
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Minimal term rewriting systems

H.R. Walters and J.F.Th. Kamperman

Computer Science/Department of Software Technology

CS-R9573 1995

Report CS-R9573
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Minimal Term Rewriting Systems

H�R�Walters �pum�cwi�nl�

J�F�Th�Kamperman �jasper�cwi�nl�

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

Formally well�founded compilation techniques for Term Rewriting Systems �TRSs� are presented� TRSs are

compiled into Minimal Term Rewriting Systems �MTRSs�� a subclass of TRSs in which all rules have

an extremely simple form� A notion of simulation of �rewrite� relations is presented� under which an MTRSs

can be said to simulate a TRS� The MTRS rules can be directly interpreted as instructions for an extremely

simple Abstract Rewriting Machine �ARM�� Favourable practical results have already been obtained with an

earlier version of ARM�

CR Subject Classi�cation ������� D���� �Programming languages�	 Processors
 Compilers�

D���� �Programming Techniques�	 Applicative �Functional� Programming� D���
	 Logic Program�

ming�

AMS Subject Classi�cation �������
�N��	 Compilers and generators�
�Q��	 Models of Computa�

tion�
�Q��	 Rewriting Systems�
�Q
�	 Abstract data types� algebraic speci�cation�

Keywords � Phrases� minimal term rewriting systems� program transformation�

Note� This report is under formal review for the Conference Proceedings of the ��th Workshop on Abstract

Data Types� Partial support was received from the Foundation for Computer Science Research in the Nether�

lands �SION� under project
���������� �Generic Tools for Program Analysis and Optimization�� and from

the IBM SP�� project of department AP�

�� Introduction

Term �graph� rewriting systems �TRSs� are becoming increasingly important for the imple�
mentation of theorem provers� algebraic speci�cations� compiler generators� program analyz�
ers and functional programming languages� Hence� a clear need arises for techniques enabling
fast execution of TRSs� Furthermore� these techniques should be �exible with regard to ex�
tensions� such as selection of reduction strategy�

A standard technique for speeding up the execution of a program in a formal �programming�
language is compilation into the language of a concrete machine �e�g�� a microprocessor�� In
compiler construction �c�f� 	ASU
���� it is customary to use an abstract machine as abstraction
of the concrete machine� On the one hand� this allows hiding details of the concrete machine in
a small part of the compiler� and thus an easy reimplementation on other concrete machines�
On the other hand� a good design of the abstract machine enables a simple mapping from
source language into abstract machine language�

�� Introduction �

A compiler consists of zero or more mappings from its source language into a restricted
version of the source language� followed by a mapping to a lower�level language� This is
repeated until the level of the concrete machine is reached� Because they take place in one
domain� the source�to�source mappings are easier to grasp semantically than the mappings to
lower levels� In this paper� we present a compilation technique for TRSs which stays entirely
within the well�known source language domain
 the mapping to the concrete machine level is
a trivial interpretation�

We map TRSs to Minimal Term Rewriting Systems �MTRSs�� a restriction of TRSs� and
we interpret the MTRSs directly as programs for our Abstract Rewriting Machine �ARM��
An example may clarify this� The TRS de�ning successor�zero naturals on the left side is
compiled into the MTRS on the right side�

plus�zero�X� � X zero � r�zeroc�
plus�succ�X�� Y � � succ�plus�X�Y �� succ�X �� � r�succc�X

���
plus�X �� X ��� � plusS�X ��X ���

plus�zeroc� Z
�� � plus zero�Z ��

plus�succc�Y
��� Z �� � plus succ�Y �� Z ��

�� plus zero�Y �� � Y �

plus succ�Y �� Y ��� � succ�plus�Y �� Y ����
plusS�X �� X ��� � r�plusc�X

��X ����
r�X� � X

It is easily veri�ed that rewriting the term plus�succ�zero�� succ�zero�� in the original system
yields succ�succ�zero��� and rewriting in the transformed system yields succc�succc�zeroc���
The latter normal form can be said to simulate the former by assuming a simulation map S
de�ned as S�zeroc� � zero and S�succc�X�� � succ�S�X���

By a slight change of perspective� the MTRS above can be interpreted as a program for
ARM �the resemblance to assembly code is intended��

zero � build�zeroc� ��
goto�r�
succ � build�succc� ��
goto�r�
plus � match�zeroc� plus zero�

match�succc� plus succ�

goto�plusS�

plus zero � recycle

plus succ � cpush�succ�
goto�plus�

plusS � build�plusc� ��
goto�r�

r � recycle�

where the instructions are either available on common concrete machines �goto is always
available� recycle corresponds to return� andmatch to compare� or can be implemented in
a few instructions �build and cpush�� With a precursor of ARM� we have reached favourable
results for TRSs of real�world size 	HF�����

The remainder of this paper is structured as follows� First� we review basic TRS theory in
Section ���� Then� in Section �� we present a notion of simulation of a TRS by another TRS�

�� Introduction �

After that� in Section �� we present MTRSs� and in Section �� we indicate how MTRSs can
simulate arbitrary TRSs� Finally� in Section �� we show how the rules of an MTRS can be
interpreted in a straightforward way as instructions for an e�cient abstract machine�

��� Term Rewriting

We follow 	Klo���� A signature � consists of�

� A countably in�nite set V of variables� x� y� � � �

� A non�empty set F of function symbols� f� g� � � �� each with an arity �� ��� which is the
number of arguments the function requires� We denote the arity of f by jfj�

The set T ��� of terms over � is the smallest set satisfying

� V � T ����

� for all f � F with arity n� and t�� � � � tn � T ���� we have f�t�� � � � � tn� � T ����

Occasionally� we will abbreviate a sequence t�� � � � � tn to
�
t � and write j

�
t j for n� We

generalize this to empty sequences� which have j
�
t j � ��

A context is a �term� containing one occurrence of a special symbol �� denoting an empty
place� A context is generally denoted by C	�� If t � T ��� and t is substituted for �� the
result is C	t� � T ��� and t is said to be a subterm of C	t�� notated as C	t� � t�

A substitution is a �total� map � � T ��� �� T ��� satisfying

	f � F � ��f�t�� � � � � tn�� � f���t��� � � � � ��tn���

By convention� we often write t� for ��t��

A rewrite rule is a pair of terms written as s� t with s� t � T ���� It is assumed that the
left�hand side s of a rule s� t is not a single variable� and that var�t� � var �s��

A term rewriting system R consists of a signature � and a set of rewrite rules R over ��

A term rewriting system de�nes a rewrite relation �R� Since the subscript R is usually
clear from the context� it is omitted� The overloading of � is by convention�

s� t
def

� �C	�� �� u� v � R � s � C	u�� � t � C	v��

The sub�term u� is referred to as redex �for reducible expression�
 the sub�term v� � as
reduct� We write

�
� for the transitive re�exive closure of ��

The rewrite relation is closed under taking contexts� i�e�� if s� t� then for all C	�� C	s��
C	t��

A series of terms s � s�� s�� � � � such that s� � s� � � � � is called a rewrite sequence� A term
s is said to be in normal form if there is no t such that s� t� A function�symbol f is called
a de�ned function symbol if there is a rule f�t�� � � � � tn�� r� A function�symbol c is called a

	� Term Rewriting Simulations �

constructor symbol if there is a normal form in which it occurs� and a free constructor if it is
not a de�ned symbol�

A TRS is called left�linear if all left�hand sides are linear� A TRS is called con�uent if�
for all terms t�� t�� t�� we have that t�

�
� t� and t�

�
� t� implies that there exists a term t�

such that t�
�
� t� and t�

�
� t�� A TRS is called terminating if there are no in�nite rewrite

sequences� Note that con�uence and termination are generally undecidable�

In general� a term may contain many redexes� A rewriting strategy determines which
of these is chosen� Con�uence guarantees unique normal forms� regardless of the strategy�
Some well�known strategies are leftmost innermost� leftmost outermost� rightmost innermost�
rightmost outermost� parallel innermost and parallel outermost� For lack of space� we only
consider the rightmost innermost strategy in this paper� which allows only rewriting of the
rightmost redex that does not contain other redexes�

In priority rewrite systems �PRSs� 	BBKW
��� the rules are �partially� ordered� and a rule
may be applied only if there are no applicable rules �i�e�� even after reduction of subterms� with
higher priority� PRSs are very expressive� but their operational semantics can be problematic�
For our purposes� a weaker notion su�ces� which we will call syntactic priority� In a TRS
with syntactic priority� the decision whether a rule is applicable is made without considering
reductions of sub�terms�

The ordering we will use is syntactic speci�city ordering� where a rule l� r is called more

speci�c than a rule s� t� when there exists a substitition � such that s� � l�

Under syntactic speci�city ordering� any set of terms has a greatest lower bound �glb�� We

will call the glb of all terms with top�symbol f � a term of the form f�
�
x�� a most general LHS�

We will call two terms s� t �or rules with LHSs s� t� mutually exclusive� if they have no upper
bound� i�e� if there is no term u with u � s � u � t� We will call a rule r maximal if there is
no rule s with s � r�

�� Term Rewriting Simulations

In this section� we de�ne the notion of simulation of a TRS by another TRS�

In principle� a TRS T � ��� R� is simulated by a TRS T � � ���� R�� if every rewrite
sequences w�r�t� R can be related to a rewrite sequence w�r�t� R�� To this end� there must
be a map from T ���� to T ���� which is called the simulation map�

This notion of simulation can be developed for arbitrary relations� but we will only use
it in the more limited context of �minimal� term rewriting systems� In that context� as we
will see� it is preferable to regard a simulating TRS of which the signature is an extension of
that of the simulated TRS �i�e�� ��
 ��� and for which the simulation map is identity on the
common set of terms T ����

��� Simulation maps between terms

Let � � �F �V� and �� � �F ��V �� be signatures� such that ��
 �� and let S � F � � F be a
�partial� map� which has the following properties�

� Symbols in the original signature simulate themselves �	f � F � S�f� � f��

	� Term Rewriting Simulations �

� S may be partial� and we assume the existence of a predicate DS � which holds for all
symbols in F � for which S is de�ned� because a simulating TRS may use intermediate
symbols �terms� which are not a simulation of any symbol �term� in F �

We extend S and DS to T ���� by �partial� homomorphic extension�

As an example� consider F � ff� ag and F � � ff� a� fc� hg� In this example� fc is a variant
�a so�called constructor variant� discussed further in the sequel� of f with S�fc� � f � and h

is an auxiliary function that has no counterpart in F � Supposing that the arity of f is �� and
the arity of a is �� we have �by partial homomorphic extension� that S�f�fc�a��� � f�f�x���
and S�f�h�a��� is unde�ned�

��� Simulating Relations

Using simulation maps� we will now de�ne simulations of relations over terms� A simulation
of a relation R is de�ned by a pair �S� R���

A simulation should be both sound and complete� i�e�� it should simulate neither too much
nor too little� The de�nition of these notions is somewhat complicated by the fact that S is
partial� We de�ne a simulating sequence to be a sequence s� �R� s� �R� � � � for which S is
de�ned on s�� and we call the �rst step of such a sequence a simulating step� In the �gures
illustrating the de�nitions below� dashed arrows are implied by solid arrows� closed points
are universally quanti�ed� and open points are existentially quanti�ed�

First we consider soundness� If we have a simulating sequence sR��t with S de�ned on t� it
is only reasonable to call such a sequence sound when S�s�R�S�t�� so the image of R�� under
S is contained in R� �depicted in Fig� �a�� In case S is not de�ned� we do not want the
sequence to �escape into unde�nedness�� so we demand that there is some u with tR��u and
S de�ned on u �depicted in Fig� �b�� Formally� soundness is de�ned in De�nition ��

t

R* R’*

s

S

S
t

s

u

R*

S

S

R’*

Fig� �a� Fig� �b�

De�nition � A simulation �S� R�� of R is sound whenever

	st �DS�s� � sR��t� �� S�s�R�S�t� � ��DS�t� � �uDS�u� � tR��u�

A simulation is complete� when every step sRt in the simulated relation has as counterpart
a simulating sequence sR��u� where S�u� � t� This is de�ned formally in De�nition �� and
depicted in Fig� ��

� Minimal Term Rewriting Systems �

R R’+

t u
S

sS
De�nition � A simulation �S� R�� of a relation R is com�
plete whenever

	st DS�s� � S�s�Rt �� �u sR��u � S�u� � t

Fig� �� Completeness

For term rewriting� however� this is a rather rigid notion of completeness� because it requires
that the simulation mimicks every single step in the simulated relation� If we are mainly
interested in simulating the computation of normal forms� and the simulated relation is
con�uent� a weaker property su�ces� A simulation is weakly complete when every step in the
simulated system does correspond to a simulating sequence� but the endpoints of the step and
the image of the simulating sequence need not agree� This is de�ned formally in de�nition ��
and depicted in Fig� ��

t

R
R+

R’+

u

S

S

s

v

De�nition � A simulation �S� R�� of a relation R is weakly
complete whenever

	st DS�s� � S�s�Rt �� �u DS�u� � sR��u � S�s�R�S�u�

Fig� �� Weak completeness

A simulation that is both sound and �weakly� complete need not conserve the termination
behaviour� because there may be �cyclic� sequences in the simulating relation corresponding
to zero steps in the simulated relation�

A simulation is termination conserving when only terms that take part in in�nite sequences
in the simulated system� have origins occurring in in�nite sequences in the simulating system�
This is de�ned by De�nition �� and illustrated in Fig� ��

inf

R+ R’+

t1
sS

inf

1

De�nition � A simulation �S� R�� is termination preserv�
ing whenever

	s � inf �R�� DS�s�� �� �t � inf �R� S�s�� � t�

where inf �R� is the set of in�nite sequences in R� and we

denote the ith term in a rewrite sequence s by si�

Fig� �� Conservation of termination

�� Minimal Term Rewriting Systems

In this section� we present minimal term rewriting systems �MTRSs�� a syntactic restriction
of TRSs that can be interpreted as the language of an abstract machine� By virtue of being
a syntactic restriction� MTRSs inherit syntax and semantics of TRSs�

In MTRSs� all rules have an extremely simple form� The most conspicuous aspect is that
any rule has at most three function symbols� of which at most two are found on either side�
Even the SKI calculus �	Klo����� which is minimal in the number of rules ���� and in the

�� How to Obtain Simulating MTRSs �

total number of function symbols ��� S� K� I� and ��� needs � function symbols in its most
complicated rule �S � x � y � z � �x � y� � �y � z���

In order to simulate general TRSs� MTRSs must be able to express at least the basic
actions of composing �building� a term from a function symbol and a sequence of terms�
decomposing �matching� a term into a function symbol and a sequence of terms� duplicating
some subterm� and deleting some subterm� From these basic assumptions� we arrive at a set
of six forms� displayed in Fig� ��

C � f�
�
x�

�
y �

�
z � � h�

�
x� g�

�
y ��

�
z �

R � f�y� � y

M � f�
�
x� g�

�
y ��

�
z � � h�

�
x�

�
y �

�
z �

A � f�
�
x�

�
z � � h�

�
x� y�

�
z � �y is xi or zi�

D � f�
�
x�

�
y �

�
z � � h�

�
x�

�
z � �j

�
y j �� ��

I � f�
�
x� � h�

�
x�

Fig� �� Forms of MTRS rules�

We have labeled the forms with mnemonics reminding of their basic purpose �in the context
of innermost rewriting�� The mnemonic C stands for continuation� in the sense that h is the
continuation after the evaluation of g� Conversely� R stands for return� in the sense that
control is passed to a continuation that was issued earlier� or rewriting is �nished if there
is no such continuation� Rules of the form M take apart a term� when there is a match of
the symbol g� The forms A� D and I are for addition� deletion and identity on the set of
variables�

Both under innermost and outermost rewriting� all forms have an independent purpose�
Here� we discuss only innermost rewriting� The forms C and A have the independent
purposes of introducing a new function and a new variable� respectively� When the form M

applies� the function g is necessarily a constructor function� The form R removes a de�ned
function� Therefore� forms R and M are the inverse of C for a de�ned function and a
constructor function� respectively� In a similar sense� D is the inverse of A�

�� How to Obtain Simulating MTRSs

In 	KW�� an executable speci�cation is presented of the translation of an arbitrary TRS
into an MTRS that simulates the TRS under innermost rewriting� Furthermore� there are
transformations for the simulation of outermost and lazy rewriting� given innermost rewriting
with speci�city ordering� Here we explain the idea underlying the transformation from TRSs
into MTRSs�

We �rst show how pattern matching of general LHSs can be simulated by MTRS rules�
using the following example�

f�g�X�� g�X�� � r��X� �����

f�X�h� � r��X� �����

�� How to Obtain Simulating MTRSs �

q
5

q
4

{2}

q2

{1}

T=f(X,Y)

q0

q1

q
3

X=g(X’)

fail

fail

Y=g(Y’)

{1,2}

{1,2}

{2}

Y=h

fail

q
{1}

6
fail

X’=Y’

Fig� 	� A tree matching automaton

This example contains overlapping rules and a nonlinearity� thus presenting the basic prob�
lems to be addressed by a TRS pattern�match compiler�

It is well�known that we can use tree matching automata 	HO
�� Wal��� for determining
whether a given term T matches the LHS of one �or more� of a set of rewrite rules� In Fig�
�� a matching automaton for this set of LHSs is depicted�

The states qi of the automaton encode the set of patterns that might still match the term
under consideration� Accepting states� in which it is known that T matches one or more
rules� are indicated by a double circle� Based on the value of an argument position� there
are success and failure transitions between states� It is understood that a failure transition
is only made when no other transition is possible�

We will now show how this matching automaton is simulated by innermost rewriting with
speci�city of a TRS in which every rule has a minimal LHS�

There are three crucial ideas in this simulation� The �rst idea is that in innermost rewriting�
the arguments of T are in normal form before a match with T is attempted� and when T fails
to match� it is itself in normal form� Therefore� for every function symbol f � we introduce a
constructor variant fc which simulates f �S�fc� � f�� and which indicates that matching has
been attempted and failed� It follows that normal forms always consist entirely of constructor
variants�

The second idea �found also in 	Pet���� is to encode the states of the automaton by �new�
functions q� �� f � q� �� fg� q� �� fgg� q� �� fX � q� �� r�� q� �� fc and q� �� r�� and the
transitions by rules de�ning these functions� The map S is unde�ned on the new functions�
i�e�� fg� fgg and fX �

The third idea is that failure transitions correspond to most general rules� so when a term
is rewritten innermost� with �syntactic� speci�city ordering according to the MTRS� below�
rewriting in the TRS above is simulated�

h � hc �����

g�X� � gc�X� �����

f�gc�X�� Y � � fg�X�Y � �����

�It is an MTRS because the RHSs are chosen judiciously� See Section ��� for a transformation to remedy

non�minimal RHSs�

�� How to Obtain Simulating MTRSs �

f�X�Y � � fX�X�Y � �����

fg�X� gc�Y �� � fgg�X�Y � �����

fg�X�Y � � fX�gc�X�� Y � ���
�

fgg�X�Y � � fgge�eq�X�Y ��X� Y � �����

fgge�true�X� Y � � r��X�Y � ������

fgge�B�X� Y � � fc�gc�X�� gc�Y �� ������

fX�X�hc� � r��X� ������

fX�X�Y � � fc�X�Y � ������

Note that in rules ���
� and ������� previously deconstructed terms are reconstructed� At the
cost of introducing extra variables� the cost of reconstruction can be avoided� The function eq�
which is used in rule ��� to test �syntactic� equality of its arguments� can easily be de�ned by
a TRS if the signature is known and innermost rewriting is assumed� For innermost rewriting�
this simulation is sound� complete� and termination conserving�

	�� Transforming Complicated RHSs

Here we present a transformation that will transform a TRS N � which may have RHSs
that do not conform to the RHSs found in MTRSs� into a simulating TRS M � whose
RHSs are minimal� Any rule with a minimal LHS and a non�minimal RHS has the form

l�
�
x�

�
y �

�
z �� h�

�
x�

�
t � u�

�
z �� where u is either a variable or a term g�

�
u�� and

�
x and

�
z contain

only variables� and are taken of maximal length� The goal is to reduce the non�compliant

segment
�
t � u�

In case u is a variable� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z �� hR�

�
x�

�
y � u�

�
z � ������

hR�
�
x�

�
y � u�

�
z �� h�

�
x�

�
t � u�

�
z � ������

Rule ������ is an instance of A� and rule ������ has a shorter non�compliant segment
�
t �

In case u is a non�variable �g�
�
u ��� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z � � hR�

�
x�

�
t �

�
u�

�
z � ������

hR�
�

x��
�

y��
�
z � � h�

�

x�� g�
�

y���
�
z � ������

where j
�

x� j � j
�
x j� j

�
t j� j

�

y� j � j
�
u j� and hR is a fresh function symbol which did not already

occur in the TRS� and
�

x� and
�

y� consist entirely of fresh variables�

Rule ������ is an instance of C� and Rule ������ has one function symbol less on the RHS
than the original rule� Therefore� the number of transformation steps is bounded by the total
number of nested function symbols in RHSs of the original TRS�

We take the simulation map S to be unde�ned for hR� It is not very hard to see that
�S�M� is sound� complete and termination preserving� we show the vital ingredient of the
proof� only for the case that u is nonvariable� Let s be l�� According to rule ������ of M �

�� An Abstract Machine View on MTRSs 	

s rewrites to the term tR � hR�
�
x�

�
t �

�
u�

�
z �� � Under the substitution

�

x� ��
�
x
�
t �

�
y ��

�
u�

�

z� ��
�
z �

rule ������ of M rewrites tR to h�
�
x�

�
t � g�

�
u ��

�
z ��� which is the original RHS� instantiated by

��

�� An Abstract Machine View on MTRSs

hgoto�l� � p� P�C� T�Ai � hget�l� P �� P� C� T�Ai
hcpush�l� � p� P�C� T�Ai � hp� P� l � C� T�Ai
hrecycle � p� P� l � C� T�Ai � hget�l� P �� P� C� T�Ai
hrecycle � p� P� �� �� a � �i � nf�a�

hbuild�c� n� � p� P�C� T� t� � � � tn �Ai � hp� P�C� T� c�t�� � � � � tn� �Ai
hmatch�c� n� l� � p� P�C� T� c�t�� � � � � tn� �Ai � hget�l� P �� P� C� T� t� � � � tn � Ai
hmatch�c� n� l� � p� P�C� T� c��t�� � � � � tm� �Ai � hp� P�C� T� c��t�� � � � � tm� � Ai

when c �� c�

htpusha�i� � p� P�C� T�Ai � hp� P�C� T� top�i� T � �Ai
hapusha�i� � p� P�C� T�Ai � hp� P�C� T� top�i� A� � Ai

htdrop�n� � p� P�C� t� � � � tn � T�Ai � hp� P�C� T�Ai
hskip�s�n�� � p� P�C� T� a �Ai � hskip�n� � p� P�C� a � T�Ai

hskip��� � p� P�C� T�Ai � hp� P�C� T�Ai
hretract�s�n�� � p� P�C� t � T�Ai � hretract�n� � p� P�C� T� t �Ai

hretract��� � p� P�C� T�Ai � hp� P�C� T�Ai
top��� a � T � � a

top�s�n�� a � T � � top�n� T �

Fig�
� An algebraic speci�cation of ARM instructions�

The rules of MTRSs can be viewed as �short sequences of� instructions for an abstract
machine with three stacks C �control�� A �arguments� and T �traversal�� a program counter
p and a program P � visualized as a tuple hp� P�C� T�Ai� In Fig� �� we give an algebraic
speci�cation of this machine� which we will now explain in text�

The program counter p denotes the fragment of the program P which is currently being
executed� The goto instruction replaces the current fragment by a fragment of P � which is
obtained as get�l� P �� where l is a unique label identifying the fragment�

The cpush instruction pushes a label onto the C �mnemonic for control� stack� whence it
may be removed by a recycle instruction� which causes execution to continue at the label
obtained from C�

A build instruction builds a term from a function symbol and a number of terms from the
A �mnemonic for argument� stack�

The match instruction matches the term on top of the A stack against a certain function
symbol� On success� it decomposes the topmost term on the A stack� leaving the arguments
on the A stack� and continues at a speci�ed label� On failure� the next instruction of the
current fragment is executed� Strictly speaking� the arity argument of match is redundant�
because the number of arguments may be obtained by inspecting the term on top of the A

�� An Abstract Machine View on MTRSs 		

stack�

The instruction tpusha pushes an argument from the T �mnemonic for traversal� stack
onto the A stack� the apusha pushes an argument from the A stack onto the A stack� the
skip instruction moves a number of terms from the A stack to the T stack� retract does this
in the reverse direction� and the tdrop instruction removes a number of terms from the T
stack� We assume the programs to be such that top is never applied to an empty stack�

As shown� the rule for tdrop is actually short for two rules� htdrop��� � p� P�C� T�Ai �
hp� P�C� T�Ai and htdrop�s�n�� �p� P�C� t �T�Ai � htdrop�n� �p� P�C� T�Ai when n �� �� It is
written as it is because tdrop�n� is best understood as a single abstract machine instruction�
For the same reason� we have written the build instruction in a similar way�

�� Some Further Constraints on MTRSs

The actual interpretation of MTRS rules as instructions for ARM presupposes some further
constraints� which can be met by two more transformations� For other mappings fromMTRSs
to machine code �say� via Pascal� Lisp or C�� these additional constraints may not be essential�
which is the reason we deal with them in this section�

�� De�ned function symbols must always have a most general rule �i�e�� one of the formsC�
R� A� D or I�� This constraint is satis�ed by MTRSs produced by the transformation
in 	KW��

�� All M rules for a given function symbol must be mutually exclusive� This constraint is
satis�ed by MTRSs produced by the transformation in 	KW��

�� Constructors should not occur as the outermost function symbol of a RHS� This can be
remedied by adding a new rule r�y�� y� where r does not already occur in the MTRS�
replacing all RHSs s with an outermost constructor symbol by r�s�� and applying the
RHS transformation of Section ��� until we have again an MTRS�

�� When any MTRS rule� f�
�
x�

�
t �� g�

�
x�

�

t� � applies� the terms corresponding to
�
x should

be on the traversal stack� In the transformation in 	KW�� the original function symbols
have all arguments on the argument stack
 I rules move them gradually to the traversal
stack� Newly introduced function symbols are annotated with the number of arguments

that are already on the traversal stack� as in f j
�

xj�
�
x� g�

�
y ��

�
z �� hj

�

xj�
�
x�

�
y �

�
z ��

Constraint � ensures that normal forms consist entirely of free constructors�

Interestingly enough� only rules of the formM may fail to apply to a term with the de�ned
topsymbol f � since all other rules are unconditional �given the topsymbol�� From this and
constraint �� it is easily concluded that the rewrite relation� restricted to innermost rewriting
with syntactic speci�city� is deterministic�

In the transformations in 	KW� and Section ���� it is clear where constraints � and � are
violated� and the necessary additional rules can more easily be produced by a slightly modi�ed
version of these transformations�

�An R rule does not conform to the format that follows� For R rules we take j
�

x j � ��

�� An Abstract Machine View on MTRSs 	�

C � f j
�

xj�
�
x�

�
y �

�
z � � hj

�

xj�
�
x� g�

�
y ��

�
z �

�
�g de�ned� f � cpush�h�
goto�g�

�g free� f � build�g� j
�
y j�
goto�h�

M � f j
�

xj�
�
x� c�

�
y ��

�
z � � hj

�

xj�
�
x�

�
y �

�
z � f � match�c� h�

A � f j
�

xj�
�
x�

�
z � � hj

�

xj�
�
x� xk�

�
z � f � tpusha�j

�
x j � k�
goto�h�

A � f j
�

xj�
�
x�

�
z � � hj

�

xj�
�
x� zk�

�
z � f � apusha�k � ��
goto�h�

D � f j
�

xj�
�
x�

�
y �

�
z � � hj

�

xj�
�
x�

�
z � f � tdrop�j

�
y j�
goto�h�

I � fn�
�
x� � hm�

�
x�

�
�m � n� f � skip�m� n�
goto�h�
�n � m� f � retract�n�m�
goto�h�

R � f��x� � x f � recycle

Fig� �� The instruction mapping

f1

0f

f arguments at locus
of fn,..,f1,f0

current
label

of f0,f1,..,fn
arguments to right of locus

n

T stack A stack

C
 s

ta
ck

arguments to left of locus
of fn,..,f1,f0

Fig�
� The invariant maintained by the mapping

�� Interpreting MTRS Forms as Instruction Sequences

In Fig�
� we now show the straightforward mapping of MTRS forms onto instruction se�
quences� First� we view de�ned symbols as labels in the machine program� A rule with f as
outermost function symbol on the LHS de�nes the instructions at label f � and a rule with
h as outermost function symbol on the RHS uses the label h� i�e� it causes execution to
continue at label h� �for rules with the same label� we simply concatenate the code� taking
care that the code for the least speci�c rule is put at the end��

Form C has two labels on the RHS� of which the innermost label g is interpreted as the
label where execution should continue� whereas the outermost label h is pushed on the C

stack for future reference�

Form R has no labels on the RHS� which is taken to mean that execution should continue
at a label popped from the C stack�

Second� the similarity of the variable con�gurations on LHS and RHS is exploited by
consistently mapping the left part of the arguments t�� � � � � tl �with l the locus� to the T stack
�tl on top�� and mapping the right part of the arguments tl��� � � � � tn�� to the A stack �tl�� on
top�� Given constraint � on page ��� this ensures that only the top of either stack is changed
by any rule�

Every function symbol in an MTRS corresponds with a label� and the machine is initialized
by traversing the input term in pre�order� pushing all encountered function symbols on the C

�� An Abstract Machine View on MTRSs 	�

stack� Then the machine is started with the recycle instruction� When the machine halts�
it has the normal form of the input term on the A stack�

It is easily veri�ed that this interpretation of an MTRS implements rightmost innermost
rewriting� by checking that the machine instructions associated with a particular MTRS rule
satisfy the invariant depicted in Fig�
�

The top�symbol fn of the entire term being rewritten� is at the bottom of the C stack �the
C stack is shown upside�down�� all arguments left of the locus of fn are on the T stack� all
arguments right of the locus of fn are on the A stack� and� recursively� the arguments at
and below the locus �with top�symbol fn�� � � � f�� are represented less deep than fn on the
control�stack�

The symbol f� is the current label� which does not reside on the stack� but is expressed
in the current state of the machine �i�e�� the program counter p in the tuple hp� P�C� T�Ai��
The initial state satis�es this invariant� because the function symbols of the input term have
locus ��

�� The Naturals Revisited

After the transformation to satisfy the additional requirements� and the replacement of most
goto instructions by the code at their destination label� the instructions generated for the
example in the introduction�

zero � build�zeroc� ��
 recycle
succ � build�succc� ��
 recycle
plus � match�zeroc� plus zero�

match�succc� plus succ�

build�plusc� ��
 recycle

plus zero � recycle

plus succ � cpush�succ�
goto�plus�

It is readily veri�ed� that the state hrecycle� P� zero �succ �zero �succ �plus � �� �� �i with P the
program above� is transformed into the state h�� P� �� �� succc�succc�zeroc�� � � by the algebraic
semantics given in Fig� ��

�	 E�ciency and Complexity of ARM

All instructions of the ARM machine can be implemented e�ciently on modern microproces�
sors� Usually� goto and recycle are available as native instructions� cpush� match� apush�
and tdrop can be implemented in one or a few native instructions� and build and skip can
be implemented in kjnj instructions� where k is a small factor� and n is the parameter of the
instruction�

Furthermore� only the implementation of build requires write�access to global �heap� stor�
age� and only match requires read�access to such storage� The other instructions only access
relatively cheap local �stack� storage�

We believe that this set is the minimal set for which e�ciency can be conserved in the
translation from general TRSs� In 	HF����� concrete execution times are reported concerning

�� Relation to Other Abstract Machines 	�

an implementation based on ARM technology�

In 	KW�� we present the theoretical result that the transformation from TRSs into MTRS
increases the cost of rewriting with at most a linear factor of ���� In practice� however� this
constant appears to be close to �� The plausibility of this statement follows from inspection
of the ARM code� which is close to the machine code that e�cient compilers for �eager�
functional languages generate for comparable programs�

�� Relation to Other Abstract Machines

The abstract machine presented in Section � is much less complex than ARM 	KW����

In 	HG���� a provably correct compiler for term rewriting systems is described� using an ab�
stract machine TRIM� which bears some similarity to ARM� The approach seems to be geared
more towards provability than towards e�ciency� because environments are built explicitly
on the heap �whereas the �environments� of ARM are on a� cheaper� stack��

In the context of �lazy� functional languages� many di�erent abstract machines are used�
notably SKIM 	Tur���� the Categorial Abstract Machine �CAM� 	CCM
���� the Three In�
struction Machine �TIM� 	FW
���� the G�machine 	PJ
��� its successor� the spineless tagless
G�machine �STG� 	JS
���� and the ABC machine 	PvE���� These machines address lazy
graph rewriting of curried higher�order function applications �CAM is basically innermost�
but supports lazy evaluation�� In contrast� ARM is designed for �rst�order innermost re�
duction on stacks� where the graph structure is only explicit in the normal forms� pointers
to wich reside on the C and A stacks �see Fig�
�� Laziness can be added as a source�to�
source transformation� given one extra ARM instruction 	KW���� Higher�order functions as
they appear in implementations of functional programming languages can be implemented
by applicative term rewriting systems 	Tur����

Because lazy graph rewriting is expensive� and most of the time not needed� most of the
lazy functional abstract machines have add�ons for innermost �strict� rewriting� making them
more complicated than ARM�

It is our experience that comparisons of �implementations of� abstract machines tend to
be hard to interpret and are often misleading� A somewhat speci�c comparison is presented
in 	HF����� Based on that and other experiences ARM technology can be said to lead to
e�cient implementations�

�� Conclusions and Future Work

We have presented minimal term rewriting systems �MTRSs� and a notion of simulation�
and shown that under this notion of simulation� MTRSs can be used to e�ciently simulate
innermost rewriting of an arbitrary TRS�

Furthermore� an MTRS can directly be interpreted as a program for the Abstract Rewrit�
ing Machine �ARM�� which has a straightforward� e�cient implementation on conventional
hardware�

Thus� a transformation that takes TRSs into simulating MTRSs can be used as a TRS
compiler that produces e�cient code� The resulting code turns out to be comparable with
the code generated by conventional technology 	HF�����

References 	�

The most interesting point of our technique is that the compilation from TRSs into MTRSs
takes place entirely in the theoretically attractive realm of TRSs� We expect to exploit this
fact for proving the correctness of our compiler rigorously� Next to proving correctness
of the compiler� it seems an interesting project to investigate how MTRSs and our notion
of simulation can be applied in the general study of TRSs� e�g�� for the simpli�cation of
termination proofs� as suggested by Hans Zantema�

We would like to thank Jan Bergstra� Jan Heering� Paul Klint and Bas Luttik for reading
and commenting on drafts of this paper�

References

	ASU
�� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers� Principles� Techniques and

Tools� Addison�Wesley� ��
��

	BBKW
�� J�C�M� Baeten� J�A� Bergstra� J�W� Klop� and W�P� Weijland� Term�rewriting
systems with rule priorities� Theoretical Computer Science� �������
������ ��
��

	CCM
�� G� Cousineau� P��L� Curien� and M� Mauny� The categorical abstract machine�
In J��P� Jouannaud� editor� Functional Programming Languages and Computer

Architecture� volume ��� of Lecture Notes in Computer Science� pages ������
Springer�Verlag� ��
��

	FW
�� Jon Fairbairn and Stuart Wray� Tim� A simple� lazy abstract machine to execute
supercombinators� In Gilles Kahn� editor� Functional Programming Languages

and Computer Architecture� volume ��� of Lecture Notes in Computer Science�
pages ������ Springer�Verlag� ��
��

	HF���� Pieter H� Hartel� Marc Feeley� et al� Benchmarking implementations of functional
languages with �pseudoknot � a �oat�intensive benchmark� Journal of Functional
Programming� ����� Accepted for publication�

	HG��� Lutz H� Hamel and Joseph A� Goguen� Towards a provably correct compiler for
OBJ�� In Proceedings of the International Conference on Programming Language

Implementation and Logic Programming� PLILP
�	� �����

	HO
�� C�M� Ho�mann and M�J� O�Donnell� Pattern matching in trees� Journal of the

ACM� �������
���� ��
��

	JS
�� Simon L Peyton Jones and Jon Salkild� The Spineless Tagless G�machine� In
Functional Programming and Computer Architecture� pages �
������ ACM� ��
��

	Klo��� J�W� Klop� Term rewriting systems� In S� Abramsky� D� Gabbay� and
T� Maibaum� editors� Handbook of Logic in Computer Science� Volume ��� pages
������ Oxford University Press� �����

	KW� J�F�Th� Kamperman and H�R� Walters� A compiler for term rewriting systems�
CWI Technical Report in preparation�

	KW��� J�F�Th� Kamperman and H�R� Walters� ARM � Abstract Rewriting Machine�
In H�A� Wijsho�� editor� Computing Science in the Netherlands� pages ��������
�����

	KW��� J�F�Th� Kamperman and H�R� Walters� Lazy rewriting and eager machinery�
In Jieh Hsiang� editor� Rewriting Techniques and Applications� number ��� in

References 	�

Lecture Notes in Computer Science� pages �������� Springer�Verlag� �����

	Pet��� Mikael Pettersson� A term pattern�match compiler inspired by �nite automata
theory� In U� Kastens and P� Pfahler� editors� Proceedings of the Fourth Inter�

national Conference on Compiler Construction� number ��� in Lecture Notes in
Computer Science� pages ��
����� Springer�Verlag� �����

	PJ
�� Simon L� Peyton�Jones� The Implementation of Functional Programming Lan�

guages� Prentice�Hall� ��
��

	PvE��� M J� Plasmeijer and M C J D� van Eekelen� Functional Programming and Parallel
Graph Rewriting� Addison Wesley� �����

	Tur��� D�A� Turner� A new implementation technique for applicative languages� Software
Practice and Experience� �������� �����

	Wal��� H�R� Walters� On Equal Terms� Implementing Algebraic Speci�cations�
PhD thesis� University of Amsterdam� ����� Available by ftp from
ftp�cwi�nl�!pub!gipe!reports as Wal���ps�Z�

