S

Master

RING(First(), A0, B 0, Last())

657

Fig. 2. Topologies: parallel independent processes, pipe, farm, and ring.

involved in that operation. Procedure calls started as tasks can, of course, con-
tain further topology constructs. A topology construct terminates when all tasks
within the topology have terminated.

The simplest topology consist of parallel independent tasks (created by the
PAR construct), which cannot communicate with each other. In Fig. 2, the tasks
are represented by circles labeled with some internal task number needed for the
connection of different topologies. All tasks that have an incoming dotted arrow
expect some input from previous topologies, while all tasks with an outgoing
dotted arrow will send some output to subsequent topologies. The previous and
subsequent topologies are determined by a topology construct at an outer level
of nesting (explained below).

The PIPE construct enables the programmer to define a unidirectional se-
quence of not necessarily equal tasks. Ordinary SEND and RECEIVE instruc-
tions may be used, since a pipe is acyclic and there is no danger of deadlocks.

The ring topology allows a cyclic exchange of data in a bidirectional way.
All communication that is performed between two tasks being connected by a
RING construct has to be done by the EXCHANGE_NB primitive.

A farm allows one master to send jobs to a number of slaves which in turn
work on these jobs and return intermediate results, final results and possibly
new jobs. This process of distributing jobs to the slaves continues until no more
jobs are available.

658

PAR(k . 2 ' x
PIPE(PI-10,P1-20, ~ . / B

TPIPEu(P~21~!~i~ 0 'P 2-3 ())) '
A P2_1 P2_2 P2_3 B

Fig . 3. Nesting topologies

The EXCHANGE_NB primitive can be used to ensure that the slaves work
synchronously. The EXCHANGE operation allows to give jobs to selected slaves
and thus to get an asynchronous behavior of the farm. The master may also
use an EXCHANGE operation, where the desired communicat ion partner is left
open. In this case, the master communicates with the first ready slave. This is
the only place, where non-determinism occurs.

The tree is a generalization of the pipe. It can be regarded as a branch-
ing pipe. We distinguish trees with a da ta flow from the root to the leaves
(TREE_DOWN), and trees with the opposite data flow (TREE_UP). The above
topologies can be nested. An example of a nested topology is shown in Fig. 3.

C o m b i n i n g T o p o l o g i e s w i t h C o n s t r u c t s o f t h e H o s t L a n g u a g e . The
topologies described are static with respect to their communicat ion structure.
By using the topology primitives in combination with the control structures of
the host language, tasks can be established dependent on the state of program
execution e.g. within conditionals or loops. Tasks can be created recursively when
used in connection with recursive procedures. Thus, in combination with the
constructs of the host language a dynamic process structure can be established.
Tasks star ted in different iterations of a loop or in different levels of a recursive
procedure can only "communicate" via the host language. Certain features of
the host language have to be handled in a restricted way, e.g. pointers and I /O.
See [2] for details.

2.2 D e a d l o c k A v o i d a n c e in T P a s c a l

A necessary condition for a deadlock to occur is that a circular dependence has
to exist between the processes. By induction on the nesting level, it can be shown
tha t no deadlock can ever occur in a TPascal program. In the following we present
a rough sketch of the induction step of this proof. For the induction hypothesis
we assume the topologies T1, . . . , T . , that are used for the construction of a new
topology T, to be deadlock free. I f T is a pipe or a tree topology, it is obvious that
no deadlock can ever occur, as no cyclic dependences are introduced by these
constructs. If T is a farm, the da ta exchange always takes place in a bidirectional
way within a single primitive. Therefore no circular dependencies can occur. For
a ring topology, a similar argument holds.

659

It should be noted that other forms of congestion besides deadlocks are still
possible. This is mainly due to the fact that their avoidance within the language
definition would impose large restrictions on the host language making it im-
practical. Among these problems are Iivelocks where a number of tasks wait for
an event that is never going to happen. In particular, an infinite loop can prevent
a process from reaching its next communication instruction. This will cause the
communication partners to wait forever.

3 S u m m a r y a n d D i s c u s s i o n

We have presented TPascal, a language for programming distributed memory
MIMD machines based on the task parallel paradigm using explicit message
passing. Tasks are arranged in topologies. The topology determines which tasks
can directly exchange data. TPascal simplifies programming as deadlocks within
user programs are avoided by restricting the communication. Both the primi-
tives for task creation and communication are part of the language enabling the
compiler to perform necessary optimizations. Another feature of TPascal is its
abstraction from the underlying hardware. The programmer can choose between
a given set of topologies like trees, pipes, farms and parallel independent tasks.
A mapping of the tasks that form a topology to the physical processors of the
target machine is done by the runtime system in a way that the routing of mes-
sages between tasks is done on the shortest way possible and the load is equally
distributed onto the physical processors available. This is possible as the way
tasks exchange data is known in advance through the use of the topologies with
only a fixed way of exchanging data. In the future, we want to extend TPascal
by data parallelism. This will be done by some skeletons (topologies) operating
on a distributed data structure.

R e f e r e n c e s

1. R. Berrendorf, M. Gerndt, W. Nagel, and J. Priimmer. SVM-Fortran. Report
KFA-ZAM-IB-9322, Forschungszentrum Ji~eh, 1993.

2. A. Brfill, H. Kuchen. TPascal - A Language for Task Parallel Programming. Report,
http ://www- i2. inf ormat ik. r.th-aachen, de/~herbert/TRGiBrKu, ps

3. M. Danelutto, R. DiMeglio, S. Orlando, S. Pelagatti, and M. Varmeschi. A
methodology for the development and the support of massively parallel programs.
Future Generation Computer Systems, 205 - 220. Elsevier, 1992.

4. J. Darlington et al. Parallel Programming Using Skeleton Functions. PARLE'93,
LNCS 694, Springer, 1993.

5. The High Performance Fortran Forum. High Performance Fortran Language Spec-
ification, 1993.

6. I.T.Foster and K.M. Chandy. Fortran M: A Language for Modular Parallel Pro-
gramming, June 1992.

7. J. Subhlok and T. Gross. Task parallel programming in FX. Report CS-94-112,
Carnegie Mellon University, 1994.

