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ABSTRACT: Let f be a random Boolean formula that is an instance of 3-SAT. We
consider the problem of computing the least real number k such that if the ratio of the
number of clauses over the number of variables of f strictly exceeds k , then f is almost
certainly unsatisfiable. By a well-known and more or less straightforward argument, it can be
shown that kF5.191. This upper bound was improved by Kamath et al. to 4.758 by first
providing new improved bounds for the occupancy problem. There is strong experimental
evidence that the value of k is around 4.2. In this work, we define, in terms of the random
formula f, a decreasing sequence of random variables such that, if the expected value of
any one of them converges to zero, then f is almost certainly unsatisfiable. By letting the
expected value of the first term of the sequence converge to zero, we obtain, by simple and
elementary computations, an upper bound for k equal to 4.667. From the expected value of
the second term of the sequence, we get the value 4.601q . In general, by letting the
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expected value of further terms of this sequence converge to zero, one can, if the
calculations are performed, obtain even better approximations to k . This technique general-
izes in a straightforward manner to k-SAT for k)3. Q 1998 John Wiley & Sons, Inc. Random
Struct. Alg., 12, 253]269, 1998
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1. INTRODUCTION

Let f be a random 3-SAT formula on n Boolean variables x , . . . , x . Let m be1 n
the number of clauses of f. The clauses-to-variables ratio of f is defined to be the
number mrn. We denote this ratio by r. The problem we consider in this paper is
to compute the least real number k such that if r strictly exceeds k , then the
probability of f being satisfiable converges to 0 as n approaches infinity. We say in
this case that f is asymptotically almost certainly unsatisfiable. Experimental
evidence suggests that the value of k is around 4.2. Moreover, experiments suggest
that if r is strictly smaller than k , then f is asymptotically almost certainly
satisfiable. Thus, experimentally, k is not only the lower bound for unsatisfiability,
but it is a threshold value where ‘‘suddenly,’’ probabilistically certain unsatisfiability

Žyields to probabilistically certain satisfiability for a review of the experimental
w x.results, see 13 .

In the literature for this problem, the most common model for random 3-SAT
formulas is the following: from the space of clauses with exactly three literals of
three distinct variables from x , . . . , x , uniformly, independently, and with replace-1 n

Žment select m clauses that form the set of conjuncts of f thus, a clause may be
.selected more than once . We adopt this model in this paper; however, the results

can be generalized to any of the usual models for random formulas. The total
nnumber N of all possible clauses is 8 , and given a truth assignment A, thež /3

probability that a random clause is satisfied by A is 7r8. Also, given three distinct
variables x , x , x , there is a unique clause on the variables x , x , x which is noti j k i j k

nsatisfied by A. There are such clauses, and they constitute exactly the set ofž /3

clauses not satisfied by A.
A proposition stating that if r exceeds a certain constant, then f is asymptoti-

cally almost certainly unsatisfiable has as an immediate corollary that this constant
is an upper bound for k . We use this observation in our technique to improve the
upper bound for k .

A well-known ‘‘first moment’’ argument shows that

kF log 2s5.191.8r7

To prove it, observe that the expected value of the number of truth assignments
nŽ . r nthat satisfy f is 2 7r8 ; then let this expected value converge to zero and use
Ž .Markov’s inequality this argument is expanded below . According to Chvatal and´

w x w x w xReed 5 , this observation is due to Franco and Paull 8 , Simon et al. 19 , Chvatal´
w xand Szemeredi 6 , and possibly others.´

Let AA be the set of all truth assignments on the n variables x , . . . , x , and letn 1 n
SS be the set of truth assignments that satisfy the random formula f. Thus, then
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< <cardinality SS is a random variable. Also, for an instantiation f of the randomn
< Ž . < Žformula, let SS f denote the number of truth assignments that satisfy f. A wordn

of caution: in order to avoid overloading the notation, we use the same symbol f
.to denote the random formula and an instantiation of it. We give below a rough

outline of the simplest case of our technique.
By definition, the expected value of the number of satisfying truth assignments

w < <xof a random formula, i.e., E SS , satisfies the following relation:n

< < w xE SS s Pr f ? SS f . 1Ž . Ž .Ž .Ýn n
f

On the other hand, the probability of a random formula being satisfiable is given
by the equation

w x w xPr the random formula is satisfiable s Pr f ?I 2Ž .Ž .Ý f
f

where

1 if f is satisfiable
I s 3Ž .f ½ 0 otherwise.

