
Automatic Optimization of Dynamic 
Scheduling in Logic Programs 

Germán Puebla and Manuel Hermenegildo 

{german,herme}@f i.upm.es 

Department of Artificial Intelligence 
Technical University of Madrid (UPM) 

(Abstract) 

1 Dynamic Scheduling 

Many modern logic programming languages provide more flexible scheduling 
than the Prolog traditional left-to-right computation rule. Computation gen-
erally also proceeds following some ñxed scheduling rule but certain goals are 
dynamically "delayed" until their arguments are sufficiently instantiated to al-
low the cali to run efliciently. This general form of scheduling is referred to as 
dynamic scheduling. Languages with dynamic scheduling also include constraint 
programming languages in which constraints which are "too hard" are delayed. 
In addition, most implementations of concurrent (constraint) programming lan­
guages essentially also follow a fixed left to right scheduling rule with suspensión, 
where such suspensión is controlled by the conditions in the ask guards. In fact, 
it has been shown that many such languages can be directly translated into (con­
straint) logic programs with dynamic scheduling with competitive efficiency. As 
a result, languages with dynamic scheduling are being seen more and more as 
very useful targets for prototyping or even implementing concurrent languages. 

2 Optimization of Dynamic Scheduling 

Dynamic scheduling increases the expressive power of (constraint) logic pro­
grams, but in most implementations it also introduces significant run-time over-
head. The objective of our optimization is to reduce as much as possible this 
additional overhead by means of global analysis and program transformation, 
while preserving the semantics of the original programs. Previous work on op­
timization of dynamic scheduling has concentrated on detecting non-suspension 
(e.g-, [4]) or on eliminating dynamic scheduling when it is not needed and/or pro-
ducing reorderings in which dynamic scheduling is not needed any more (e.g., 
[1]). However, ñnding an order of literals in which no dynamic scheduling is 
needed does not guarantee that efficiency is improved. By this we do not mean 
to say that reordering should not be performed, but rather that it should only 
be performed when some conditions are met. In [7] we present optimization 
techniques which treat all the usual forms of delay declarations and are both 
correct and efficient in the sense of [5, 3], i.e., the observables are preserved and 
computation time is never increased (the no slow-down property is met). These 
optimizations include simplification of delay conditions in when meta-calis, and 
elimination of such meta-calis when not needed. Regarding block declarations, 
since they affect all the literals that cali the corresponding predicate, they can 



in principie be simpliñed only if the simpliñcation is allowed in all the such lit-
erals. This is overeóme by means of múltiple specialization which involves the 
generation of several versions of a predicate for different uses. 

3 Implementat ion and Experimental Results 

The optimization techniques presented in [7] have been implemented in the CIAO 
compiler [6] using newly available analysis techniques [2]. This is, to the best of 
our knowledge, the ñrst implementation and integration in a compiler of an opti-
mizing technique for dynamic scheduling. A series of benchmark programs have 
been implemented in a reversible way, so that they can be used in two modes of 
operation, forwards and backwards, through the use of suspensión declarations. 
Note that though the declarative meaning of these programs explains both modes 
of operation, the ñxed left-to-right scheduling rule does not allow running them 
backwards. The results show that optimization times are comparable to the time 
that the SICStus compiler takes to compile the same benchmarks into compact-
code. For forward execution, all delay declarations are eliminated, obtaining a 
program which is as efficient as the original program designed to work forwards. 
This means that it is possible to write programs that are reversible (either by 
using the delay declarations directly or by using a higher level language for which 
the compiler generates delay declarations automatically) without incurring any 
run-time overhead when executing forwards. For backward execution, many of 
the delay declarations are needed and thus are not always completely eliminated 
by the optimizer. However, even in this case some speed-up is obtained due to 
the optimizer simplifying the suspensión conditions. 

References 
1. J. Boye. Avoiding dynamic delays in functional logic programs. In Programming 

Language Implementation and Logic Programming, number 714 in LNCS, pages 
12-27, Estonia, August 1993. Springer-Verlag. 

2. M. García de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Con-
straint Logic Programs with Dynamic Scheduling. In 1995 International Logic 
Programming Symposium, Portland, Oregon, December 1995. MIT Press. 

3. María José García de la Banda García. Independence, Global Analysis, and Par-
allelism in Dynamically Scheduled Constraint Logic Programming. PhD thesis, 
Universidad Politécnica de Madrid (UPM), July 1994. 

4. M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Tenth International 
Conference on Logic Programming, pages 83-99. MIT Press, June 1993. 

5. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Con­
ditions. Journal of Logic Programming, 22(l):l-45, 1995. 

6. M. Hermenegildo, F. Bueno, M. García de la Banda, and G. Puebla. The CIAO 
Multi-Dialect Compiler and System: An Experimentation Workbench for Future 
(C)LP Systems. In Proccedings ofthe ILPS'95 Workshop on Visions for the Future 
of Logic Programming, Portland, Oregon, USA, December 1995. 

7. G. Puebla and M. Hermenegildo. Automatic optimization of dynamic scheduling 
in logic programs. Technical report, Technical University of Madrid, 1996. Avail­
able from h t t p : //www. c l i p . d i a . f i . u p m . e s / . 

http://clip.dia.fi.upm.es/

