o Y00/ ED
[(;;/wk /

Randomization of search trees

by subtree size

Conrado Martinez
Salvador Roura

Report LSI-95-51-R

822 @ﬁ‘ h R
P00 WY KN b

Faculiat d'infermaiiog
de Barcelona - Biblioteca
Y $9985

. el el

Randomization of Search Trees by Subtree Size*

C. MARTINEZ AND SALVADOR RoOURA'

November 8, 1995

Abstract

In this paper we present probabilistic algorithms over random binary search trees such
that: a) the insertion of a set of keys in any fixed order into an initially empty tree produces
always a random tree; b) the deletion of any key of a random tree results in a random tree;
c) the random choices made by the algorithms are based upon the sizes of the subtrees of the
random tree, an information that can be used for rank searches, for instance; and d) the cost,
measured as the number of visited nodes, of any elemental operation is the same as the cost
of the standard deterministic version, with less than two expected rotation-like operations per
update.

1. INTRODUCTION

Given a binary search tree (BST, for short), common operations are the search of a given key
in the tree and the retrieval of the information associated to that key if it is present, the insertion
of a new item in the tree and the deletion of some item given its key. The symmetric or inorder
traversal of any binary search tree yields a list of the items in the tree in ascending order of keys.
For the unbalanced version of the BSTs, the implementation of searches and updates is very simple
and elegant, and their cost is always linearly bounded by the depth of the tree.

For random search trees, the expected performance of a search, whether successful or not, and
that of update operations is @(logn) [4, 5], with small hidden constant factors involved. Random
search trees are those built using only random insertions. By a random insertion, we mean that
there is the same probability for the j-th key to fall into any of the j intervals defined by the j — 1
keys already in the tree.

If this assumption fails (for instance, ordered sequences of keys are frequently inserted) then
the performance of the operations can dramatically degrade and become linear. Furthermore, the
random search tree model does not deal with deletions, and neither Hibbard’s deletion algorithm [2]
nor its multiple variants preserve randomness, a surprising fact that was first noticed by Knott [3].

A recent approach to avoid these problems is the use of randomization techniques, where they
are exploited to guarantee that algorithms achieve their expected performance. These techniques
were used by Aragon and Seidel [1] for their randomized search trees and by Pugh [7] in his definition

*This research was supported by the ESPRIT BRA Program of the EC under contract no. 7141, project ALCOM
II. The second author was also supported by a grant from CIRIT (Comissié Interdepartamental de Recerca i
Innovacié Tecnoldgica).

tDepartament de Llenguatges i Sistemes Informatics. Univ. Politécnica de Catalunya. Pau Gargallo, 5. E-08028
Barcelona, Spain. E-mail: {conrade,roura}egoliat.upc.es

RANDOMIZATION OF SEARCH TREES 2

of skip lists. The good expected performance of skip lists and randomized search trees does not
depend on any probabilistic assumption about the sequence of operations to be performed. Unless
the random choices made by these algorithms were known, a sequence of operations that forced
some designated behavior could not be constructed.

In this paper, we consider probabilistic algorithms to insert and delete in BSTs and guarantee
the logarithmic expected performance of any elemental operation. This is possible since both
insertions and deletions always produce random search trees, irrespective of the order in which the
keys were inserted and/or deleted, the actual pattern of insertions and deletions, etc. An important
difference between our algorithms and those for randomized search trees or skip lists, is that the
random choices made by our algorithms are based upon structural information —the size of the
subtree rooted at each node of the BST— whilst the other algorithms use information that may be
labelled as “external” or “extraneous” (random priorities in the case of randomized search trees,
random levels in the case of skip lists). The information about the size of subtrees can be used for
other purposes as well, for instance, to do searches and deletions by rank or efficiently computing
the rank of a given item.

The paper is organized as follows. In Section 2 we review some necessary definitions and
introduce the notation for the rest of the paper. In Section 3, the insertion and deletion algorithms
are described and their main properties stated. We present the analysis of their performance in
Section 4 and show how we can profit from known results about random search trees. In Section 5
we discuss efficient strategies for the dynamic management of subtree sizes, space requirements,
etc. We conclude in Section 6 with some remarks and future research lines.

