
E d e n - - T h e P a r a d i s e o f
F u n c t i o n a l C o n c u r r e n t P r o g r a m m i n g *

S. Breitinger 1 , R. Loogen 1, Y. Ortega-Mall@n 2, R. Pefia-Mari:

1 Philipps-Universit~t Marburg, Fachbereich Mathematik, Fachgebiet Informatik,
Hans Meerwein StraBe, Lahnberge, D-35032 Marburg, Germany,

{breit ing, loogen}~informat ik. uni-marburg, de
Universidad Complutense de Madrid, Sec. Dept. de Informs y Autom~tica,

Facultad de C.C. Matems E-28040 Madrid, Spain,
{yolanda, ricardo}r ucm. es

The functional concurrent language Eden [1] is an extension of the lazy func-
tional language Haskell [4] by constructs for the explicit specification of dynamic
process systems. It employs stream-based communication and is tailored for dis-
tributed memory systems. Eden supports and facilitates the task of parallel and
concurrent programming.

Eden incorporates special concepts for the efficient treatment of general reac-
tive systems, i.e. systems which maintain some interaction with the environment
and which may be time-dependent. The dynamic creation of reply channels sim-
plifies the generation of complex communication topologies and increases the
flexibility of the language. Predefined nondeterministic processes MERGE and
SPLIT are used to model many-to-one and one-to-many communication in pro-

cess systems.
Eden incorporates a two level structure: the level of user-defined processes

and the level of process systems. User-defined processes can be seen as determin-
istic mappings from input channels to output channels. Nondeterminism is only
handled at the system level which consists of all (predefined and user-defined)
processes interacting via communication on channels.

1 E d e n i n a n u t s h e l l

Haskell forms the computation language of Eden. This is extended by a coordina-
tion model that introduces processes in a functional style, embodying constructs
which allow for the definition and creation of processes, communication and
synchronization, and the specification of interconnections between processes.

Eden distinguishes between process abstractions, which specify process be-
haviour in a purely functional way, and process instantiations in which process
abstractions are supplied with input values in order to create new processes.

A process abstraction defines a general parameterized process scheme. It
specifies a process which maps (streams of) input values in1, �9 �9 into to (streams

of) output values out1, . . . , out~:

"* Supported by the DAAD (Deutscher Akademischer Austauschdienst) and the Span-
ish Ministry of Education and Science in the context of the German-Spanish Acci6n

Integrada n.142B.

711

p r o c e s s abs trac t ion :

p :: T1 --~..- "-+ Tk --+ Process (r~, . . . , Ttm) (T; ' , . . . , T")
p par 1 . . . p a r k = process (i n l , . . . , i n m) -+ (OUtl,...,OUtn)

where equat ion 1 . . . equat ion r

Process creat ion takes place when a process abstraction without unspecified
parameters 3, e.g. (p el . . . ek), is applied to a tuple of inport expressions. This is
called process i n s t a n t i a t i o n and defines the tuple of outports of the newly created
process:

p r o c e s s in s tan t ia t i on : (p e l . . . ek) ~ (i n_exp l , . . . , i n _ e x p m)

Often, process instantiations occur in equations of the form

(o u t 1 , . . . , ou tn) = (p e l . . . ek) ~ (in_exp l , . . . , i n _ e x p m)

The left hand side of such an equation is the tuple of output channels of the
created process.

It is important that a process abstraction must be closed, i.e. the expressions
in the body may depend only on parameters, input values, local auxiliary defi-
nitions or functions contained in the standard Haskell prelude. This guarantees
that a process is an independent unit of computation which communicates only
via its ports and can be executed without any implicit need to access global
information. This property is essential as Eden is a language for distributed
memory systems.

We do not allow the duplication of running processes because they are dy-
namic entities with an internal state. Therefore it is essential to presuppose a
lazy semantics, which guarantees that process instantiations passed as argument
to functions, to other processes, or to abstractions will be shared.

Communication channels transmit completely evaluated values of arbitrary
type. In order to model the transmission of a stream of values we introduce a
new algebraic data type S t r m a with data constructor < . >:: [a] -+ S t r m a. A

channel of type S t r m v transmits values of type r one by one. Streams correspond
to lazy lists, but note that a channel of type l ist T is assumed to transfer exactly
one list of type T, which is finite because its evaluation must be completed before
the transmission, while a channel of type S t r m r transmits a potentially infinite
list component-wise.

Example . A sorting network which transforms an input stream into a sorted
output stream by subsequently merging sorted sublists with increasing length is
specified by the following process abstraction:

mergesort : : Process (Sirra a) (Strm a)

mergesort = process <s> -> <sort s>

where

a Actual parameter expressions are copied into the body of process abstractions before
the process is created.

712

sort [] = []

sort Ix] = Ix]
sort xs = smerge (mergesort # <11>I (mergesort # <12>I

where (11,12) = unshuffle xs

smerge [] 1 = 1

smerge i [] = 1

smerge (x:l) (y:t) = if x<=y then x:smerge 1 (y:t)

else y:smerge (x:l) t
unshuffle [] = ([], [])

unshuffle Ix] = (Ix], [])

unshuffle (x:y:t) = (x:tl,y:t2)

where (tl,t2) = unshuffle t

Streams with at least two elements are split into two substreams for which
recursive instantiations of the mergesort process are generated. As a result a tree
of mergesort processes is created.

2 P r o g r a m m i n g i n E d e n

Due to space limitations we present only the specification of a parallel matr ix
multiplication algorithm. Matrix multiplication is an important operation in
many scientific and engineering problems. It has a good potential for paralleliza-
tion and has become a standard example for parallel programming. We consider
a parallel algorithm which uses a torus topology. The matrices are parti t ioned
into submatrices which are distributed on the torus nodes. For simplicity we
assume the parti t ion size to be 1 and the matr ix dimension to be n • n.

Each element of the torus first gets the corresponding elements of the input
matrices. The torus node with the position (i, j) then has to compute the element
(i, j) of the result matrix, i.e. the scalar product of the i th row of the first input
matr ix and the j t h column of the second input matrix. In order to place the
elements to be multiplied on the same node, the rows of the first matr ix and
the columns of the second matr ix are rotated by (i - 1) and (j - 1) positions
respectively before the proper computation starts. Then all torus nodes perform
an iteration of n - 1 steps in which they multiply corresponding elements of the
matrices which they read subsequently from their input channels.

We presuppose the definition of a process abstraction torus which creates a
torus topology according to the dimension of the given matr ix (see [2] or [3]):

type Matrix a -- [[a]]

type NodeProc a b c d -- (Int -> Int -> a ->
Process (Sirra b, Strm c) (d, Strm b, Strm c)

torus :: Matrix a -> NodeProc a b c d -> Process 0 (Matrix d)

The node processes are connected row- and column-wise by stream chan-
nels from right to left and bottom to top. Their behaviour is specified by an
abstraction which is passed as a parameter to the torus process abstraction.

matmult :: Int-> (Matrix Int) -> (Matrix Int) -> (Matrix Int)

713

matmult n ass bss

= torus (map uncurry.zip (zip ass bss)) (scalarprod n)

scalarprod :: Int -> Int -> Int -> (Int,Int)

-> Process (Strm Int, Strm Int) (Int, Strm Int, Strm Int)

scalarprod n i j (a,b) -- process abstraction for each torus node

= process (inrow, incol) -> (result, outrow, outcol)

where
outrow = a:inrow -- rotate row of first matrix

outcol = b:incol -- rotate col of second matrix

result = iterate n aro. bcol (aO * bO)

iterate 0 row col val = val

iterate (n+l) (r:ro.) (c:col) val = iterate n row col (val+r*c)

arow = (drop (i-l) inrow)

bcol = (drop (j-l) incol)

aO = (a:inrow))!(i-1)

bO = (b:incol)!!(j-l)

3 W h e r e to f ind m o r e a b o u t E d e n

The interested reader can find a more detailed discussion of Eden features in [2].
There, more programming examples are provided. A collection of skeletons for
the instantiation of various process topologies can be found in [3].

The semantics of Eden is an extension of the standard operational semantics
of Haskell. It reflects the two-layered nature of Eden: systems and processes.
On the upper level global effects on process systems are described. The lower
level handles local effects within processes. The interface between the two levels
consists of so-called 'actions' by which the need for global events is communicated
to the upper level.

In a prototype implementation of Eden the low-level primitives of Concurrent
Haskell have been used to model communication and synchronization between
Eden processes explicitly. In the future there will be a direct implementation of
Eden on an IBM SP-2 using the MPI (Message Passing Interface) standard.

R e f e r e n c e s

1. S. Breitinger, R. Loogen, Y. Ortega-Malign: Towards a Declarative Language for
Concurrent and Parallel Programming, Glasgow Workshop on Functional Program-
ming, Springer Workshops in Computing 1995.

2. S. Breitinger, R. Loogen, Y. Ortega-Malign, R. Pefia-Marf: Eden - - The Paradise
of Functional Concurrent Programming, TR DIA-UCM-20/96, Universidad Com-
plutense de Madrid 1996, also available as
http ://~n~w. mathematik, uni-marburg, de/'loogen/paper/parad• se. ps.

3. L. A. Gal~, C. Pareja, R. Pefia: Functional Skeletons Generate Process Topologies
in Eden, APPIA-GULP-PRODE'96 Joint Conference on Declarative Programming,
San-Sebastian, Spain, July 1996.

4. P. Hudak, Ph. Wadler (eds.): Report on the Programming Language Haskell: a non-
strict, purely functional language, SIGPLAN Notices, 27(5):1-162,1992.