Ž . Ž .From Eqs. 1 and 2 , the following Markov’s inequality follows immediately:

< <w xPr the random formula is satisfiable FE SS . 4Ž .n

w < <xIt is easy to find a condition on k under which E SS converges to zero. Such an
Ž .condition, by Markov’s inequality 4 , implies that f is asymptotically almost

Žcertainly unsatisfiable this elementary technique is known as the ‘‘first moment
. Ž .method’’ . However, on the right-hand side of Eq. 1 , we may have small probabili-

ties multiplied by large cardinalities; therefore, such a condition may be unneces-
sarily strong for guaranteeing only that f is almost certainly unsatisfiable. In this
work, instead of considering the random class SS that may have a large cardinalityn
for certain instantiations of the random formula with small probability, we consider
a subset of it obtained by taking truth assignments that satisfy a local maximality
condition. Thus, the condition obtained by letting the expected value of this new
class converge to zero is weakened, and consequently, the upper bound for k is
lowered.

As we show in the next section, the bound for k obtained by this sharpened first
moment technique is equal to 4.667. This improves the previous best bound due to

w xKamath et al. 12 of 4.758, which was obtained by nonelementary means. More-
over, our method is not computational, i.e., it does not use any mechanical

Žcomputations that do not have provable accuracy and correctness the fact that, in
our method, we use a computer program to find a solution of an equation with one
unknown does not render our proof computational because the algorithms that

.find solutions to such equations have provable accuracy . The bound that Kamath
w xet al. 12 attain with a noncomputational proof is equal to 4.87. In Section 3, we

Žshow how to further improve the bound to 4.601q a value between 4.601 and
.4.60108 by defining an even smaller subset of SS . This is achieved by increasingn

the range of locality when selecting the local maxima that represent SS . We definen
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a decreasing sequence of subsets of SS by selecting from SS truth assignmentsn n
that satisfy a condition of local maximality with increasing range of locality. From
this sequence, if we perform the calculations, we can obtain a sequence of
improving approximations to k . In the last section, we discuss the case of letting

w xthis range of locality become unboundedly large. Dubois and Boufkhad 7 have
independently announced the upper bound of 4.64.

Our bounds can be possibly improved even further if one uses not the Markov
type inequality mentioned above, but an analog of the ‘‘harmonic mean formula’’

w xgiven by Aldous 2 , and then applies the technique that is used in Kamath et al.
w x12 . This is discussed in the last section. Our method readily generalizes to k-SAT
for k)3.

2. SINGLE FLIPS

Recall that AA is the class of all truth assignments, and SS is the random class ofn n
truth assignments that satisfy a random formula f. We now define a class even
smaller than SS .n

Definition 1. For a random formula f, SS > is defined to be the random class of truthn
Ž . Ž .assignments A such that: i A*f, and ii any assignment obtained from A by

changing exactly one FALSE ¨alue of A to TRUE does not satisfy f.

Notice that the truth assignment with all of its values equal to TRUE vacuously
Ž .satisfies condition ii of the previous definition. Consider the lexicographic order-

ing among truth assignments, where the value FALSE is considered smaller than
TRUE, and the values of variables with higher index are of lower priority in
establishing the way two assignments compare. It is not hard to see that SS > is then
set of elements of SS that are local maxima in the lexicographic ordering ofn
assignments, where the neighborhood of determination of local maximality is the
set of assignments that differ from A in at most one position.

We now prove the following.

Lemma 1. The following Markö type inequality holds for SS >:n

>w xPr the random formula is satisfiable FE SS . 5Ž .n

Proof. From the previous definition, we easily infer that if an instantiation f of
>Ž . Ž >Ž .the random formula is satisfiable, then SS f /B. Recall that SS f is then n> .instantiation of the random class SS at the instantiation f. We also have thatn

w x w xPr the random formula is satisfiable s Pr f ?IŽ .Ý f
f
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where

1 if f is satisfiable
I s 6Ž .f ½ 0 otherwise.

On the other hand,

> >w xE SS s Pr f ? SS f .Ž .Ý ž /n n
f

The lemma now immediately follows from the above. B

We also have the following.

< ><Lemma 2. The expected ¨alue of the random ¨ariable SS is gï en by the formulan

r n> >E SS s 7r8 Pr AgSS AgSS . 7Ž . Ž .Ýn n n
Ag AAn

< ><Proof. First observe that the random variable SS is the sum of indicatorn
Žvariables, and then condition on A*f recall that r is the number of clauses-to-
.number-of-variables ratio of f, so msnr . B

We call a change of exactly one FALSE value of a truth assignment A to TRUE a
single flip. The number of possible single flips, which is, of course, equal to the

Ž .number of FALSE values of A, is denoted by sf A . The assignment obtained by
applying a single flip sf on A is denoted by As f.

