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Abstract

Formally well�founded compilation techniques for Term Rewriting Systems �TRSs� are presented� TRSs are

compiled into Minimal Term Rewriting Systems �MTRSs�� a subclass of TRSs in which all rules have

an extremely simple form� A notion of simulation of �rewrite� relations is presented� under which an MTRSs

can be said to simulate a TRS� The MTRS rules can be directly interpreted as instructions for an extremely

simple Abstract Rewriting Machine �ARM�� Favourable practical results have already been obtained with an

earlier version of ARM�
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�� Introduction

Term �graph� rewriting systems �TRSs� are becoming increasingly important for the imple�
mentation of theorem provers� algebraic speci�cations� compiler generators� program analyz�
ers and functional programming languages� Hence� a clear need arises for techniques enabling
fast execution of TRSs� Furthermore� these techniques should be �exible with regard to ex�
tensions� such as selection of reduction strategy�

A standard technique for speeding up the execution of a program in a formal �programming�
language is compilation into the language of a concrete machine �e�g�� a microprocessor�� In
compiler construction �c�f� 	ASU
���� it is customary to use an abstract machine as abstraction
of the concrete machine� On the one hand� this allows hiding details of the concrete machine in
a small part of the compiler� and thus an easy reimplementation on other concrete machines�
On the other hand� a good design of the abstract machine enables a simple mapping from
source language into abstract machine language�
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A compiler consists of zero or more mappings from its source language into a restricted
version of the source language� followed by a mapping to a lower�level language� This is
repeated until the level of the concrete machine is reached� Because they take place in one
domain� the source�to�source mappings are easier to grasp semantically than the mappings to
lower levels� In this paper� we present a compilation technique for TRSs which stays entirely
within the well�known source language domain
 the mapping to the concrete machine level is
a trivial interpretation�

We map TRSs to Minimal Term Rewriting Systems �MTRSs�� a restriction of TRSs� and
we interpret the MTRSs directly as programs for our Abstract Rewriting Machine �ARM��
An example may clarify this� The TRS de�ning successor�zero naturals on the left side is
compiled into the MTRS on the right side�

plus�zero�X� � X zero � r�zeroc�
plus�succ�X�� Y � � succ�plus�X�Y �� succ�X �� � r�succc�X

���
plus�X �� X ��� � plusS�X ��X ���

plus�zeroc� Z
�� � plus zero�Z ��

plus�succc�Y
��� Z �� � plus succ�Y �� Z ��

�� plus zero�Y �� � Y �

plus succ�Y �� Y ��� � succ�plus�Y �� Y ����
plusS�X �� X ��� � r�plusc�X

��X ����
r�X� � X

It is easily veri�ed that rewriting the term plus�succ�zero�� succ�zero�� in the original system
yields succ�succ�zero��� and rewriting in the transformed system yields succc�succc�zeroc���
The latter normal form can be said to simulate the former by assuming a simulation map S
de�ned as S�zeroc� � zero and S�succc�X�� � succ�S�X���

By a slight change of perspective� the MTRS above can be interpreted as a program for
ARM �the resemblance to assembly code is intended��

zero � build�zeroc� ��
goto�r�
succ � build�succc� ��
goto�r�
plus � match�zeroc� plus zero�


match�succc� plus succ�

goto�plusS�


plus zero � recycle

plus succ � cpush�succ�
goto�plus�

plusS � build�plusc� ��
goto�r�

r � recycle�

where the instructions are either available on common concrete machines �goto is always
available� recycle corresponds to return� andmatch to compare� or can be implemented in
a few instructions �build and cpush�� With a precursor of ARM� we have reached favourable
results for TRSs of real�world size 	HF�����

The remainder of this paper is structured as follows� First� we review basic TRS theory in
Section ���� Then� in Section �� we present a notion of simulation of a TRS by another TRS�
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After that� in Section �� we present MTRSs� and in Section �� we indicate how MTRSs can
simulate arbitrary TRSs� Finally� in Section �� we show how the rules of an MTRS can be
interpreted in a straightforward way as instructions for an e�cient abstract machine�

��� Term Rewriting

We follow 	Klo���� A signature � consists of�

� A countably in�nite set V of variables� x� y� � � �

� A non�empty set F of function symbols� f� g� � � �� each with an arity �� ��� which is the
number of arguments the function requires� We denote the arity of f by jfj�

The set T ��� of terms over � is the smallest set satisfying

� V � T ����

� for all f � F with arity n� and t�� � � � tn � T ���� we have f�t�� � � � � tn� � T ����

Occasionally� we will abbreviate a sequence t�� � � � � tn to
�
t � and write j

�
t j for n� We

generalize this to empty sequences� which have j
�
t j � ��

A context is a �term� containing one occurrence of a special symbol �� denoting an empty
place� A context is generally denoted by C	�� If t � T ��� and t is substituted for �� the
result is C	t� � T ��� and t is said to be a subterm of C	t�� notated as C	t� � t�

A substitution is a �total� map � � T ��� �� T ��� satisfying

	f � F � ��f�t�� � � � � tn�� � f���t��� � � � � ��tn���

By convention� we often write t� for ��t��

A rewrite rule is a pair of terms written as s� t with s� t � T ���� It is assumed that the
left�hand side s of a rule s� t is not a single variable� and that var�t� � var �s��

A term rewriting system R consists of a signature � and a set of rewrite rules R over ��

A term rewriting system de�nes a rewrite relation �R� Since the subscript R is usually
clear from the context� it is omitted� The overloading of � is by convention�

s� t
def

� �C	�� �� u� v � R � s � C	u�� � t � C	v��

The sub�term u� is referred to as redex �for reducible expression�
 the sub�term v� � as
reduct� We write

�
� for the transitive re�exive closure of ��

The rewrite relation is closed under taking contexts� i�e�� if s� t� then for all C	�� C	s��
C	t��

A series of terms s � s�� s�� � � � such that s� � s� � � � � is called a rewrite sequence� A term
s is said to be in normal form if there is no t such that s� t� A function�symbol f is called
a de�ned function symbol if there is a rule f�t�� � � � � tn�� r� A function�symbol c is called a
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constructor symbol if there is a normal form in which it occurs� and a free constructor if it is
not a de�ned symbol�

A TRS is called left�linear if all left�hand sides are linear� A TRS is called con�uent if�
for all terms t�� t�� t�� we have that t�

�
� t� and t�

�
� t� implies that there exists a term t�

such that t�
�
� t� and t�

�
� t�� A TRS is called terminating if there are no in�nite rewrite

sequences� Note that con�uence and termination are generally undecidable�

In general� a term may contain many redexes� A rewriting strategy determines which
of these is chosen� Con�uence guarantees unique normal forms� regardless of the strategy�
Some well�known strategies are leftmost innermost� leftmost outermost� rightmost innermost�
rightmost outermost� parallel innermost and parallel outermost� For lack of space� we only
consider the rightmost innermost strategy in this paper� which allows only rewriting of the
rightmost redex that does not contain other redexes�

In priority rewrite systems �PRSs� 	BBKW
��� the rules are �partially� ordered� and a rule
may be applied only if there are no applicable rules �i�e�� even after reduction of subterms� with
higher priority� PRSs are very expressive� but their operational semantics can be problematic�
For our purposes� a weaker notion su�ces� which we will call syntactic priority� In a TRS
with syntactic priority� the decision whether a rule is applicable is made without considering
reductions of sub�terms�

The ordering we will use is syntactic speci�city ordering� where a rule l� r is called more

speci�c than a rule s� t� when there exists a substitition � such that s� � l�

Under syntactic speci�city ordering� any set of terms has a greatest lower bound �glb�� We

will call the glb of all terms with top�symbol f � a term of the form f�
�
x�� a most general LHS�

We will call two terms s� t �or rules with LHSs s� t� mutually exclusive� if they have no upper
bound� i�e� if there is no term u with u � s � u � t� We will call a rule r maximal if there is
no rule s with s � r�

�� Term Rewriting Simulations

In this section� we de�ne the notion of simulation of a TRS by another TRS�

In principle� a TRS T � ��� R� is simulated by a TRS T � � ���� R�� if every rewrite
sequences w�r�t� R can be related to a rewrite sequence w�r�t� R�� To this end� there must
be a map from T ���� to T ���� which is called the simulation map�

This notion of simulation can be developed for arbitrary relations� but we will only use
it in the more limited context of �minimal� term rewriting systems� In that context� as we
will see� it is preferable to regard a simulating TRS of which the signature is an extension of
that of the simulated TRS �i�e�� �� 
 ��� and for which the simulation map is identity on the
common set of terms T ����

��� Simulation maps between terms

Let � � �F �V� and �� � �F ��V �� be signatures� such that �� 
 �� and let S � F � � F be a
�partial� map� which has the following properties�

� Symbols in the original signature simulate themselves �	f � F � S�f� � f��
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� S may be partial� and we assume the existence of a predicate DS � which holds for all
symbols in F � for which S is de�ned� because a simulating TRS may use intermediate
symbols �terms� which are not a simulation of any symbol �term� in F �

We extend S and DS to T ���� by �partial� homomorphic extension�

As an example� consider F � ff� ag and F � � ff� a� fc� hg� In this example� fc is a variant
�a so�called constructor variant� discussed further in the sequel� of f with S�fc� � f � and h

is an auxiliary function that has no counterpart in F � Supposing that the arity of f is �� and
the arity of a is �� we have �by partial homomorphic extension� that S�f�fc�a��� � f�f�x���
and S�f�h�a��� is unde�ned�

��� Simulating Relations

Using simulation maps� we will now de�ne simulations of relations over terms� A simulation
of a relation R is de�ned by a pair �S� R���

A simulation should be both sound and complete� i�e�� it should simulate neither too much
nor too little� The de�nition of these notions is somewhat complicated by the fact that S is
partial� We de�ne a simulating sequence to be a sequence s� �R� s� �R� � � � for which S is
de�ned on s�� and we call the �rst step of such a sequence a simulating step� In the �gures
illustrating the de�nitions below� dashed arrows are implied by solid arrows� closed points
are universally quanti�ed� and open points are existentially quanti�ed�

First we consider soundness� If we have a simulating sequence sR��t with S de�ned on t� it
is only reasonable to call such a sequence sound when S�s�R�S�t�� so the image of R�� under
S is contained in R� �depicted in Fig� �a�� In case S is not de�ned� we do not want the
sequence to �escape into unde�nedness�� so we demand that there is some u with tR��u and
S de�ned on u �depicted in Fig� �b�� Formally� soundness is de�ned in De�nition ��

t

R* R’*

s

S

S
t

s

u

R*

S

S

R’*

Fig� �a� Fig� �b�

De�nition � A simulation �S� R�� of R is sound whenever

	st �DS�s� � sR��t� �� S�s�R�S�t� � ��DS�t� � �uDS�u� � tR��u�

A simulation is complete� when every step sRt in the simulated relation has as counterpart
a simulating sequence sR��u� where S�u� � t� This is de�ned formally in De�nition �� and
depicted in Fig� ��
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R R’+

t u
S

sS
De�nition � A simulation �S� R�� of a relation R is com�
plete whenever

	st DS�s� � S�s�Rt �� �u sR��u � S�u� � t

Fig� �� Completeness

For term rewriting� however� this is a rather rigid notion of completeness� because it requires
that the simulation mimicks every single step in the simulated relation� If we are mainly
interested in simulating the computation of normal forms� and the simulated relation is
con�uent� a weaker property su�ces� A simulation is weakly complete when every step in the
simulated system does correspond to a simulating sequence� but the endpoints of the step and
the image of the simulating sequence need not agree� This is de�ned formally in de�nition ��
and depicted in Fig� ��

t

R
R+

R’+

u

S

S

s

v

De�nition � A simulation �S� R�� of a relation R is weakly
complete whenever

	st DS�s� � S�s�Rt �� �u DS�u� � sR��u � S�s�R�S�u�

Fig� �� Weak completeness

A simulation that is both sound and �weakly� complete need not conserve the termination
behaviour� because there may be �cyclic� sequences in the simulating relation corresponding
to zero steps in the simulated relation�

A simulation is termination conserving when only terms that take part in in�nite sequences
in the simulated system� have origins occurring in in�nite sequences in the simulating system�
This is de�ned by De�nition �� and illustrated in Fig� ��

inf

R+ R’+

t1
sS

inf

1

De�nition � A simulation �S� R�� is termination preserv�
ing whenever

	s � inf �R�� DS�s�� �� �t � inf �R� S�s�� � t�

where inf �R� is the set of in�nite sequences in R� and we

denote the ith term in a rewrite sequence s by si�

Fig� �� Conservation of termination

�� Minimal Term Rewriting Systems

In this section� we present minimal term rewriting systems �MTRSs�� a syntactic restriction
of TRSs that can be interpreted as the language of an abstract machine� By virtue of being
a syntactic restriction� MTRSs inherit syntax and semantics of TRSs�

In MTRSs� all rules have an extremely simple form� The most conspicuous aspect is that
any rule has at most three function symbols� of which at most two are found on either side�
Even the SKI calculus �	Klo����� which is minimal in the number of rules ���� and in the
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total number of function symbols ��� S� K� I� and ��� needs � function symbols in its most
complicated rule �S � x � y � z � �x � y� � �y � z���

In order to simulate general TRSs� MTRSs must be able to express at least the basic
actions of composing �building� a term from a function symbol and a sequence of terms�
decomposing �matching� a term into a function symbol and a sequence of terms� duplicating
some subterm� and deleting some subterm� From these basic assumptions� we arrive at a set
of six forms� displayed in Fig� ��

C � f�
�
x�

�
y �

�
z � � h�

�
x� g�

�
y ��

�
z �

R � f�y� � y

M � f�
�
x� g�

�
y ��

�
z � � h�

�
x�

�
y �

�
z �

A � f�
�
x�

�
z � � h�

�
x� y�

�
z � �y is xi or zi�

D � f�
�
x�

�
y �

�
z � � h�

�
x�

�
z � �j

�
y j �� ��

I � f�
�
x� � h�

�
x�

Fig� �� Forms of MTRS rules�

We have labeled the forms with mnemonics reminding of their basic purpose �in the context
of innermost rewriting�� The mnemonic C stands for continuation� in the sense that h is the
continuation after the evaluation of g� Conversely� R stands for return� in the sense that
control is passed to a continuation that was issued earlier� or rewriting is �nished if there
is no such continuation� Rules of the form M take apart a term� when there is a match of
the symbol g� The forms A� D and I are for addition� deletion and identity on the set of
variables�

Both under innermost and outermost rewriting� all forms have an independent purpose�
Here� we discuss only innermost rewriting� The forms C and A have the independent
purposes of introducing a new function and a new variable� respectively� When the form M

applies� the function g is necessarily a constructor function� The form R removes a de�ned
function� Therefore� forms R and M are the inverse of C for a de�ned function and a
constructor function� respectively� In a similar sense� D is the inverse of A�

�� How to Obtain Simulating MTRSs

In 	KW�� an executable speci�cation is presented of the translation of an arbitrary TRS
into an MTRS that simulates the TRS under innermost rewriting� Furthermore� there are
transformations for the simulation of outermost and lazy rewriting� given innermost rewriting
with speci�city ordering� Here we explain the idea underlying the transformation from TRSs
into MTRSs�

We �rst show how pattern matching of general LHSs can be simulated by MTRS rules�
using the following example�

f�g�X�� g�X�� � r��X� �����

f�X�h� � r��X� �����
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q
5

q
4

{2}

q2

{1}

T=f(X,Y)

q0

q1

q
3

X=g(X’)

fail

fail

Y=g(Y’)

{1,2}

{1,2}

{2}

Y=h

fail

q
{1}

6
fail

X’=Y’

Fig� 	� A tree matching automaton

This example contains overlapping rules and a nonlinearity� thus presenting the basic prob�
lems to be addressed by a TRS pattern�match compiler�

It is well�known that we can use tree matching automata 	HO
�� Wal��� for determining
whether a given term T matches the LHS of one �or more� of a set of rewrite rules� In Fig�
�� a matching automaton for this set of LHSs is depicted�

The states qi of the automaton encode the set of patterns that might still match the term
under consideration� Accepting states� in which it is known that T matches one or more
rules� are indicated by a double circle� Based on the value of an argument position� there
are success and failure transitions between states� It is understood that a failure transition
is only made when no other transition is possible�

We will now show how this matching automaton is simulated by innermost rewriting with
speci�city of a TRS in which every rule has a minimal LHS�

There are three crucial ideas in this simulation� The �rst idea is that in innermost rewriting�
the arguments of T are in normal form before a match with T is attempted� and when T fails
to match� it is itself in normal form� Therefore� for every function symbol f � we introduce a
constructor variant fc which simulates f �S�fc� � f�� and which indicates that matching has
been attempted and failed� It follows that normal forms always consist entirely of constructor
variants�

The second idea �found also in 	Pet���� is to encode the states of the automaton by �new�
functions q� �� f � q� �� fg� q� �� fgg� q� �� fX � q� �� r�� q� �� fc and q� �� r�� and the
transitions by rules de�ning these functions� The map S is unde�ned on the new functions�
i�e�� fg� fgg and fX �

The third idea is that failure transitions correspond to most general rules� so when a term
is rewritten innermost� with �syntactic� speci�city ordering according to the MTRS� below�
rewriting in the TRS above is simulated�

h � hc �����

g�X� � gc�X� �����

f�gc�X�� Y � � fg�X�Y � �����

�It is an MTRS because the RHSs are chosen judiciously� See Section ��� for a transformation to remedy

non�minimal RHSs�
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f�X�Y � � fX�X�Y � �����

fg�X� gc�Y �� � fgg�X�Y � �����

fg�X�Y � � fX�gc�X�� Y � ���
�

fgg�X�Y � � fgge�eq�X�Y ��X� Y � �����

fgge�true�X� Y � � r��X�Y � ������

fgge�B�X� Y � � fc�gc�X�� gc�Y �� ������

fX�X�hc� � r��X� ������

fX�X�Y � � fc�X�Y � ������

Note that in rules ���
� and ������� previously deconstructed terms are reconstructed� At the
cost of introducing extra variables� the cost of reconstruction can be avoided� The function eq�
which is used in rule ��� to test �syntactic� equality of its arguments� can easily be de�ned by
a TRS if the signature is known and innermost rewriting is assumed� For innermost rewriting�
this simulation is sound� complete� and termination conserving�

	�� Transforming Complicated RHSs

Here we present a transformation that will transform a TRS N � which may have RHSs
that do not conform to the RHSs found in MTRSs� into a simulating TRS M � whose
RHSs are minimal� Any rule with a minimal LHS and a non�minimal RHS has the form

l�
�
x�

�
y �

�
z �� h�

�
x�

�
t � u�

�
z �� where u is either a variable or a term g�

�
u�� and

�
x and

�
z contain

only variables� and are taken of maximal length� The goal is to reduce the non�compliant

segment
�
t � u�

In case u is a variable� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z �� hR�

�
x�

�
y � u�

�
z � ������

hR�
�
x�

�
y � u�

�
z �� h�

�
x�

�
t � u�

�
z � ������

Rule ������ is an instance of A� and rule ������ has a shorter non�compliant segment
�
t �

In case u is a non�variable �g�
�
u ��� we replace the rule by the following rules�

l�
�
x�

�
y �

�
z � � hR�

�
x�

�
t �

�
u�

�
z � ������

hR�
�

x��
�

y��
�
z � � h�

�

x�� g�
�

y���
�
z � ������

where j
�

x� j � j
�
x j� j

�
t j� j

�

y� j � j
�
u j� and hR is a fresh function symbol which did not already

occur in the TRS� and
�

x� and
�

y� consist entirely of fresh variables�

Rule ������ is an instance of C� and Rule ������ has one function symbol less on the RHS
than the original rule� Therefore� the number of transformation steps is bounded by the total
number of nested function symbols in RHSs of the original TRS�

We take the simulation map S to be unde�ned for hR� It is not very hard to see that
�S�M� is sound� complete and termination preserving� we show the vital ingredient of the
proof� only for the case that u is nonvariable� Let s be l�� According to rule ������ of M �
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s rewrites to the term tR � hR�
�
x�

�
t �

�
u�

�
z �� � Under the substitution

�

x� ��
�
x
�
t �

�
y ��

�
u�

�

z� ��
�
z �

rule ������ of M rewrites tR to h�
�
x�

�
t � g�

�
u ��

�
z ��� which is the original RHS� instantiated by

��

�� An Abstract Machine View on MTRSs

hgoto�l� � p� P�C� T�Ai � hget�l� P �� P� C� T�Ai
hcpush�l� � p� P�C� T�Ai � hp� P� l � C� T�Ai
hrecycle � p� P� l � C� T�Ai � hget�l� P �� P� C� T�Ai
hrecycle � p� P� �� �� a � �i � nf�a�

hbuild�c� n� � p� P�C� T� t� � � � tn �Ai � hp� P�C� T� c�t�� � � � � tn� �Ai
hmatch�c� n� l� � p� P�C� T� c�t�� � � � � tn� �Ai � hget�l� P �� P� C� T� t� � � � tn � Ai
hmatch�c� n� l� � p� P�C� T� c��t�� � � � � tm� �Ai � hp� P�C� T� c��t�� � � � � tm� � Ai

when c �� c�

htpusha�i� � p� P�C� T�Ai � hp� P�C� T� top�i� T � �Ai
hapusha�i� � p� P�C� T�Ai � hp� P�C� T� top�i� A� � Ai

htdrop�n� � p� P�C� t� � � � tn � T�Ai � hp� P�C� T�Ai
hskip�s�n�� � p� P�C� T� a �Ai � hskip�n� � p� P�C� a � T�Ai

hskip��� � p� P�C� T�Ai � hp� P�C� T�Ai
hretract�s�n�� � p� P�C� t � T�Ai � hretract�n� � p� P�C� T� t �Ai

hretract��� � p� P�C� T�Ai � hp� P�C� T�Ai
top��� a � T � � a

top�s�n�� a � T � � top�n� T �

Fig� 
� An algebraic speci�cation of ARM instructions�

The rules of MTRSs can be viewed as �short sequences of� instructions for an abstract
machine with three stacks C �control�� A �arguments� and T �traversal�� a program counter
p and a program P � visualized as a tuple hp� P�C� T�Ai� In Fig� �� we give an algebraic
speci�cation of this machine� which we will now explain in text�

The program counter p denotes the fragment of the program P which is currently being
executed� The goto instruction replaces the current fragment by a fragment of P � which is
obtained as get�l� P �� where l is a unique label identifying the fragment�

The cpush instruction pushes a label onto the C �mnemonic for control� stack� whence it
may be removed by a recycle instruction� which causes execution to continue at the label
obtained from C�

A build instruction builds a term from a function symbol and a number of terms from the
A �mnemonic for argument� stack�

The match instruction matches the term on top of the A stack against a certain function
symbol� On success� it decomposes the topmost term on the A stack� leaving the arguments
on the A stack� and continues at a speci�ed label� On failure� the next instruction of the
current fragment is executed� Strictly speaking� the arity argument of match is redundant�
because the number of arguments may be obtained by inspecting the term on top of the A
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stack�

The instruction tpusha pushes an argument from the T �mnemonic for traversal� stack
onto the A stack� the apusha pushes an argument from the A stack onto the A stack� the
skip instruction moves a number of terms from the A stack to the T stack� retract does this
in the reverse direction� and the tdrop instruction removes a number of terms from the T
stack� We assume the programs to be such that top is never applied to an empty stack�

As shown� the rule for tdrop is actually short for two rules� htdrop��� � p� P�C� T�Ai �
hp� P�C� T�Ai and htdrop�s�n�� �p� P�C� t �T�Ai � htdrop�n� �p� P�C� T�Ai when n �� �� It is
written as it is because tdrop�n� is best understood as a single abstract machine instruction�
For the same reason� we have written the build instruction in a similar way�


�� Some Further Constraints on MTRSs

The actual interpretation of MTRS rules as instructions for ARM presupposes some further
constraints� which can be met by two more transformations� For other mappings fromMTRSs
to machine code �say� via Pascal� Lisp or C�� these additional constraints may not be essential�
which is the reason we deal with them in this section�

�� De�ned function symbols must always have a most general rule �i�e�� one of the formsC�
R� A� D or I�� This constraint is satis�ed by MTRSs produced by the transformation
in 	KW��

�� All M rules for a given function symbol must be mutually exclusive� This constraint is
satis�ed by MTRSs produced by the transformation in 	KW��

�� Constructors should not occur as the outermost function symbol of a RHS� This can be
remedied by adding a new rule r�y�� y� where r does not already occur in the MTRS�
replacing all RHSs s with an outermost constructor symbol by r�s�� and applying the
RHS transformation of Section ��� until we have again an MTRS�

�� When any MTRS rule� f�
�
x�

�
t �� g�

�
x�

�

t� � applies� the terms corresponding to
�
x should

be on the traversal stack� In the transformation in 	KW�� the original function symbols
have all arguments on the argument stack
 I rules move them gradually to the traversal
stack� Newly introduced function symbols are annotated with the number of arguments

that are already on the traversal stack� as in f j
�

xj�
�
x� g�

�
y ��

�
z �� hj

�

xj�
�
x�

�
y �

�
z ��

Constraint � ensures that normal forms consist entirely of free constructors�

Interestingly enough� only rules of the formM may fail to apply to a term with the de�ned
topsymbol f � since all other rules are unconditional �given the topsymbol�� From this and
constraint �� it is easily concluded that the rewrite relation� restricted to innermost rewriting
with syntactic speci�city� is deterministic�

In the transformations in 	KW� and Section ���� it is clear where constraints � and � are
violated� and the necessary additional rules can more easily be produced by a slightly modi�ed
version of these transformations�

�An R rule does not conform to the format that follows� For R rules we take j
�

x j � ��
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C � f j
�

xj�
�
x�

�
y �

�
z � � hj

�

xj�
�
x� g�

�
y ��

�
z �

�
�g de�ned� f � cpush�h�
goto�g�

�g free� f � build�g� j
�
y j�
goto�h�

M � f j
�

xj�
�
x� c�

�
y ��

�
z � � hj

�

xj�
�
x�

�
y �

�
z � f � match�c� h�

A � f j
�

xj�
�
x�

�
z � � hj

�

xj�
�
x� xk�

�
z � f � tpusha�j

�
x j � k�
goto�h�

A � f j
�

xj�
�
x�

�
z � � hj

�

xj�
�
x� zk�

�
z � f � apusha�k � ��
goto�h�

D � f j
�

xj�
�
x�

�
y �

�
z � � hj

�

xj�
�
x�

�
z � f � tdrop�j

�
y j�
goto�h�

I � fn�
�
x� � hm�

�
x�

�
�m � n� f � skip�m� n�
goto�h�
�n � m� f � retract�n�m�
goto�h�

R � f��x� � x f � recycle

Fig� �� The instruction mapping
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Fig� 
� The invariant maintained by the mapping


�� Interpreting MTRS Forms as Instruction Sequences

In Fig� 
� we now show the straightforward mapping of MTRS forms onto instruction se�
quences� First� we view de�ned symbols as labels in the machine program� A rule with f as
outermost function symbol on the LHS de�nes the instructions at label f � and a rule with
h as outermost function symbol on the RHS uses the label h� i�e� it causes execution to
continue at label h� �for rules with the same label� we simply concatenate the code� taking
care that the code for the least speci�c rule is put at the end��

Form C has two labels on the RHS� of which the innermost label g is interpreted as the
label where execution should continue� whereas the outermost label h is pushed on the C

stack for future reference�

Form R has no labels on the RHS� which is taken to mean that execution should continue
at a label popped from the C stack�

Second� the similarity of the variable con�gurations on LHS and RHS is exploited by
consistently mapping the left part of the arguments t�� � � � � tl �with l the locus� to the T stack
�tl on top�� and mapping the right part of the arguments tl��� � � � � tn�� to the A stack �tl�� on
top�� Given constraint � on page ��� this ensures that only the top of either stack is changed
by any rule�

Every function symbol in an MTRS corresponds with a label� and the machine is initialized
by traversing the input term in pre�order� pushing all encountered function symbols on the C
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stack� Then the machine is started with the recycle instruction� When the machine halts�
it has the normal form of the input term on the A stack�

It is easily veri�ed that this interpretation of an MTRS implements rightmost innermost
rewriting� by checking that the machine instructions associated with a particular MTRS rule
satisfy the invariant depicted in Fig� 
�

The top�symbol fn of the entire term being rewritten� is at the bottom of the C stack �the
C stack is shown upside�down�� all arguments left of the locus of fn are on the T stack� all
arguments right of the locus of fn are on the A stack� and� recursively� the arguments at
and below the locus �with top�symbol fn�� � � � f�� are represented less deep than fn on the
control�stack�

The symbol f� is the current label� which does not reside on the stack� but is expressed
in the current state of the machine �i�e�� the program counter p in the tuple hp� P�C� T�Ai��
The initial state satis�es this invariant� because the function symbols of the input term have
locus ��


�� The Naturals Revisited

After the transformation to satisfy the additional requirements� and the replacement of most
goto instructions by the code at their destination label� the instructions generated for the
example in the introduction�

zero � build�zeroc� ��
 recycle
succ � build�succc� ��
 recycle
plus � match�zeroc� plus zero�


match�succc� plus succ�

build�plusc� ��
 recycle


plus zero � recycle

plus succ � cpush�succ�
goto�plus�


It is readily veri�ed� that the state hrecycle� P� zero �succ �zero �succ �plus � �� �� �i with P the
program above� is transformed into the state h�� P� �� �� succc�succc�zeroc�� � � by the algebraic
semantics given in Fig� ��


�	 E�ciency and Complexity of ARM

All instructions of the ARM machine can be implemented e�ciently on modern microproces�
sors� Usually� goto and recycle are available as native instructions� cpush� match� apush�
and tdrop can be implemented in one or a few native instructions� and build and skip can
be implemented in kjnj instructions� where k is a small factor� and n is the parameter of the
instruction�

Furthermore� only the implementation of build requires write�access to global �heap� stor�
age� and only match requires read�access to such storage� The other instructions only access
relatively cheap local �stack� storage�

We believe that this set is the minimal set for which e�ciency can be conserved in the
translation from general TRSs� In 	HF����� concrete execution times are reported concerning
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an implementation based on ARM technology�

In 	KW�� we present the theoretical result that the transformation from TRSs into MTRS
increases the cost of rewriting with at most a linear factor of ���� In practice� however� this
constant appears to be close to �� The plausibility of this statement follows from inspection
of the ARM code� which is close to the machine code that e�cient compilers for �eager�
functional languages generate for comparable programs�

�� Relation to Other Abstract Machines

The abstract machine presented in Section � is much less complex than ARM 	KW����

In 	HG���� a provably correct compiler for term rewriting systems is described� using an ab�
stract machine TRIM� which bears some similarity to ARM� The approach seems to be geared
more towards provability than towards e�ciency� because environments are built explicitly
on the heap �whereas the �environments� of ARM are on a� cheaper� stack��

In the context of �lazy� functional languages� many di�erent abstract machines are used�
notably SKIM 	Tur���� the Categorial Abstract Machine �CAM� 	CCM
���� the Three In�
struction Machine �TIM� 	FW
���� the G�machine 	PJ
��� its successor� the spineless tagless
G�machine �STG� 	JS
���� and the ABC machine 	PvE���� These machines address lazy
graph rewriting of curried higher�order function applications �CAM is basically innermost�
but supports lazy evaluation�� In contrast� ARM is designed for �rst�order innermost re�
duction on stacks� where the graph structure is only explicit in the normal forms� pointers
to wich reside on the C and A stacks �see Fig� 
�� Laziness can be added as a source�to�
source transformation� given one extra ARM instruction 	KW���� Higher�order functions as
they appear in implementations of functional programming languages can be implemented
by applicative term rewriting systems 	Tur����

Because lazy graph rewriting is expensive� and most of the time not needed� most of the
lazy functional abstract machines have add�ons for innermost �strict� rewriting� making them
more complicated than ARM�

It is our experience that comparisons of �implementations of� abstract machines tend to
be hard to interpret and are often misleading� A somewhat speci�c comparison is presented
in 	HF����� Based on that and other experiences ARM technology can be said to lead to
e�cient implementations�

�� Conclusions and Future Work

We have presented minimal term rewriting systems �MTRSs� and a notion of simulation�
and shown that under this notion of simulation� MTRSs can be used to e�ciently simulate
innermost rewriting of an arbitrary TRS�

Furthermore� an MTRS can directly be interpreted as a program for the Abstract Rewrit�
ing Machine �ARM�� which has a straightforward� e�cient implementation on conventional
hardware�

Thus� a transformation that takes TRSs into simulating MTRSs can be used as a TRS
compiler that produces e�cient code� The resulting code turns out to be comparable with
the code generated by conventional technology 	HF�����
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The most interesting point of our technique is that the compilation from TRSs into MTRSs
takes place entirely in the theoretically attractive realm of TRSs� We expect to exploit this
fact for proving the correctness of our compiler rigorously� Next to proving correctness
of the compiler� it seems an interesting project to investigate how MTRSs and our notion
of simulation can be applied in the general study of TRSs� e�g�� for the simpli�cation of
termination proofs� as suggested by Hans Zantema�

We would like to thank Jan Bergstra� Jan Heering� Paul Klint and Bas Luttik for reading
and commenting on drafts of this paper�
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