2. BAsic DEFINITIONS AND NOTATION

Given a finite set of keys K, we shall denote B(K) the set of all binary search trees that contain
all the keys in K. For simplicity, we will assume that K C N. The empty tree is denoted by [J.
Similarly, we denote P(K) the set of all permutations —sequences without repetition— of the keys
in K. The empty sequence is denoted by A and U |V denotes the concatenation of the sequences
Uand V.

The following equations relate sequences in P(K) and binary search trees in B(K). Given a
sequence S, bst(S) is the BST resulting after the insertion of the keys in S into an initially empty

tree.
®

bst(A) = O, bst(z|S) = ~ ~ ,
bst(sep« (z, 5)) bst(seps (z, S))

where the function sep<(z,S) returns the subsequence of elements in S smaller than z, and
sep> (z, S) returns the subsequence of elements in S larger than .

While the behavior of deterministic algorithms can be neatly described by means of algebraic
equations, this is not the case for probabilistic algorithms. We now present an algebraic-like nota-
tion that allows a concise and rigorous description and further reasoning about these algorithms,
following the ideas introduced in [6]. The key idea is to consider any probabilistic algorithm F
as a function from the input set A to the set of probability functions (or PFs, for short) over B.
Hence, F'(z) denotes the PF over the output set B, when z is the input of the algorithm F; and
for any y € B, [F(x)](y) is the probability that, on input z, the algorithm F produces output y.

3 C. MARTINEZ AND S. ROURA

We will use the convention that each element y in B also denotes a PF over B, namely, y(b) =1
if b = y and 0, otherwise. Typically, the set of possible outputs of F(z) is finite and then F(z)
may be expressed as a linear combination of PFs,

Flg)=awyi+ - +omn = Y oy,
1<i<m

where {y1,...,¥m} is the set of possible outputs of F given input z, and
a; = Pr{on input z, F outputs y;} = [F(z)](y:).

Notice that the convention that any element of a set denotes also a PF over that set, makes
the notation useful for the description of both deterministic and probabilistic algorithms. We shall
also use Iverson’s bracket convention for predicates, that is, [P]is 1 if the predicate P is true, and
0 otherwise. This convention allows expressing the definitions by cases as linear combinations.

Finally, we give a precise meaning to the (sequential) composition of probabilistic algorithms.
The problem reduces to the following question: if the input of an algorithm F is chosen according
to some probability function g over the set of inputs A, which is the probability that a given
element y is the output of F? By F(g), we will denote the probability function over the set of
outputs such that [F(g)](y) is the probability that y is the output of algorithm F when the input
is selected according to g. It turns out that F(g) is easily computed from g and the PFs F(z) for
each element z in A.

F(g) =) g(x)F(z). (1)
z€A
Recall that even a single element a from A may be considered as a PF over A, and then the
definition above makes sense even when g = a.

Let Random_Perm be a function such that, given a set with n > 0 keys K, returns a randomly
chosen permutation of the keys in K. It can be compactly written as follows.

Random_Perm(K) = Z }T'P‘

PeP(k)
Random search trees can be defined in the following elegant way:
Random_BST(K) = bst(Random_Perm(K)).
Another equivalent characterization of a random search tree is given by the following defini-

tion {4, 5]: the empty tree is a random search tree; and a non-empty tree T is random if both its
left subtree Ties; and its right subtree Trignt are random, and

Pr{size(Tleft):ilsize(T)=n}=—71;, i=0,...,n—1, n>0. @)

This last equation simply says that any of the n keys in 7" has the same probability, namely 1/n,
of being the root of T :

RANDOMIZATION OF SEARCH TREES 4

3. THE ALGORITHMS

The insertion algorithm is suggested by the last shown characterization of a random BST. Let T
be a tree of size n and z be a key not in T'. To insert z in T, “place” z at its root with a probability
equal to 1/(n + 1) (notice that the new BST will have n + 1 keys) and otherwise recursively insert
z in the left or right subtree of T, depending on the relation of « with the key in the root. Using
the notation introduced in last section, the algebraic equations describing the behavior of insert
are

insert(z,d0) = Ef@tl)
insert(z, /@\) = ! - place_at_root(z, /@\) (3)
A n+l I R
n ® ®
: : s + : N ,
Toa +1 ([:c <4 insert(z, L) \R > L d insert(z, R))

assuming that it is never inserted a key already in the tree.

The question now is how to place z at the root of T, that is, how to build a new 7" that
contains z and the keys that were present in T such that root(7T") = z. This problem was solved
by Stephenson [8, 9] as early as 1976. The function place_at_root returns a tree whose root is z, its
left subtree is split< (z, T') and its right subtree is splits (z, T'); split< and splits are functions that
given T and a key # € T, return a BST with the keys in T less than ¢ and a BST with the keys
in T greater than z, respectively. The function split< can be written in algebraic form as follows:

Split<(1§, D) = O,

wiite(e, R) = <imieen) + b O
L R L split< (z, R)

The function splity satisfies symmetric equations. We define

split(z,T) = [split<(z,T) , splits(z,T)]

It can be shown that split<(z,T) and splits (z,T) can be computed at the same time with
a total cost (measured as the number of keys compared against «) equal to the the cost of the
standard insertion of # in T'. Note that both place_at_root and split are deterministic functions,
L.e. for any input they produce only one possible output. The following lemma describes the result
of split when applied to a fixed BST.

Lemma 3.1 Let S be any permutation of keys and let x be any key not in S. Then

split(z, bst(S)) = [bst(sep<(z,S)) , bst(seps(z,S5))]
From this lemma we can describe the behavior of split when applied to a random BST.
Theorem 3.1 Let K be any set of keys and let « be any key such that z ¢ K. Let K. and

K denote the set with the keys in K less than z and the set with the keys in K greater than z,
respectively. Then

split(z, Random_BST(K)) = [Random_BST(K<) , Random_BST(Ks)]

5 C. MARTINEZ AND S. ROURA

Notice that the theorem states that splitting a random BST produces a pair of independent random
BSTs. Lemma 3.1 relates split with sep using bst, the “mapping” between trees and permutations
of keys. Our next objective is to relate insert with some functions over permutations. To this end
we introduce two new functions, shuffle and equiv.

Let K; and K3 be two disjoint sets with n and m keys, respectively. Let U = uy [...]um €
P(K1) and V = vy |...|vn € P(K3). We define S(U, V) as the set of all the permutations of the
keys in K; U K that could be obtained by shuffling U and V without changing the relative order
of the keys of U and V, ie. S(U,V) is the set of allY =y |...|ymin € P(Ky UK3) such that
for all yi, = uy, and yi, = uj,, i1 < iy if and only if j; < j; (and the equivalent condition for the
keys of V). For instance, §(21, ba) = {21ba, 2bla, 2bal,b21a,b2al, ba21}. The number of elements
in §(U, V) is clearly equal to (™+"). We define shuffle as a function such that given as input U
and V, returns a randomly choosen element from S(U, V). For instance,

shuffie(21, ba) = % - 21ba + é - 2bla + % - 2bal + % -b2la + % -b2al + Eli_ - ba2l.

Let § € P(K). We define equiv as a function such that given input S returns a randomly chosen
element from the set {£7} of permutations such that bst(E) = bst(S). For example, equiv(3124) =
1/3:3124+1/3-314241/3-3412, since bst(3124) = bst(3142) = bst(3412) and no other permutation
of the keys {1,2, 3,4} produces the same tree. Next lemma describes the behavior of insert.

Lemma 3.2 Let S be any permutation of keys and let = be any key not in S. Then
insert(z, bst(S)) = bst(shuffle(z, equiv(S))).

For instance,

® ®

. . 1 3 AN 3 AN

insert(1, bst(342)) = 1nsert(1, ®/®\@) =7 %\ + g ©) @+ 3 Cg@ @ .
@@ O

On the other hand,

bst(shuffle(1, equiv(342))) = bst(shuffle(1, § - 342 + 1 . 324)) =

=bst(3 1342+ § - 3142+ § 3412+ } - 3421+ § - 1324+ 1 - 3124+ 1 - 3214+ L - 3241),

which gives the same result as insert(1, bst(342)), since {1342, 1324} produce the first tree, {3142,

3412, 3124} produce the second one and {3421, 3214, 3241} produce the third.

The lemma above relating insert with shuffle and equiv is the basis for the next important
theorem, that describes the behavior of insert when applied to a random BST.

Theorem 3.2 Let K be any set of keys and let @ be any key such that = ¢ K. Then
insert(z, Random .BST(K)) = Random_BST(K U {z}).