We now prove the following.

w < ><x Ž . r nŽ y3 rr7 Ž ..nTheorem 1. The expected ¨alue E SS is at most 7r8 2ye qo 1 . Itn
follows that the unique positï e solution of the equation

r y3 rr77r8 2ye s1Ž . Ž .

Ž .is an upper bound for k this solution is less than 4.667 .

Proof. Fix a single flip sf on A, and assume that A*f. Observe that the0
nassumption that A*f excludes clauses from the conjuncts of f, i.e., therež /3

nremain 7 clauses from which to choose the conjuncts of f. Now, consider thež /3

clauses that are not satisfied by As f 0 and contain the flipped variable. There are
ny 1 s f 0of them. Under the assumption that A*f, in order to have that A ^f,ž /2

ny 1it is necessary and sufficient that at least one of these clauses be a conjunctž /2

of f. Therefore, for each of the m clause selections for f, the probability of being
ns f ny 10 Ž .one that guarantees that A ^f is r7 s3r 7n . Therefore, the proba-ž /ž / 32

s f 0 Ž . Ž Ž ..mbility that A ^f given that A*f is equal to 1y 1y3r 7n . Now, there
Ž .are sf A possible flips for A. The events that f is not satisfied by the assignment

s f Ž .A for each single flip sf under the assumption that A*f refer to disjoint sets
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of clauses. Therefore, the dependencies among them are such that

Ž .s f Am3 Ž .s f A> y3 rr7Pr AgSS A*f F 1y 1y s 1ye qo 1 . 8Ž . Ž .Ž .n ž /ž /7n

Petr Savicky has supplied us with a formal proof of the above inequality. In´
w xaddition, a result that implies it is presented in 17 . Indeed, in the notation of the

w xmain theorem in 17 , it is enough, in order to obtain the above inequality, to let:
Ž . � 4 Ž . � Ž .4 Ž .i Vs 1, . . . , m , ii Is 1, . . . , sf A , iii X s i iff the ¨ th clause of f is¨
satisfied by A but not satisfied by As f i, where As f i is the truth assignment obtained

Ž .from A by flipping the ith FALSE value of A, and iv for all i, FF be thei
‘‘increasing’’ collection of nonempty subsets of V.

Ž .Now, recall that sf A is equal to the number of FALSE values of A. Therefore,
Ž . w < ><xby Eq. 7 and by Newton’s binomial formula, E SS is bounded above byn

Ž . r nŽ Ž Ž .. r n.n7r8 2y 1y3r 7n , which proves the first statement of the theorem.
w < ><xIt also follows that E SS converges to zero for values of r that strictly exceedn

Ž . rŽ y3 rr7.the unique positive solution of the equation 7r8 2ye s1. By Lemma 1,
this solution is an upper bound for k . As can be seen by any program that

Žcomputes roots of equations with accuracy of at least four decimal digits we used
w x.Maple 18 , this solution is less than 4.667. B

The generalization of the previous result to the case of k-SAT, for an arbitrary
kG3 is immediate.

Ž . w < ><xTheorem 2. For the case of k-SAT kG3 , the expected ¨alue E SS is at mostn
ŽŽ k . k . r nŽ yk rrŽ2 ky1 . Ž ..n2 y1 r2 2ye qo 1 . It follows that the unique positï e solution of
the equation

rk2 y1 kyk rrŽ2 y1.2ye s1Ž .kž /2

Ž .is an upper bound for k as defined for k-SAT .

3. THE GENERAL METHOD AND DOUBLE FLIPS

In this section, we generalize the previous method to an arbitrary range of locality
when selecting the subset of SS . We start with a definition.n

lŽ .Definition 2. Gï en a random formula f and a nonnegatï e integer l, AA lFn isn
Ž .defined to be the random class of truth assignments A such that: i A*f, and

Ž .ii any assignment that differs from A in at most l ¨ariables and is lexicographically
strictly larger than A does not satisfy f.

Observe that SS of the previous section, i.e., the class of truth assignmentsn
satisfying the random formula, is now redefined as AA 0 and SS > is redefined as AA1.n n n
AA l is the subset of SS that consists of the lexicographic local maxima of it wheren n
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the neighborhood of locality for an assignment A is the set of assignments that
differ from A in at most l places. Moreover, AA l is a sequence of classes which isn

Ž .nonincreasing with respect to set inclusion .
Now, exactly as in Lemma 1, the following can be proved.

Lemma 3. The following Markö -type inequalities hold for the classes AA l:n

n ny1 1 0w xPr f is satisfiable sE AA FE AA F ??? FE AA FE AA . 9Ž .n n n n

w < l <xIt follows from the above that for a fixed l, by letting lim E AA s0, we obtainn n
upper bounds for k which decrease as l increases. We concentrate below on the
case ls2.

A change of exactly two values of a truth assignment A that gives a truth
assignment which is lexicographically greater than A must be of one of the

Ž .following kinds: 1 a change of the value FALSE of a variable to TRUE and a change
Ž .of the value TRUE of a higher indexed variable to FALSE, or 2 a change of two

variables both of value FALSE to TRUE. From these two possible kinds of changes,
we consider only the first since the calculations become easier, while the final

d f Ž .result remains the same. We call such changes double flips. Define A and df A
Žin a way analogous to the single-flip case notice that if A is considered as a

Ž .sequence of the Boolean values 0 and 1, then df A is equal to the number of
order inversions as we move along A from high-indexed variables to low-indexed

. 2 >ones, i.e., from right to left . Let AA be the set of assignments A such that A*f,n
and for all single flips sf , As f ^f and for all double flips df, Ad f ^f. It can be

2 2 > weasily seen that AA is a subset of AA in general, a proper one because in then n
2 > Ž .xdefinition of AA , we did not take into account the changes of kind 2 . Therefore,n

w < 2 ><xa value of r that makes the expected value E AA converge to zero is, by Lemman
w < 2 ><x w < 2 <x3, an upper bound for k . Actually, it can be proved that both E AA and E AAn n

converge to zero for the same values of r, but we will not use this fact, so we omit
its proof.

Now, in analogy to Lemma 2, we have the following.

Lemma 4.

r n2 > 2 >E AA s 7r8 Pr AgAA A*fŽ . Ýn n
Ag AAn

r n 1 2 > 1s 7r8 Pr Ag AA A*f ?Pr AgAA AgAA . 10Ž . Ž .Ý n n n
AgAAn

Therefore, by the remarks at the beginning of the current section, an upper bound
Ž .for k can be found by computing a value the smaller the better for r for which

the right-hand side of the equation above converges to zero. We will do this in two
steps. First, we will compute an upper bound for each term of the second sum in

w < 2 ><xthe equation above; then, we will find an upper bound for E AA which will be an
closed expression of r and n. Letting this closed expression converge to zero with
n, we will get an equation in terms of r that gives the required bound for k .

To compute an upper bound for the terms of the sum, we will make use of an
w xinequality that appears as 11, Theorem 7 , which gives an estimate for the



KIROUSIS ET AL.260

probability of the intersection of dependent events. We give the details in the first
subsection of the present section. The computations that will then give a closed

w < 2 ><xexpression that is an upper bound for E AA are carried out in the secondn
subsection.

3.1. Probability Calculations

w 1 < x wGiven a fixed A, we will now find an upper bound for Pr AgAA A*f ?Pr Agn
2 >< 1 xAA AgAA . We assume for the rest of this subsection that the condition A*fn n

holds. This is equivalent to assuming that the space of all clauses from which we
uniformly, independently, and with replacement choose the ones that form f is

nequal to the set of all clauses satisfied by A. This set of clauses has cardinality 7 .ž /3

Also notice that under the condition A*f, the event AgAA1 is equivalent to then
statement that for any single flip sf , As f ^f. In the sequel, all computations of
probabilities, analyses of events, etc., will be carried out assuming that A*f,
usually without explicit mention of it.

w 2 >xTo compute Pr AgAA , it is more convenient to work in another model forn
random formulas. In the next paragraphs, we give the necessary definitions and
notations.

w xConsistent with the standard notation of the theory of random graphs 4 , let GGp
be the model for random formulas where each clause has an independent probabil-
ity p to appear in the formula, let GG be the model where the random formula ism
obtained by uniformly and independently selecting m clauses without replacement,
and, finally, let GG be the model that we use in this paper, where the formula ism m
obtained by uniformly and independently selecting m clauses with replacement
Žrecall that, according to our assumption, we only refer to clauses that are satisfied

.by A .
Ž . w x Ž w xThe probabilities of an event E in GG GG will be denoted by Pr E Pr E ,p m p m

