Skip to main content

Parallelizable evolutionary dynamics principles for solving the maximum clique problem

  • Other Metaphors
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

An algorithm for approximately solving the maximum clique is presented which uses relaxation labeling neural network techniques, focusing on the continuous problem formulation: maximize a quadratic form over the standard simplex. We employ somewhat surprising connections of the latter problem with dynamic principles of evolutionary game theory, and give a detailed report on our numerical experiences with the method proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. E. Baum and G. R. Sell (1968). Growth transformations for functions on manifolds. Pacif. J. Math. 27(2), 211–227.

    Google Scholar 

  2. I. M. Bomze (1991). Cross entropy minimization in uninvadable states of complex populations. J. Math. Biol. 30, 73–87.

    Article  Google Scholar 

  3. I. M. Bomze (1995). Evolution towards the maximum clique. J. Global. Optim., in press.

    Google Scholar 

  4. I. M. Bomze, M. Pelillo, and R. Giacomini (1996). Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale. In I. M. Bomze, T. Csendes, R. Horst, and P. Pardalos (Eds.), Developments in Global Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  5. C. Bron and J. Kerbosch (1973). Finding all cliques of an undirected graph. Comm. ACM 16(9), 575–577.

    Article  Google Scholar 

  6. R. Carraghan and P. M. Pardalos (1990). An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9, 375–382.

    Article  Google Scholar 

  7. B. Carter and K. Park (1993). How good are genetic algorithms at finding large cliques: An experimental study. Technical Report BU-CS-93-015, Computer Science Department., Boston University.

    Google Scholar 

  8. L. Comtet (1974). Advanced Combinatorics. Reidel, Dordrecht.

    Google Scholar 

  9. J. F. Crow and M. Kimura (1970), An Introduction to Population Genetics Theory. Harper & Row, New York.

    Google Scholar 

  10. R. A. Fisher (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  11. M. R. Garey and D. S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York.

    Google Scholar 

  12. L. E. Gibbons et al. (1996). Continuous characterization of the maximum clique problem. Math. Oper. Res., to appear.

    Google Scholar 

  13. A. Hastings and G. A. Fox (1995). Optimization as a technique for studying population genetics equations. In W. Banzhaf and F. H. Eeckman (Eds.), Evolution and Biocomputation (pp. 18–26). Springer-Verlag, Berlin.

    Google Scholar 

  14. J. Hofbauer and K. Sigmund (1988). The Theory of Evolution and Dynamical Systems. Cambridge University Press.

    Google Scholar 

  15. R. A. Hummel and S. W. Zucker (1983). On the foundations of relaxation labeling processes. IEEE Trans. Pattern Anal. Machine Intell. 5(3), 267–287.

    Google Scholar 

  16. A. Jagota (1995). Approximating maximum clique with a Hopfield network. IEEE Trans. Neural Networks 6(3), 724–735.

    Article  Google Scholar 

  17. M. Kimura (1958). On the change of population fitness by natural selection. Heredity 12, 145–167.

    Google Scholar 

  18. S. Y. Lin and Z. Chen (1992). A flexible parallel architecture for relaxation labeling algorithms. IEEE Trans. Signal Process. 40(5), 1231–1240.

    Article  Google Scholar 

  19. Yu. Lyubich, G.D. Maistrowskii, and Yu.G. Ol'khovskii (1980), Selection-induced convergence to equilibrium in a single-locus autosomal population. Problems of Information Transmission 16, 66–75.

    Google Scholar 

  20. J. Maynard-Smith (1982). Evolution and the Theory of Games. Cambridge University Press.

    Google Scholar 

  21. T. S. Motzkin and E. G. Straus (1965). Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533–540.

    Google Scholar 

  22. H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer (1988). Evolution algorithms in combinatorial optimization. Parallel Computing 7, 65–85.

    Article  Google Scholar 

  23. P. M. Pardalos and A. T. Phillips (1990). A global optimization approach for solving the maximum clique problem. Int. J. Computer Math. 33, 209–216.

    Google Scholar 

  24. P. Pardalos and J. Xue (1994). The maximum clique problem. J. Global Optim. 4, 301–328.

    Article  Google Scholar 

  25. M. Pelillo (1994). On the dynamics of relaxation labeling processes. Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, 1006–1011.

    Google Scholar 

  26. M. Pelillo and A. Jagota (1995). Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks 2(4), 411–419.

    Google Scholar 

  27. A. Rosenfeld, R. A. Hummel, and S. W. Zucker (1976). Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybern. 6(6), 420–433.

    Google Scholar 

  28. P. Taylor and L. Jonker (1978). Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145–156.

    Article  Google Scholar 

  29. J. W. Weibull (1995). Evolutionary Game Theory. MIT Press, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pelillo, M., Bomze, I.M. (1996). Parallelizable evolutionary dynamics principles for solving the maximum clique problem. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1031

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_1031

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics