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The functional concurrent language Eden [1] is an extension of the lazy func- 
tional language Haskell [4] by constructs for the explicit specification of dynamic 
process systems. It employs stream-based communication and is tailored for dis- 
tributed memory systems. Eden supports and facilitates the task of parallel and 
concurrent programming. 

Eden incorporates special concepts for the efficient treatment of general reac- 
tive systems, i.e. systems which maintain some interaction with the environment 
and which may be time-dependent. The dynamic creation of reply channels sim- 
plifies the generation of complex communication topologies and increases the 
flexibility of the language. Predefined nondeterministic processes MERGE and 
SPLIT are used to model many-to-one and one-to-many communication in pro- 

cess systems. 
Eden incorporates a two level structure: the level of user-defined processes 

and the level of process systems. User-defined processes can be seen as determin- 
istic mappings from input channels to output channels. Nondeterminism is only 
handled at the system level which consists of all (predefined and user-defined) 
processes interacting via communication on channels. 

1 E d e n  i n  a n u t s h e l l  

Haskell forms the computation language of Eden. This is extended by a coordina- 
tion model that introduces processes in a functional style, embodying constructs 
which allow for the definition and creation of processes, communication and 
synchronization, and the specification of interconnections between processes. 

Eden distinguishes between process abstractions, which specify process be- 
haviour in a purely functional way, and process instantiations in which process 
abstractions are supplied with input values in order to create new processes. 

A process abstraction defines a general parameterized process scheme. It 
specifies a process which maps (streams of) input values in1, �9 �9 into to (streams 

of) output values out1, . . . ,  out~: 
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p r o c e s s  abs trac t ion :  

p :: T1 --~..- "-+ Tk --+ Process  (r~, . . . ,  Ttm) (T; ' , . . . ,  T") 
p par  1 . . .  p a r  k = process ( i n l , . . . , i n m )  -+ (OUtl,...,OUtn) 

where equat ion  1 . . .  equat ion  r 

Process  creat ion takes place when a process abstraction without unspecified 
parameters 3, e.g. (p el . . .  ek), is applied to a tuple of inport expressions. This is 
called process  i n s t a n t i a t i o n  and defines the tuple of outports of the newly created 
process: 

p r o c e s s  in s tan t ia t i on :  (p e l . . .  ek ) ~ ( i n_exp l ,  . . . , i n _ e x p m )  

Often, process instantiations occur in equations of the form 

( o u t 1 , . . . ,  ou tn )  = (p e l . . .  ek ) ~ ( in_exp l ,  . . . , i n _ e x p m )  

The left hand side of such an equation is the tuple of output channels of the 
created process. 

It is important that a process abstraction must be closed, i.e. the expressions 
in the body may depend only on parameters, input values, local auxiliary defi- 
nitions or functions contained in the standard Haskell prelude. This guarantees 
that a process is an independent unit of computation which communicates only 
via its ports and can be executed without any implicit need to access global 
information. This property is essential as Eden is a language for distributed 
memory systems. 

We do not allow the duplication of running processes because they are dy- 
namic entities with an internal state. Therefore it is essential to presuppose a 
lazy semantics, which guarantees that process instantiations passed as argument 
to functions, to other processes, or to abstractions will be shared. 

Communication channels transmit completely evaluated values of arbitrary 
type. In order to model the transmission of a stream of values we introduce a 
new algebraic data type S t r m  a with data constructor < .  >:: [a] -+ S t r m  a. A 

channel of type S t r m  v transmits values of type r one by one. Streams correspond 
to lazy lists, but note that a channel of type l ist  T is assumed to transfer exactly 
one list of type T, which is finite because its evaluation must be completed before 
the transmission, while a channel of type S t r m  r transmits a potentially infinite 
list component-wise. 

Example .  A sorting network which transforms an input stream into a sorted 
output stream by subsequently merging sorted sublists with increasing length is 
specified by the following process abstraction: 

mergesort : :  Process (Sirra a) (Strm a) 

mergesort = process <s> -> <sort s> 

where 

a Actual parameter expressions are copied into the body of process abstractions before 
the process is created. 
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sort [] = [] 

sort Ix] = Ix] 
sort xs = smerge (mergesort # <11>I (mergesort # <12>I 

where (11,12) = unshuffle xs 

smerge [] 1 = 1 

smerge i [] = 1 

smerge (x:l) (y:t) = if x<=y then x:smerge 1 (y:t) 

else y:smerge (x:l) t 
unshuffle [] = ([], []) 

unshuffle Ix] = (Ix], []) 

unshuffle (x:y:t) = (x:tl,y:t2) 

where (tl,t2) = unshuffle t 

Streams with at least two elements are split into two substreams for which 
recursive instantiations of the mergesort process are generated. As a result a tree 
of mergesort processes is created. 

2 P r o g r a m m i n g  i n  E d e n  

Due to space limitations we present only the specification of a parallel matr ix  
multiplication algorithm. Matrix multiplication is an important  operation in 
many scientific and engineering problems. It has a good potential for paralleliza- 
tion and has become a standard example for parallel programming. We consider 
a parallel algorithm which uses a torus topology. The matrices are parti t ioned 
into submatrices which are distributed on the torus nodes. For simplicity we 
assume the parti t ion size to be 1 and the matr ix dimension to be n • n. 

Each element of the torus first gets the corresponding elements of the input 
matrices. The torus node with the position (i, j )  then has to compute the element 
(i, j )  of the result matrix, i.e. the scalar product  of the i th row of the first input 
matr ix  and the j t h  column of the second input matrix. In order to place the 
elements to be multiplied on the same node, the rows of the first matr ix and 
the columns of the second matr ix are rotated by (i - 1) and (j - 1) positions 
respectively before the proper computation starts. Then all torus nodes perform 
an iteration of n - 1 steps in which they multiply corresponding elements of the 
matrices which they read subsequently from their input channels. 

We presuppose the definition of a process abstraction torus which creates a 
torus topology according to the dimension of the given matr ix  (see [2] or [3]): 

type Matrix a -- [[a]] 

type NodeProc a b c d -- (Int -> Int -> a -> 
Process (Sirra b, Strm c) (d, Strm b, Strm c) 

torus :: Matrix a -> NodeProc a b c d -> Process 0 (Matrix d) 

The node processes are connected row- and column-wise by stream chan- 
nels from right to left and bottom to top. Their behaviour is specified by an 
abstraction which is passed as a parameter to the torus process abstraction. 

matmult :: Int-> (Matrix Int) -> (Matrix Int) -> (Matrix Int) 
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matmult n ass bss 

= torus (map uncurry.zip (zip ass bss)) (scalarprod n) 

scalarprod :: Int -> Int -> Int -> (Int,Int) 

-> Process (Strm Int, Strm Int) (Int, Strm Int, Strm Int) 

scalarprod n i j (a,b) -- process abstraction for each torus node 

= process (inrow, incol) -> (result, outrow, outcol) 

where 
outrow = a:inrow -- rotate row of first matrix 

outcol = b:incol -- rotate col of second matrix 

result = iterate n aro. bcol (aO * bO) 

iterate 0 row col val = val 

iterate (n+l) (r:ro.) (c:col) val = iterate n row col (val+r*c) 

arow = (drop (i-l) inrow) 

bcol = (drop (j-l) incol) 

aO = (a:inrow))!(i-1) 

bO = (b:incol)!!(j-l) 

3 W h e r e  to  f ind m o r e  a b o u t  E d e n  

The interested reader can find a more detailed discussion of Eden features in [2]. 
There, more programming examples are provided. A collection of skeletons for 
the instantiation of various process topologies can be found in [3]. 

The semantics of Eden is an extension of the standard operational semantics 
of Haskell. It reflects the two-layered nature of Eden: systems and processes. 
On the upper level global effects on process systems are described. The lower 
level handles local effects within processes. The interface between the two levels 
consists of so-called 'actions' by which the need for global events is communicated 
to the upper level. 

In a prototype implementation of Eden the low-level primitives of Concurrent 
Haskell have been used to model communication and synchronization between 
Eden processes explicitly. In the future there will be a direct implementation of 
Eden on an IBM SP-2 using the MPI (Message Passing Interface) standard. 
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