.respectively . In order not to change our notation, we continue to denote the
n 2w x Ž .probability of E in the model GG by Pr E . Set psmr 7 ;6 rr 7n . Fromž /m m ž /3

w Ž .xBollobas 4, Chap. 3, p. 35, Theorem 2 iii , we have that for any property Q of´
w x 1r2 w xformulas, Pr Q F3m Pr Q . Additionally, if Q is monotonically increasingm p

Ž .i.e., if it holds for a formula, it also holds for any formula containing more clauses
Žand reducible i.e., it holds for a formula iff it holds for the formula where multiple

. w x w xoccurrences of clauses have been omitted , then Pr Q FPr Q . Intuitively, this ism
so because, by the assumptions of increasing monotonicity and reducibility for Q,
when selecting the clauses to be included in f, we increase the probability to
satisfy Q by selecting a ‘‘new’’ clause rather than by selecting one that has already

w xbeen selected. A formal proof of this property can be found in 15 . Therefore, as
nonsatisfiability is both monotonically increasing and reducible, we conclude that

2 >Pr AgAAn

1r2 2 >F3m Pr AgAAp n

1r2 2 > 1 1 2 >s3m Pr AgAA nAgAA because AgAA is implied by AgAAž /p n n n n

1r2 1 2 > 1s3m Pr AgAA ?Pr AgAA AgAA . 11Ž .p n p n n
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It is easy to see, carrying the corresponding argument in the proof of Theorem 1
within the model GG , thatp

Ž .s f Any1 Ž .s f AŽ .1 y3 rr72Pr AgAA s 1y 1yp s 1ye qo 1 . 12Ž . Ž . Ž .Ž .p n ž /
Ž . Ž . w 1 x w 2 >< 1 xSo, by Eqs. 10 ] 12 , to find an upper bound for Pr AgAA ?Pr AgAA AgAA ,n n n

w 2 >< 1 xit is enough to find an upper bound for Pr AgAA AgAA . Computing this lastp n n
probability is equivalent to computing the probability that for all double flips df,
Ad f ^f, under the condition that for all single flips sf , As f ^f. In the next lemma,
given a fixed double flip df , we will compute the probability that Ad f 0 ^f under0
the same condition. We will then compute the joint probability for all double flips.

At this point, it is convenient to introduce the following notation to be used in
the sequel: for a variable x , x A is the literal x if the value of x in A is TRUE, andi i i i
it is the literal ! x , otherwise. Also, let qs1yp.i

First, fix a double flip df . Then we have the following.0

Lemma 5. The following holds:

Žny2.2 ny2 y6 rr7q 1yq 6e r 1 1Ž .
d f 10Pr A ^f AgAA s1y s1y qo .p n y3 rr7ny1 ž /. n nŽ 7 1yeŽ .21yq

13Ž .

Proof. Assume without loss of generality that df changes the values of x and0 1
x , and that these values are originally FALSE and TRUE, respectively. Also, let sf2 0
be the unique single flip that changes a value which is also changed by df . In this0
case, sf is the flip that changes the value of x from FALSE to TRUE.0 1

Notice that, because all single flips that are distinct from sf change values0
which are not changed by df ,0

d f 1 d f s f0 0 0Pr A ^f AgAA sPr A ^f A ^f .p n p

To compute the ‘‘negated’’ probability on the right-hand side of the above
inequality, we proceed as follows.

It is easy to see, carrying the corresponding argument in the proof of Theorem 1
ny1

2s f Ž .0w xwithin the model GG , that Pr A ^f s1yq . We now first compute thep p
Ž d f 0.‘‘positive’’ with respect to A probability:

d f s f0 0Pr A *fnA ^f .p

Observe that, in order to have that Ad f 0 *f, any clause that contains at least one
of the literals ! x , x and its remaining literals belong to ! x A, i)2, must not1 2 i

ny 2be among the conjuncts of f. The number of these clauses is equal to 2 qž /2
Ž .2 s f 0ny2s ny2 . However, the additional requirement that A ^f, in conjunc-

tion with the requirement that Ad f 0 *f, makes it necessary that at least one
clause that contains both ! x , ! x and one of ! x A, i)2, is among the1 2 i

Ž .conjuncts of f the number of such clauses is ny2 . The probability for these
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Žny2.2Ž ny2 .events to occur simultaneously is equal to q 1yq . This last expression
w d f 0 s f 0 xgives the probability Pr A *fnA ^f .p

From the above, it follows that

Žny2.2 ny2q 1yqŽ .
d f s f0 0Pr A ^f A ^f s1y .p ny1 .Ž 21yq

This concludes the proof. B

Unfortunately, we cannot just multiply the probabilities in the previous lemma
w 2 >< 1 xto compute Pr AgAA AgAA because these probabilities are not independent.p n n

This is so because two double flips may have variables in common. Fortunately, we
Žcan apply a variant of Suen’s inequality that was proved by Janson this inequality

w x w x w x.appears as 11, Theorem 7 ; for the original Suen’s inequality, see 20 or 3 and
gives an estimate for the probability of the intersection of dependent events. In
what follows, we will first present the inequality as well as the assumptions under
which it is applicable, and then apply it in the context of our problem.