Proof. Notice that taking S € P(K) at random and then chosing any permutation equivalent to
S, is the same as taking a permutation in P(K) at random. Notice also that the result of shuffling
z into a random permutation of the keys in K gives a random permutation of the keys in K U {z}.

RANDOMIZATION OF SEARCH TREES 6

Then,
insert(z, Random_BST(K)) = insert(z,bst(Random_Perm(K)))
{by Lemma 3.2} = bst(shuffle(z, equiv(Random_Perm(K))))
= bst(shuffle(x, Random_Perm(K)))
bst(Random_Perm(K U {z}))
= Random_BST(K U {z})
O

As an immediate consequence of the theorem above, our next theorem follows:

Theorem 3.3 Let K = {z1,...,2,} be any set of keys, where n > 0. Let Ziy, ..., 2, be any
fixed permutation of the keys in K. Then

insert(z;,, insert(z;,_,,...,insert(z;,,) ...)) = Random_BST(K).

Next we describe the deletion algorithm. To delete any given key « from any given random
BST first find it, using the standard search algorithm until a leaf or z is found. In the first case
the key to be deleted is not in the tree, so nothing must be done. In the second case, only the
subtree whose root is = will be modified.

Let T be that subtree. Let L and R denote the left son of 7" and the right son of T', respectively,
and let K¢ be the set of keys in T less than z and K5 be the set of keys in T greater than z.
First, we delete the node where z is (the root of T'). Then, from the pair of BSTs (L, R) we build
anew BST 7" = join(L, R) containing the keys in the set K< U K> and place 7' where z has been
deleted. The algebraic form of delete is:

delete(z,0) = 0O

® ® ®
delete(z, = [z . T . 5
el L/ \R) e <3l delete(xﬁ) \R+ >l L/ de?ete(:c,R) ®)

+ [z =1 join(L, R).

Assume that L and R are trees of size m > 0 and n > 0, respectively. Let Lieg, Lright, Riest
and Rpigh: denote the left son of L, the right son of L, the left son of R and the right son of R,
respectively. The probabilistic behavior of join can be described as follows.

m root(L)\ n ;oot(R)\ . ©)

join(L, R) = . v + .
mMHR L join(Ligne, B) ™™ join(L, Rier) Rright

For the basic cases, we define join(0OJ, O0) = O, join(L, () = L, and join(1, R) = R.

There is an informal justification for the probabilities we have used, based on the Eq. 2 for
random BSTs. Let « be any key in L. We know that « has a probability ;15 to be the root of L.
Then, after joining L and R the probabily for z to be the root of T/ will be ;11— i = m_l*_—n, which
is the probability that any key in 7" has of being the root. The same reasoning applies to any key
in R.

7 C. MARTINEZ AND S. ROURA

The following lemma and theorem describe the behavior of join when applied to a fixed BST
and when applied to a random BST, respectively.

Lemma 3.3 Let U and V be two permutation of keys such that any of the keys in U is smaller
than any of the keys in V. Then

Join(bst(U), bst(V')) = bst(shuffle(equiv(U), equiv(V'))).

Theorem 3.4 Let K. and Ky be two sets of keys such that the keys in K< are less than the
keys in K5 . Then

Join(Random_BST(K <), Random_BST (K5)) = Random_BST(K< UKs).

Notice that there are many different deterministic strategies to join BSTs (see [9], for instance),
but none of them can satisfy the theorem above. Take the particular case K¢ = {1}, K» = {3},
for instance. The pair (bst(1),bst(3)) is the only possible input for join, whilst the output must
be randomly chosen from {bst(13), bst(31)}.

It only remains to describe the behavior of delete. We first define a new function, rm, such that
given any permutation of keys S and any key =, it returns the permutation of keys that results
after removing z from S. For instance, rm(3, 2315) = 215, rm(4, 2315) = 2315. Now we are ready
to relate delete with rm and equiv.

Lemma 3.4 Let S be any permutation of keys and let ¢ be any key. Then
delete(z, bst(S)) = bst(rm(z, equiv(S))).
Theorem 3.5 Let K be any set of keys and let & be any key. Then
delete(z, Random _BST(K)) = Random_BST(K — {z}).

Notice that the theorem holds even if 2 ¢ K, since in this case K — {z} = K.

We end up this section with a few comments on the proofs of the lemmas and theorems in this
section. Both shuffle and equiv can be defined using the notation in Section 2, and then most
proofs can be done by induction on the size of the input tree(s) and applying simple algebraic
manipulations. Furthermore, most of them follow a common pattern and reduce to pure algebraic
manipulation. They are covered in detail in the full version of this extended abstract.

4. PERFORMANCE ANALYSIS

The analysis of the performance of the various algorithms is quite easy, since both insertions
and deletions guarantee the randomness of their results. In fact, we only need three results about
random search trees of size n: the depth of the i-th internal node, the depth of the i-th leaf, and
the lenght of the right and left spines of the subtree whose root is the i-th node. We will denote
them 'D,(f), S:) and S,(f), respectively. Recall that the right spine of a tree is the path from the
root of the right son to the smallest element in that subtree. Analogously, the left spine is the path
from the root of the left son to its largest element.

RANDOMIZATION OF SEARCH TREES 8

It has been long known (see for instance [4]) that

E(DY)) = Hi+Hpp1-i—2, i=1,...,n
E(c))) = Hiov+Hpgq-i, i=1,...,n+1.

R . . N 1 1

)y = () (i4+1) _o(p(H) —9_1_ i=1.... n.
E(Sn) E(L:n + L 2(Dn +1)) 2 i nt1—1 t=1, yn

where H, = lean 1/j ~Inn+v+©(1/n) denotes the n-th harmonic number, and v = 0.577. ..
is Euler’s constant.

To begin with, let S and U be the number of comparisons in a successful search for the
i-th key and the number of comparisons in a unsuccessful search for a key in the i-th interval of a
tree of size n, respectively. It is clear that

SO = pW41, i=1,...,n.
Ul = o i=1,...,n+1

Now, let us consider the cost (measured as the number of visited nodes) of an insertion in the
i-th interval (1 < i < n+1) of a tree of size n. We may divide this cost into two contributions: the
cost of the descent until the new item reaches in its final position, RY), plus the cost of restructuring
the tree beneath or cost of the “placement at the root”, P,gi). Consider the tree after the insertion.
Let T' be the subtree whose root is the inserted key. The length of the path from the root of the
resulting tree to 7" gives us RrY) , whilst the lenght of the right and left spines of T gives us P
Since the tree produced by the insertion is random, we conclude that

Rg) = 'D'(:_ll +1, PrE’) = 57(121 .

Notice that E(Rg) + P,E‘)) = Hio1+ Hpp1-i+ 1 = E(,(f) +1), which is the expected cost of
the standard insertion in the i-th interval of a tree of size n.

The cost of the deletion (measured as the number of visited keys) of the i-th key of a tree of size
n is also easy to analyze. We can separate it into two contributions, as in the case of insertions:
the cost of finding the key to be deleted, F,Ei), plus the cost of the “join” phase, I Since the
input tree is random, we have that

F=p{+1, JP=s0.
5. IMPLEMENTATION ISSUES

From the recursive Equations 3, 4, 5 and 6, it is straightforward to obtain a recursive imple-
mentation of the insertion and deletion operation. An additional little effort yields efficient non-
recursive implementations of these operations, using only a constant amount of auxiliary space and
working in a pure top-down fashion.

One of the questions that we have not dealt with in previous sections is the insertion of repeated
elements. Making a search before performing the insertion is clearly inadequate, if the insertion
of repeated keys is not frequent. We have developed a variant of the insertion algorithm, called
insertion with push_down to cope with this problem. It is described in the full version of this paper.
This variant of the insertion works also in a top-down fashion, and it can be shown that using it,
Theorem 3.2 is valid even when z € K.

9 C. MARTINEZ AND S. ROURA

Let us now consider the complexity of our algorithms from the point of view of the number of
random bits needed per operation. In the case of deletions, the expected size of the subtree rooted
at the node to be deleted is constant, so the expected number of random bits is also constant. For
insertions, a random number must be generated for each node visited before the place at root is
done. If the currently visited node z is the root of a subtree of size m, we would generate a random
number between 0 and m; if this random number is m then we place at root the element to be
inserted, otherwise the insertion continues either on the left or right subtree of z. Recall that the
expected number of nodes visited before we “place at root” the new key is @(logn), for a BST
of size n. If random numbers are generated from high order to low order bits and compared with
prefixes of the binary representation of m, then the expected number of random bits generated
per node is O(1) —most of the times the comparison fails and the insertion continues at the
appropriate subtree—. The total expected number of random bits per insertion is thus @(logn).
Further refinements may reduce this to (9(1); the reduction is achieved at the cost of performing
several arithmetic operations for each visited node during the insertion.

Up to now, we have not considered the problem of managing the sizes of subtrees. Obviously,
they shouldn’t be computed on-the-fly; hence, each node of the tree has to store information about
the size of subtree rooted at that particular node.

If the size of each subtree is stored at its root then we would face the problem of updating this
information for all nodes in the path followed during the operation. The problem gets worse if
one has to cope with insertions that may not increase the size of the tree (when the element was
already in the tree) and deletions that may not decrease the size (when the element to be deleted
was not in the tree).

Probably, the best solution to this problem is to store at each node the size of its left son or
its right son, rather than the size of the subtree rooted at the node. An additional orientation bit
indicates whether the size is that of the left or the right subtree. If the total size of the tree is
known and we follow any path from the root downwards, it is easy to see that, for each node in
this path, we can trivially compute the sizes of its two subtrees. This trick notably simplifies the
management of the size information: for instance, while doing an insertion or deletion, we change
the size and orientation bit from left to right if the operation continues in the left subtree and the
orientation bit was ‘left’; we change from right to left in the symmetric case. When the insertion or
deletion finishes, only the global counter of the size of tree has to be changed if necessary. Similar
rules can be used for the implementation of split and join.

We should emphasize that this information about subtree sizes —required by all our algorithms—
can be advantageously used for operations based on ranks, like searching or deleting the i-th item.

Last but not least, storing the sizes of subtrees is not too demanding. The expected total
number of bits needed to store the sizes is ((n) (this result is the solution of the corresponding
easy divide-and-conquer recurrence). This is well below the ((nlogn) number of bits needed for
pointers, keys, etc.

6. CONCLUSIONS

We have presented probabilistic algorithms that guarantee that given a random search tree its
output is also a random search tree. Searches by key, insertions, deletions, splits, joins, searches
and deletions by rank can be performed in @O(logn) expected time, where n is the size of the

RANDOMIZATION OF SEARCH TREES 10

involved trees. All these operations should be fast in practice (if generating random numbers is
not very expensive), since they visit the same nodes as their standard deterministic counterparts,
and they can be implemented in a top-down fashion. Although not mentioned in this paper, set
operations (unions, intersections and differences) yielding random search trees if their input is a
pair of random trees, can be implemented in O(n) expected time by similar algorithms.

It can also be shown that the randomized search trees of Aragon and Seidel [1] satisfy all the
Theorems and Lemmas of Section 3. In particular, their algorithms produce always random search
trees, although the authors didn’t mention it explicitly. In this paper, we have shown that the
same results can be achieved using only structural information, namely, subtree sizes.

In Section 3 we have mentioned that no deterministic join algorithm can preserve randomness.
This observation can be generalized to the stronger claim that no “reasonable” deterministic dele-
tion algorithm can preserve randomness. By reasonable we mean that the deletion of a key only
affects the subtree whose root is the deleted key.

We are now investigating the application of the techniques in this paper to other kind of search
trees, like m-ary trees, quadtrees, etc. We are also exploring a family of self-adjusting strategies
for binary search trees, based upon the “insertion with push_.down” algorithm.

REFERENCES

[1] C. R. Aragon and R. G. Seidel. Randomized search trees. In Proc. of the 30th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), Research Triangle Park, NC, pages
540-545, 1989.

[2] T. N. Hibbard. Some combinatorial properties of certain trees with applications to searching
and sorting. J. ACM, 9(1):13-18, 1962.

[3] G.D.Knott. Deletions in Binary Storage Trees. PhD thesis, Computer Science Dept., Stanford
University, 1975.

(4] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, Reading, Mass., 1973.

(6] H. M. Mahmoud. Evolution of Random Search Trees. Wiley Interscience, 1992.

[6] C. Martinez and X. Messeguer. Deletion algorithms for binary search trees. Technical Report
LS1-90-39, LSI-UPC, 1990.

[7] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Comm. ACM, 33(6):668-676,
1990.

[8] C. J. Stephenson. A method for constructing binary search trees by making insertions at the
root. Technical Report RC 6298, IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1976.

[9] J. Vuillemin. A unifying look at data structures. Comm. ACM, 23(4):229-239, 1980.