� 4Let I be a finite family of indicator random variables defined on ai ig II
� 4probability space. Also let G be a dependency graph for I , i.e., a graph withi ig II

vertex set II such that if A and B are two disjoint subsets of II, and G contains no
� 4 � 4edge between A and B, then the families I and I are independent.i ig A i ig B

1w x w x Ž Ž ..If p sPr I s1 , Ds Ý E I I summing over ordered pairs i, j , dsi i Ž i, j.: i; j i j2

max Ý p and esmax p and, in addition, dqeFey1, thenig II j; i j ig II i

D f Ždqe .2Pr I s0 Fe 1yp 14Ž . Ž .Ý Łi k
kg IIig II

Ž . Ž . xf 2Ž x .where f x is the smallest root of the equation f x se , given x such that2 2
y1 Ž .0FxFe f is increasing in this range .2

Ž .Now, in our context, given a truth assignment, let DF the index set II above be
the class of all double flips. For an element df of II, let I s1 iff Ad f *f, givend f

1 w x w d f < 1 xthat AgAA . Then, p sPr I s1 sPr A *f AgAA , and from Lemma 5,n d f p d f p n
it is equal to

6ey6 rr7r 1 1
qo .y3 rr7 ž /n n7 1yeŽ .

Also, it holds that

6ey6 rr7r
dF qo 1Ž .y3 rr77 1yeŽ .

since a double flip may share a flipped variable with at most n other double flips.
Ž .Also, from Lemma 5, eso 1 . Therefore, for the range of r that is of concern to

Ž w x.us r)3.003, which is the best known lower bound for the threshold; see 9 ,
y6 rr7 Ž Ž y3 rr7.. Ž . y1 Ž .dqeF6e rr 7 1ye qo 1 Fe for sufficiently large n .



APPROXIMATING THE UNSATISFIABILITY THRESHOLD 263

For two elements df and df X of DF, let df;df X denote that df and df X are
distinct double flips sharing a flipped variable. Then

X1 1 d f d f 1
XDs E I I s Pr A *f , A *f AgAA .Ý Ýd f d f p n2 2

X X X XŽ . Ž .df , df : df;df df , df : df;df

15Ž .

Ž .Before calculating the probability that is involved in Eq. 15 , we show that the
events that we are considering, i.e., the events that Ad f *f, df a double flip,
conditional on AgAA1, form a dependency graph. In other words, we must checkn
whether the following property holds: for any two sets J and J of double flips1 2
such that no flip in J shares a variable with a flip in J , any Boolean combination1 2
of conditional events corresponding to flips in J is independent of any Boolean1
combination of conditional events corresponding to flips in J . Suppose that the2
conditional was not AgAA1, but A*f. Then the resulting space is a GG space,n p
i.e., each clause satisfied by A has an independent probability to appear in the
random formula. Then the mutual independence required to obtain the above
inequality would be obviously satisfied, as the two Boolean combinations that must
be shown independent correspond to distinct clauses. In our case, however, where
the conditional is AgAA1, the probability space is not a GG space. Nevertheless,n p
the required independence still holds. To prove this, let B and B be two Boolean1 2
combinations of unconditional events corresponding to two sets of double flips that
do not share a variable. The conditional independence that is required to obtain
the above inequality is equivalent to

s f s fPr B , B , A ^f A*f ?Pr A ^f A*fH Hp 1 2 p
sfgSF sfgSF

s f s fsPr B , A ^f A*f ?Pr B , A ^f A*f .H Hp 1 p 2
sfgSF sfgSF

Notice that, because the conditional in the probabilities in the above equality is
A*f, the resulting space is from the model GG . Now, the above equation is trivialp
to prove using the fact that, in such a space, combinations of events corresponding
to either single or double flips with no common variables are independent.

We now compute the exponential correlation factor that appears in inequality
Ž .14 . The computation is a bit tedious. In the following lemmata, we give the results

Ž .of the various steps, hoping that the interested and patient reader can carry them
out by herself. The method to be used is very similar to that of the proof Lemma 5.
In order to save a little more on notation, we set

useyr r7.

Notice that, then, by Lemma 5,

66u ln 1ru 1 1Ž .
d f 10Pr A *f AgAA s qo . 16Ž .p n 3 ž /n n1yu
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Lemma 6. Let df and df be two double flips that share the ¨ariable that they0 1
change from FALSE to TRUE. Then

ny2 .2Žny2. 3Ž ny32q q q p
d f d f 10 1Pr A *f , A *f AgAA sp n ny1 .Ž 21yq

6u9 ln 1ru 1 1Ž .
s qo . 17Ž .3 2 2ž /1yu n n

Lemma 7. Let df and df be two double flips that share the ¨ariable that they0 1
change from TRUE to FALSE. Then

ny2 2.2Žny2. 3Ž ny3 ny22q q q 1yqŽ .
d f d f 10 1Pr A *f , A *f AgAA sp n 2ny1 .Ž 21yqž /

36u9 ln2 1ru 1 1Ž .
s qo . 18Ž .2 2 2ž /3 n n1yuŽ .

Now, observe that the number of intersecting ordered pairs of double flips is at
Ž .most df A ?n. Finally, it is easy to see that the probability in Lemma 6 is smaller

than the probability in Lemma 7. From these observations, and by substituting in
Ž . Ž .Eq. 15 the right-hand side of Eq. 18 , we get that

1
XDs E I IÝ d f d f2 X XŽ .df , df : df;df

18u9 ln2 1ru 1 1 6u6 ln 1ruŽ . Ž .
Fdf A ? qo f qo 1 .Ž . Ž .22 3ž / ž /3ž /n n 1yu1yuŽ .

Ž . Ž .From this and Eq. 16 , it follows, by inequality 14 , that

6 9 26u ln 1ru 1 18u ln 1ru 1Ž . Ž .
2 > 1Pr AgAA AgAA F 1y qp n n 3 23n n1yu 1yuŽ .

Ž .d f A66u ln 1ru 1Ž .
=f qo 1 qo . 19Ž . Ž .2 3 ž /ž / n1yu

Ž .It is easy to see e.g., by using Maple, or by a bit tedious analytical computations
that the expression at the base of the right-hand side of the above inequality is at

Ž . Ž . Ž .most 1 for 3F rF5. Now, by Eqs. 10 ] 12 , and 19 , we get that

r n1r22 > s f Ž A. d f Ž A.E AA F3 rn 7r8 X Y 20Ž . Ž . Ž .Ýn
A
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where

Xs1yu3 qo 1 21Ž . Ž .

and

6u6 ln 1ru 3u3 ln 1ru 6u6 ln 1ru 1 1Ž . Ž . Ž .
Ys1y 1y ?f qo 1 qo .Ž .23 3 3 ž /ž /ž / n n1yu 1yu 1yu

22Ž .

Ž .In the next subsection, we give an estimate for the sum in inequality 20 .

3.2. Estimates

Lemma 8. If 0FX 2 FYF1, then

ny1
s f Ž A. d f Ž A. i r2X Y F 1qXY . 23Ž . Ž .Ý Ł

is0A

2 Ž . Ž .Notice that, in our case, the condition X FY holds, as by Eqs. 21 and 22 , we
Ž . 3 Ž .have that Ys1yo 1 and Xs1yu qo 1 . The easiest way to prove the inequal-

ity in the lemma is first to show that

n
ns f Ž A. d f Ž A. kX Y s XÝ Ý ž /k YA ks0

where

1yq n 1yq ny1 ??? 1yq nykq1Ž . Ž . Ž .n s k ky1 1ž /k 1yq 1yq ??? 1yqq Ž . Ž . Ž .

Ž w x.are the so-called q-binomial or Gauss coefficients see Knuth’s book 16, p. 64 ,
and then proceed inductively on n. Complete information on such techniques can

Ž .be found in a book on basic hypergeometric or q-hypergeometric series by
w xGasper and Rahman 10 . A direct proof is also possible, but it is rather involved.

ŽWe do not give the details, as they do not offer anything new to our problem for a
w x.proof, see 14 .

Now, recall that

useyr r7 24Ž .
Xs1yu3 qo 1 25Ž . Ž .
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and

6u6 ln 1ru 3u3 ln 1ru 6u6 ln 1ru 1 1Ž . Ž . Ž .
Ys1y 1y ?f qo 1 qo .Ž .23 3 3 ž /ž /ž / n n1yu 1yu 1yu

26Ž .

Ž .Also set Zsn ln Y, and observe that from Eq. 26 , it follows that

6u6 ln u 3u3 ln u 6u6 ln 1ruŽ . Ž . Ž .
Zs 1q ?f qo 1 qo 1 . 27Ž . Ž . Ž .23 3 3ž /ž /1yu 1yu 1yu

w < 2 ><x ŽOur estimate for E AA will be given in terms of the dilogarithm function see then
w x.book by Abramowitz and Stegun 1 which is defined as

x ln tŽ .
dilog x sy dt.Ž . H ty11

Ž .Finally, let df eq r be the expression that we get if we substitute in

ln 7r8 r Zr2 qdilog 1qX ydilog 1qXeZr2Ž . Ž . Ž . Ž .
yr r7 Žthe values of X and Z without their asymptotic terms, and then set use it

.will shortly become clear why we introduce the above expression of X, Z, and r .
We now state the concluding result.

Ž . w < 2 ><xTheorem 3. If df eq r )0, then lim E AA s0, and thereforen n

w xlim Pr f is satisfiable s0.
n

It follows that k-4.601q .

Ž . Ž .Proof. From inequalities 20 and 23 , we conclude that, in order to have

2 >lim E AA s0,n
nª`

it is sufficient to show that the expression

ny1
r n1r2 i r23 rn 7r8 1qXYŽ . Ž . Ž .Łž /is0

converges to zero. Raising this last expression to the power 1rn, then taking the
logarithm, and finally making the standard approximation of a sum by an integral
Ž .for the case of a decreasing function , we conclude that a sufficient condition for

w < 2 ><xlim E AA s0 is thatn n

ny1
t r2r ln 7r8 q lim 1rn ln 1qXY dt -0.Ž . Ž . Ž .Hž /n y1
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However,

dilog 1qXYt r2Ž .
t r2ln 1qXY dtsy .Ž .H 1r2ln YŽ .

The first assertion of the theorem now follows by elementary calculations taking
n r2 Zr2 Ž .into account that Y se and Ys1qo 1 . The second assertion follows by

Lemma 3. The estimate for k is obtained by computing the unique positive
Ž .solution of the equation df eq r s0. We obtained the value 4.601q by using

w xMaple 18 . B

4. DISCUSSION

Our technique can be extended to triple, or even higher order, flips. To do that,
first observe that

r nl 1E AA s 7r8 Pr AgAA A*fŽ . Ýn n
Ag AAn

2 1 l ly1?Pr AgAA AgAA ??? Pr AgAA AgAA ,n n n n

and then obtain upper bounds for the factors in the terms of the above sum. Thus,
we can get increasingly better estimates of k . Furthermore, if r is the infimum ofl

w l xthe values of r that make lim E AA s0, we conjecture that lim r sk . Then n l l
w x w < n <xequation Pr f is satisfiable sE AA of Lemma 3 is an indication that this isn

indeed so.
Finally, observe that the estimate obtained by fixed-order flips can be possibly

improved further if, instead of the Markov-type inequalities in Lemma 3, we use a
‘‘harmonic mean formula.’’ To be specific, first notice that the following result can
be easily proved in exactly the same way as the original harmonic mean formula

w xgiven by Aldous 2 .

Proposition 1. For e¨ery lG0,

1
l lw xPr the random formula is satisfiable s Pr AgAA ?E AgAA .Ý n nlž /AAnA

Ž .Proof. Let I be the indicator variable defined in Eq. 6 of the proof of Lemmaf
A Ž1. Let also I be the following indicator variable with the random f}not thef

.nonrandom A}as its argument :

1 if AgAA l
A nI sf ½ 0 otherwise.
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Now, observe that

w xPr the random formula is satisfiable

w xs Pr f ?IŽ .Ý f
f

I A
fw xs Pr f ?Ý Ý lž /< <AAnf is SAT A

l<Pr f AgAAnls Pr AgAA ?Ý Ýn l< <ž /AAnA f is SAT

1
l ls Pr AgAA ?E AgAA . BÝ n nlž /< <AAnA

w xIt is now conceivable that the techniques introduced by Kamath et al. in 12 can be
w < l < < l x lapplied to estimate E 1r AA AgAA for an arbitrary fixed AgAA . Kamath et al.n n n

give such an estimate for the case ls0. The generalization at least to the case
ls1 should be possible. Given that in Section 2 we have computed the probability

w 1 xPr AgAA , such a generalization in conjunction with the above proposition wouldn
improve the single-flips estimate.
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