N

N

Modeling Sharing and Recursion for Weak Reduction
Strategies using Explicit Substitution

Zine-El-Abidine Benaissa, Pierre Lescanne, Kristoffer H. Rose

» To cite this version:

Zine-El-Abidine Benaissa, Pierre Lescanne, Kristoffer H. Rose. Modeling Sharing and Recursion for
Weak Reduction Strategies using Explicit Substitution. [Research Report] RR-3092, INRIA. 1997.
inria-00073599

HAL Id: inria-00073599
https://inria.hal.science/inria-00073599
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00073599
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Modeling Sharing and Recursion
for Weak Reduction Strategies
using Explicit Substitution

Zine-El-Abidine Benaissa, Pierre Lescanne, Kristoffer H. Rose

N° 3092
Janvier 1997

THEME 2

apport
derecherche

%I INRIA

LORRAINE

Modeling Sharing and Recursion
for Weak Reduction Strategies
using Explicit Substitution

Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

Théme 2 — Génie logiciel
et calcul symbolique

Projet EURECA

Rapport de recherche n° 3092 — Janvier 1997 — 33 pages

Abstract: We present the Aol -calculus, a formal synthesis of the concepts of sharing and
explicit substitution for weak reduction. We show how Ao, can be used as a foundation of
implementations of functional programming languages by modeling the essential ingredients
of such implementations, namely weak reduction strategies, recursion, space leaks, recursive
data structures, and parallel evaluation, in a uniform way.

First, we give a precise account of the major reduction strategies used in functional
programming and the consequences of choosing A-graph-reduction vs. environment-based
evaluation. Second, we show how to add constructors and ezplicit recursion to give a precise
account of recursive functions and data structures even with respect to space complexity.
Third, we formalize the notion of space leaks in Ao and use this to define a space leak free
calculus; this suggests optimisations for call-by-need reduction that prevent space leaking
and enables us to prove that the “trimming” performed by the STG machine does not leak
space.

In summary we give a formal account of several implementation techniques used by state
of the art implementations of functional programming languages.

Key-words: Implementation of functional programming, lambda calculus, weak reduc-
tion, explicit substitution, sharing, recursion, space leaks

(Résume€ : tsvp)

Unité de recherche INRIA Lorraine
Technopble de Nancy-Brabois, Campus scientifique,
615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY (France)
Téléphone : (33) 83 59 30 30 — Télécopie : (33) 83278319
Antenne de Metz, technopdle de Metz 2000, 4 rue Marconi, 55070 METZ
Téléphone : (33) 87 20 35 00 — Télécopie : (33) 87 76 39 77

La modélisation du paratage et de la
récursivité pour la stratégie faible avec
un calcul de substitutions explicites

Résumé : Dans cet article, nous présentons le Agg-calcul qui inclut le concept du partage
des calcul et un calcul de substitutions explicites pour la réduction faible du A-calcul. Nous
montrons comment utiliser ce calcul pour fonder les implantations des langages fonctionnels
en modélisant les ingrédients essentiels ces implantations, comme les stratégies de réduction,
la recursivité, les structures de données récursives, les fuites d’espace mémoire et ’évaluation
paralléle.

Tout d’abord, nous commencons par exprimer de facon précise les stratégies standards
utilisées dans la plupart des implantations de langages fonctionnels ainsi que les conséquences
du choix entre les techniques de réduction de graphes et les techniques de machines a en-
vironnement. Ensuite, nous montrons comment ajouter les constructeurs et ['opérateur de
récursion explicite pour définir précisément l'implantation des fonctions récursives et les
structures de données récursives, en particulier vis a vis de leurs comportement au niveau
de I’espace mémoire occupé. Enfin, nous formalisons la notion de fuites d’espace mémoire
dans Ac{, nous 'utilisons pour définir un calcul qui évite ces fuites, puis nous l'optimisons
pour la stratégie paresseuse, ce qui nous permet de montrer que la STG machine est sans
fuites mémoires.

En résumé, nous présentons un modele formel pour exprimer précisément et en détail la
plupart des techniques d’implantation des langages fonctionnels.

Mots-clé : Implantation des langages fonctionnels, lambda calcul, la réduction faible, les
substitutions explicites, le partage, la recursivité, les fuites d’espaces mémoires

Modeling Sharing and Recursion for Weak Reduction Strategies using Fxplicit Substitution 3

Contents
1 Introduction 4
1.1 Complexity of functional computations 4
1.2 Sharing and strategies L Lo L)
1.3 Generic descriptions of implementations 6
1.4 Plan 6
2 Preliminaries 6
3 Calculi for Weak Reduction with Sharing 9
3.1 Explicit substitution and sharing 0000 9
3.2 Addresses and parallel reduction 00000 10
3.3 Explicit substitution with addresses 13
4 Reduction Strategies 14
4.1 Address-controlled strategies 0L 14
4.2 “Call-by-Need” strategies 16
5 Constructors and Recursion 22
5.1 Algebraic data structureo oL Lo 22
5.2 Recursive code anddata 0L Lo 23
6 “Trim:” A Space leak free calculus 27
7 Conclusions 29

RR n"3092

4 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

1 Introduction

The aim of this paper is to present a framework for several forms of implementation of func-
tional programming languages. It is often said that there are essentially two main classes of
implementation, namely those based on graph reduction and those based on environments.
The first ones are efficient in that they optimize the code sharing, the second in that they
allow a design of the implementation closer to the hardware. These two classes are traditio-
nally split into subclasses according to the strategy which is used (evaluation of the value
first, of the functional body first, or by need). However, in our approach a strategy is not an
ingredient of a specific implementation, but something which is defined fully independently
of the chosen form of implementation (graph reduction or environments). Our unifying fra-
mework is a calculus which describes faithfully and in detail all the mechanisms involved in
weak reduction. Rather naturally we have chosen a weak calculus of explicit substitution
(Curien, Hardin & Lévy 1992) as the basis, extending it with global addresses. This way,
we can talk easily, and at a high level of detail, about addresses and sharing. At first, the
calculus is not tied to any kind of implementation: the separation between graph reduction
and environment-based evaluation emerges naturally when studying how to assign an ad-
dress to the result of a successful variable lookup. Strategies come later as restrictions of
the calculus. In this paper we study call-by-value and call-by-name of Plotkin (1975) as well
as the not yet fully understood call-by-need strategy, and we show how parallel strategies
can be devised. Finally we treat an important problem of implementation for which people
propose ad-hoc solutions, namely space leaking: we propose a natural and efficient solution
to prevent it (which we prove correct).

1.1 Complexity of functional computations

Computer science is rooted in the notion of computability and decidability which was deve-
loped in the 30s by Turing (1936) and Church (1936) as an answer to Hilbert and Godel
(1931). While the purpose of these studies was merely to define the “effectively compu-
table” functions by establishing what could possibly be computed in a mechanical way, the
formulation still ended up having a profound influence on what was to be known as “high-
level programming languages” since few other notations were (and are) known for expressing
problems in a way that is guaranteed to be computable.

For the languages inspired by “Turing Machines” (TMs), now known as imperative pro-
gramming languages, there is a natural notion of a computation step. As a consequence, the
study of computational complezity of algorithms expressed as imperative programs is well
established, and precise measures for the time (and space) resources required to solve many
computable problems exist, all based on the assumption that the step (and data structure)
of a TM provides a fair unit of computational time (and space).

For languages based on Church’s “A-calculus” the issue is not so clear, however: there
never was a properly established notion of “computation step” for the A-calculus: the original

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Fxplicit Substitution 5

notion of contraction using the rule
(Az.M)N — M|z := N] (8)

was recognized from the start as not fulfilling this purpose, because it is not clear that
there is a bound on the amount of work involved in the substitution of N for z in M since
M can contain an arbitrary number of zs. This was recognized as a problem and a first
solution was found: combinatory logic introduced by Schonfinkel (1924) and (see Curry &
Feys (1958) for a discussion Curry 1930) gives a truly stepwise realization of the A-calculus
and hence assigns a complexity to reduction of A-terms. However, this measure is far too
pessimistic for realistic use for two reasons: first it duplicates computation, second it strictly
enforces a particular sequence of evaluation, third the coding of A-terms into combinatory
logic changes the structure of the term in a way that may increase the size quadratically.
Thus for a while there was no real way to assign complexity to algorithms based on their
formulation in A-calculus (or languages based on A-calculus — the functional languages').

1.2 Sharing and strategies

The seminal fundamental study of the complexity of A-evaluation was Landin’s (1965) SECD
machine which was the first device described to mechanically evaluate A-terms. The tech-
nique used is as follows. First one translates the A-expressions into a sequence of “ins-
tructions” | second one reduces those instructions sequentially using a complicated system
of stacks to keep track of the code to be executed later. The complexity boils down to a
measure w.r.t. a specific strategy and makes the mentioned duplication implicit in the data
structures. Later abstract machines include some variation in the used reduction strategy
but remain dedicated to one (some early, seminal examples are Plotkin 1977, Henderson
1980, Cardelli 1983).

The first issue, sharing to avoid duplication, was addressed already by Wadsworth (1971)
who proposed A-graph reduction which is the simple idea that duplication should be delayed
as long as possible by representing subterms of common origin by identical subgraphs. This
way all “duplicates” profit from any reductions happening to that particular subterm (or
-graph, as it were). This technique was combined with combinator reduction by Turner
(1979) and generalized by Hughes (1982) into supercombinator graph reduction which is the
computational model underlying most implementations of functional languages today.

The second issue, evaluation sequence, was addressed partly by Plotkin (1975) who
identified the difference between the evaluation sequence or reduction strategy used in all
implementations at the time, call-by-value, and the simplest normalizing strategy known
to normalize, call-by-name. The issue of the complexity of evaluation was not addressed,
however. The work on categorical combinatory logic introduced by Curien (1983) and the
following explicit substitutions (Abadi, Cardelli, Curien & Lévy 1991) permitted this to be

IStrictly speaking, functional languages are based on the notion of recursive equations as explained by
McCarthy (1960) which is A-calculus plus an explicit recursion operator; we return to this subtle point in
the paper.

RR n"3092

6 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

repaired: here any strategy can be used and the complexity in each case is represented by
the reduction length in that substitution is defined in a stepwise manner such that each step
can conceivably be implemented in constant time and hence serve as the basis for the study
and systematic derivation of efficient implementations.

1.3 Generic descriptions of implementations

The aim of providing an accurate analysis of the complexity of computations of functional
programs including achieving a clear and independent integration of sharing and description
of the restriction to a strategy, has lead us to a new approach to the description of abstract
machines. Indeed, if those three aspects can be fully dissociated we can to propose a generic
description of abstract machines, yielding each specific machine as a particular instantiation
of several parameters. This is clearly illustrated by Table 4. In this convenient framework we
were able to formalize other aspects of functional programming languages, namely recursive
definitions, constructors and space leak freeness.

1.4 Plan

We achieve our aim by providing a solution to the three issues exemplified in the previous
sections: we obtain a computational models that, in a general fashion, is a realistic com-
putational model for weak A-calculus reduction incorporating both realistic sharing to avoid
duplicating work and a realistic measure of the complexity of substitution and leading to a
generic description of abstract machines

We start in Section 3 by combining sharing and explicit substitution for weak A-calculus
(reflecting that functional languages share the restriction that reduction never happens under
a A) into a calculus, Acd, with explicit substitution, naming, and addresses. Moreover,
it naturally permits two update principles that are readily identifiable as graph reduction
(Wadsworth 1971) and environment-based evaluation (Curien 1991). In Section 4 we show
how Aol adequately describes sharing with any (weak) reduction strategy; the proof is
particularly simple because it can be tied directly to addresses; to illustrate this we prove
that Ao, includes the “Ajt” calculus of Ariola, Felleisen, Maraist, Odersky & Wadler (1995).
In Section 5 we study how the usual extensions of explicit recursion and data constructors
can be added to give the full expressive power of functional programming. In Section 6, we
illustrate the adaptability of this calculus by defining the notion of a space leaking, and we
study a class of space leak free subcalculi. As a corollary we get that the trimming used in
the “STG” calculus of Peyton Jones (1992) is safe.

2 Preliminaries

We start by summarizing certain standard concepts and notations that will prove convenient
throughout.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Fzxplicit Substitution 7

Notation 2.1 (relations). We designate binary relations by arrows, following Klop (1992).
Let -7 C A x A be such relations and let a,b € A.

1. 5 =7 U and -7 denotes the composition of - and -

2. —» is the transitive reflexive closure of —.

3. We use Rosen’s (1973) stencil diagrams to express propositions (several examples are
given below), with solid arrows and nodes denoting (outer) universally quantified re-
lations and objects, and dotted arrows and hollow nodes denoting (inner) existentially
quantified relations and objects, respectively.

4. — is confluent if «—- = C = «.

5. The —-normal forms are those a such that b : a — b. In other words, a is a normal
form if @ — b implies a = b.

6. —» is the normal form restriction of —» that satisfies a —» b iff ¢ —» b and b is a
—-normal form.

7. — is terminating if all sequences a; — as — --- are finite; it is convergent if it is
terminating and confluent.

Definition 2.2 (term rewriting). The following summarizes the main concepts of term
rewriting used in this paper.

1. We permit inductive definition of sets of terms using syntax productions. Furthermore,
we write C{_} for a conteuxt.

2. A term rewrite system is a set rules ¢; — r;, where ¢; and r; are terms called the
left-hand side (lhs) and r; the right-hand side (rhs), respectively. Furthermore, all
variables in a rhs also occur in the associated lhs.

3. A substitution o is a map from variables to terms; this is homeomorphically extended
to any term ¢ such that o(t) denotes the term obtained by replacing all variables z in ¢
with o(z). A redez is a term of the form o(£) for some substitution o and some rewrite
rule £ — r. A rewrite step is the procedure of replacing a redex in some context C'{_}

with its reduct C'{o(r)}; we then write C{o(f)} — C{o(r)}.

4. We say that two rewrite rules ¢; — r1 and £5 — 72 overlap if there exists substitutions
01,02, a (possibly trivial) context C1{_}, and a term t3, such that o1(£;) = C1{t2}
and o3(f3) = t2 but fo: o(f1) = Ci{z}. A term rewrite system is orthogonal if it has
no overlaps and is left-linear (no variable occurs more than once in any lhs).

5. Let the overlining of a term ¢, ¢, be obtained by replacing all the symbols in ¢ with
(new and lglique) “overlined” symbols. For a term rewrite system R with rewrite rules
£ — 7 let R have rules { — r. Clearly, if we overline the symbols of a redex for the

RR n"3092

8 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

Terms. M and N denote pure Axp-terms. Aoy -terms are ranged over by W given by

W:i=n | ww | M][s] (Weak)
M,N:::)\M|MN| n (Pure)
s=W s | id (Substitution)
Beta-reduction.

(AM)[s]W — MW - 5] (By)

Substitution elimination.
(MN)[s] — M[s] N[s] (App)
O[W -s] =W (FVar)
n+ 1[W-s]— nls] (RVar)
nfid] - n (Varld)

Figure 1: Aoy,

R-rule £ — 7 in a term ¢, then this will now instead be a redex for the R-rule £ — r. If ¢
contains several R-rule redexes, in particular one such that t = C{co(¢)} for the R-rule
£ — r, then the R-redexes remaining in the reduct C{o(r)} are called the residuals of
the non-reduced R-redexes. Reducing to R-normal form and then erasing all overlines
is called a development; developing T is called a complete development since all redexes
of t as well as all the residuals are reduced.

Notation 2.3 (de Bruijn notation). We employ the “namefree” representation of A-terms
invented by de Bruijn (1972): Each occurrence of a variable in a A-term is represented by

a natural number, called the indez, corresponding to the number of A’s traversed from its

binding A to it (so indices start at 0). The set of these terms is defined inductively by

M,N =AM | MN | n. The free indices of a term correspond to the indices at the ou-

termost level of what is usually known as the free variables and is given by fi(M) = fig(M)

where fi; is again defined inductively by fi;(M N) = fi; (M) Ufi;(N), fi;(AM) = fi;41 (M), and

fi;(n) = {n— i} when n > i but @ when n < i. We call this calculus Axp and when mixing

it with other calculi we will refer to Anp-terms as pure terms. In what follows, a value is a

term of the form AM[s] or nVj...V,, where Vi, ...V, are also values.

Finally, we base our work on the Aoy -calculus, shown in Fig. 1, one of several calculi
of weak explicit substitution given by Curien et al. (1992). The idea behind this calculus
is to forbid substitution in abstractions: this is accomplished by never propagating explicit
substitutions inside abstractions yet requiring in (B,) that a substitution is present in

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Fzxplicit Substitution 9

every redex. This restriction gives a confluent weak calculus but necessitates using a term
representation with lists of bindings as originally found in the Ap-calculus of Curien (1991).

3 Calculi for Weak Reduction with Sharing

In this section we generalize the weak explicit substitution calculus Aoy, defined by Curien
et al. (1992) to include addresses in order to explicit pointer manipulations. Our starting
point is reminiscent of the labeling used by Maranget (1991),%2 however, our notion of “ad-
dress” is more abstract and allows us a better comprehension of implementations of machines
for functional programming languages and their optimizations.

3.1 Explicit substitution and sharing

Figure 3 presents the syntax and reduction rules of Ae? (it will be properly stated in
Definition 3.10 once the notion of address is formally established). Like Aoy, it forbids
substitution in abstractions by never propagating explicit substitutions inside abstractions
yet requiring that every redex must contain a substitution. This restriction gives a confluent
weak calculus but necessitates using a term representation with lists of bindings as originally
found in the Ap calculus of Curien (1991).

Aol includes the special rule (Collect) which is meant to save useless computations and
can be omitted: it collects “garbage” in the style of Bloo & Rose (1995), i.e., terms in
substitutions which are never substituted. Although computation in such useless terms can
be avoided using specific strategies, the accumulation of useless terms in substitutions is a
drawback w.r.t. the size of terms, and hence w.r.t. space complexity. In Section 6, we study
a phenomenon well known in functional programming as the space leak problem.

Furthermore, notice that the rules (FVarG) and (FVarE) have the same left-hand side
(LHS): the difference between these two rules is in the choice of the address in the right-
hand side (RHS) which is either b (FVarG) or a (FVarE). This conceptual choice has a
direct correspondence to the duplication versus sharing problem of implementations. This
is illustrated for some E by the example in Fig. 2. We obtain four possible different resulting
terms namely (n®n®)?, (n® n9)?, (n°n’)?, and (n°n?)®. It is clear that erasing the addresses
of these four terms produces the same term, namely n n: the difference between them is
the amount of sharing (or shapes of the associated graph) we obtain, more precisely, the use
of (FVarG) maintains sharing whenever (FVarE) decreases it. Also notice that sharing is
only increased when a term with addresses in it is duplicated, i.e., when (App) is used with
some addresses inside s. As a consequence, further (parallel) rewriting of this argument will
be shared with all its other occurrences in the term: Assume that the address is a, a copy
of the term E at address b (or, to be precise, a copy of its root node because addresses of
its subterms are not changed) is performed. Then the term 0[E -s] at address a is replaced
by that copy and later rewriting of this argument will not be shared. Thus we see that

?In particular the use of developments and parallel reduction to model sharing.

RR n"3092

10 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

FV G ﬂﬂ.—(})‘) b . bya
w——)(ﬂbg[ﬂb]d)a (FV&I’E) (Eb ﬂd)a
(0[%]° 0[n]%)° ———(nnl)
(nf0[nt)t)e (FVarG) (22)"
(FVarE) — 5 (n°n%

(FVarE)

Figure 2: Graph- vs. Environment reduction.

the reduction — contains two substitution elimination subreductions, o—g) and — Let

oo = {(App), (E{Var), (Varld)}. Then og = 0g U {(FVarG)} and oe = o¢ U {(FVarE)}.

3.2 Addresses and parallel reduction

So, a consequence of mixing those two systems is the creation of a critical pair (non-
determinism) and thus non-orthogonality. Fortunately, since this critical pair is at the root,
the residual redex notion (Huet & Lévy 1991) can be extended in a straight-forward way:
We just observe that there is no residual redex of (FVarG) (resp. (FVarE)) after applying
(FVarE) (resp. (FVarG)). We first establish that this is safe before we give the definition
(Def. 3.7).

Definition 3.1. A complete development of a preterm 1 is a series of Ao -rewrites that
rewrite all redexes of T" until no residuals remain.

Thus the non deterministic choice between (FVarE) and (FVarQG), discussed above, makes
complete development nondeterministic. We will denote the set of preterms obtained by all
possible complete developments of T by dev(T'); notice that these preterms depend on the
fresh addresses introduced by (App).

Lemma 3.2. dev(T) is finite for any preterm T.
Proof. Clearly #dev(T) < 2¢ where i is the number of (FVarG/E)-redexes in 7. O

Definition 3.3 (sharing ordering). Let # be a map on the set of addresses. The ordering
>4 is defined inductively by

o Ifforalli, 0 <i<nT; >y T/ then M[Ty---T,]* g M[T} - 0N
e n® >y (@) and
o if T'>pT" and U >g U’ then (TU)* I>¢ (T’U’)‘)(a).

we say that the addressed term T collapses in U, T > U if there exists a map 6 such that
U g (T).

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Ezxplicit Substitution 11

Syntax. The addressed preterms are defined inductively by

T UV .= FE® | L (Addressed)
E F = M]s] | uv | n (Evaluation Context)
M N =M | MN| n (Pure)
s, tx=id | U-s (Substitution)

where everywhere a, b, ¢ range over an infinite set A of addresses.

Weak S-introduction prereduction. T is defined by the rule

(AM)[s)" U)* — M[U -5]* (Buw)

Weak substitution elimination prereduction. - is defined by the rules

(MN)[s]* = (M][s]° N[s]°)* b, c fresh (App)
0[E"-s]* — E° (FVarG)
0[E®-s]* — E° (FVarE)
n+1[U - s]" = nls]* (RVar)
n[id]* - n* (Varld)

Collection prereduction. — is defined by the rule

MIs]* = M[s|a)]” s 7# slaorn (Collect)

where environment trimming is defined by s|; = s|9 where id|} = id and (U -s)[; = U - 5[t
when i € I but L -s|*** when i ¢ I.

Figure 3: Aol : syntax and reduction rules.

RR n"3092

12 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

Lemma 3.4. Let T be a preterm. (dev(T),>) is a finite complete partial ordering (cpo).

Proof. The lower bound of two preterms 77 and T3 belonging to dev(7') is the most general
unifier of 71 and T3 where the addresses are interpreted as free variables (and the result of
course considered modulo renaming). Moreover, > is a partial ordering. [l

The next lemma uses the translation function “erase” which deletes all addresses of an
addressed term, obviously resulting in a Aoy, -term.

Lemma 3.5. Let P and @) be two preterms. If P - Q then erase(P) v erase(Q®).

Proof. Obvious. O

Theorem 3.6 (finite development). Let T' be a preterm. Then all complete develop-
ments of T' are finite

Proof. From Lemma 3.5, and the fact that Ao, is orthogonal, we obtain that Aol has the
finite development property. O

Now we can define the parallel extension W of a rewrite system R which corresponds
intuitively to the simultaneous reduction of all R-redexes of a term T, e.g., one T step

1s the simultaneous reduction of all B,,-redexes.

Definition 3.7 (parallel extension). Let 7" and U be two terms. Then the parallel ex-
tension w=> of the rewrite relation — is defined by T w> U iff U € dev(T).

The next definition shows how to determine when an ‘addressed term’ corresponds to a
‘directed acyclic graph:’ this should be the case exactly when the ‘sharing information’ is
non-ambiguous.

Definition 3.8 (addressing). Given some set of terms T with a notion of address asso-
ciated to some subterms (written as superscripts). Assume ¢t € T is such a term and let
a,b € A range over the possible addresses.

1. The set of all addresses that occur in ¢ is written addr(t).

2. The outermost a-addressed subterms of t is the set t@a = {s{,...,s%} for which an
n-ary context C{ } exists such that t = C{s},...,s%} and a ¢ addr(C{_,...,_}).

3. t is admissible if all addresses a € addr(t) satisfy t@a = {s®} where a ¢ addr(s) (this
is a variant of a notion of Wadsworth 1971).

4. If — is a rewrite relation on T defined by a certain number of axioms, then for each
address a, % is the address restriction of — to only those (proper) reductions where

the redex has address a. This is generalized to any set of addresses A = {ay,...,a,}:
A
y = UaEA i>'

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 13

5. w5 (resp. Hi>) is the parallel extension of % (resp. i>)

6. Parallel —-reduction is #=% =[], Ay

7. n-parallel —-reduction is MLONGS UACA/\#A<n Hiﬁ in particular w D is called serial

reduction.

Parallel reduction +=+ expresses not only sharing but also parallel computation because

at each step a parallel computer can reduce a set of addresses simultaneously. Notice that

if a € addr(U) or ANaddr(U) = @ the reductions degenerate: {7 |U ST} ={T|U v
Ty={T|U -2 Ty={T|UT}=0.

.. 0o .
Proposition 3.9. M LoqC Preserves admissibility.

Proof. By definition of parallel rewriting, one rewrite step rewrites all occurrences of an
address a, hence admissibility is preserved. [l

3.3 Explicit substitution with addresses
Definition 3.10 (Aol). Given the preterms and prereductions of Fig. 3.

1. The Aol -terms are the admissible Ao -preterms.

2. Aol -substitution is the relation H%),

3. Aol -reduction is the relation Hﬁ) which we will write as =2+ when confusion is

w

unlikely.

As for Aoy, one associates with the pure term M the Ac?-term M[id]* which will then
reduce to weak normal form modulo substitution under abstraction. Normal forms, values
V, are of the form AM[V; -+ Vy]% or (... (V)01 .. Vpy)P,

The last two lemmas of this section establish the connection between Aol and Ao, and
together show the correctness and confluence modulo erasure of Ao, .

Lemma 3.11 (projection). Let T and U be two addressed terms. If T w== U then
erase(7T) - erase(U).

Proof. Easy induction on the structure of 7.

e T = M|[s]®, two cases are possible. If a = b, by case analysis on Ag?-rule, three rules
can be applied namely (App), (FVarE), (FVarG), or (RVar). If (App) is applied (that
means that M = M; M3) then

erase(T) = My Ms[erase(s)] — M [erase(s)] Ma[erase(s)] = erase(U)

if @ # b, then all evaluation contexts labeled by a are subterms of 7', and are equals
and induction hypothesis applies.

RR n"3092

14 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

o T = (TyTy)%, if a = b only By, rule can be applied. if a # b then the induction
hypothesis applies. O

Lemma 3.12. let W and W' be two Ao-terms. If W - W' then there exists two
addressed terms T and U such that W = erase(T), W' = erase(U), and T +=> U.

Proof. Label each subterm of W by its access path to ensure that each subterm has a unique
address and then rewrite using the redex’s address. More formally, we define the function (we
called label) that translates Ao-terms to evaluation contexts. This function assigns to each
weak subterm of a weak Ao-term its position relative to the root ensuring the uniqueness of
addresses to subterms.

label(Tsz)p = (label(Tl)1plabel(Tz)2p)p
label(M [T} - - - T, - id]), = M[label(T1)1p - - -label(Ty)nyp - 1d]P

P
label(n,) = nf
Then it is easy to show that label(M) «% label(N). O

Notice that label is a naive translation function of Ao-terms because it does not profit
from the possible amount of sharing in Ac?®. For instance, let R be a weak Ao-term then
label(RR) = R*R® and thus reductions in the left R and in the right will not be done

simultaneously because they have different addresses.

4 Reduction Strategies

In this section we show how conventional weak reduction strategies can be described through
restrictions of the Aol -calculus. First we formalize the classic sequential strategies call-by-
name, call-by-value, and call-by-need. Second, we formalize two common parallel reduction
strategies: spine parallelism and speculative parallelism.

4.1 Address-controlled strategies

The crucial difference from traditional expositions in both cases is that we can exploit that
all redexes have a unique address. We will thus define a reduction with a strategy as a
two-stage process (which can be merged in actual implementations, of course): we first give
an inference system for “locating” a set of addresses where reduction can happen, and then
we reduce using the original reduction constrained to just those addresses.

Definition 4.1 (strategy for addressed terms). Given a reduction — on aset of ad-

dressed terms.

1. A strategy S is a relation written U l; A from addressed terms U to sets of addresses
A.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 15

Strategy | (FVar?) | (Scl) (Par) | (Sub) (Hd) (Tl) | (Sap) (Lap) (Rap)
v Eor G| v v v v v v v v
CBN E v X X @ - X
CBV E v X X OAN® O OA-®
CBNeedE E ® X -3 v X ©) alO) X
CBNeedG G v X X ©) alO) X
Specul-||, E v ® v v v v v v
Spine-||, E v ® v v v v v X

v': “always applicable;” x: “never applicable;” blank: “don’t care;” @: U is
a value; @: V is a value; ®: if s = U -8’ and M = 0 then U is a value; and

@: #FA<n.

Figure 4: Strategies for Aol .

2. For a strategy 8, S-reduction X—/g) is defined by U, X—/g) Uy iff Uy Ig A and

U, %U;

We begin with the possible reduction in context inference rules which make possible to
restrict the addresses at which the rewrite rules can be applied.

Definition 4.2 (strategy rules). The Ao -strategy rules are the following:

UFA UF A,

m (SCI) UFA A= Al U A2 (Par)
_sk4 (Sub) ura (Hd) _shA (T1)
Ms]*+ A U-skA U-skA

UFA VEA
v @ O® myera P Gyera B

where we furthermore require for (Scl) and (Sap) that some Ac?-rule is, indeed, applicable.
A Xoj-strategy S is specified by giving a list of conditions for application of each rule; this
defines the relation I; . Notice that the normal forms (or values) for some strategies are not
Aol -values, i.e., closed weak normal forms. For instance, if (Rap) is disallowed then normal
forms correspond to closed weak head normal forms (whnf) of shape (AM)[s]®.

Figure 4 shows the conditions for several strategies. Notice that when (Sub) is disabled

then (Hd) and (TI) are not reachable.
For the remainder of the section we will discuss these strategies. Notice that there are
two forms of non determinism in the strategies. One is due to (Par), the only rule which

RR n"3092

16 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

contains the union operator and can yield more than one address for reduction. The other
form of nondeterminism already mentioned in Section 3 (and here permitted only in the first
strategy) is the choice between (FVarE) and (FVarG).

The first strategy, “v,” allows every rule and gives us the full Aoy -calculus.

Proposition 4.3. H)(/—/> =

Proof. An easy induction over Acg-terms shows that T l; Aif and only if @ C A C
addr(U). O

Thus it is clear that all other strategies specified this way define reductions weaker than
Aol . CBN and CBV are just the the call-by-name and call-by-value strategies of Plotkin
(1975). They both use (FVarE) in order to prevent any sharing of subterms.

The next two strategies are like CBN but add sharing in the way used by functional
language implementation: CBNeedE is the call-by-need strategy (Launchbury 1993, Ariola
et al. 1995); CBNeedG is an adaption of Wadsworth’s (1971) “A-graph reduction” to weak
reduction (we return to these below).

The last two strategies realize n-parallelism with sharing. The Specul-||,, picks addresses
everywhere in the term expecting that some reductions will be useful and the Spine-||,, selects
addresses in the head subterm disallowing (Rap) rule in order to compute the weak head
normal form. The simple formulation we have found has promise for proving properties of
parallel reduction, however, parallel reductions are otherwise outside the scope of this paper
and the rest of this section focuses on sequential reduction.

4.2 “Call-by-Need” strategies

We start by stating some structural properties of terms preserved by sequential reduction.
We restrict our attention to just “Call-by-Need-like” strategies. Our intuition about such
reduction strategies is that they only reduce a redex in a certain part of a term. This is
captured by the following;:

Definition 4.4 (Argument local terms). Given 7' and a,b € addr(T), b is the right
subaddress of a if b occurs only in contexts C{(U E®)*}. T is argument local if for each
address b € addr(T) which is subaddress of some a then b occurs only in configuration

C'{(U F*)*} for the same a.
Definition 4.5 (Head Terms).

Closure Terms are admissible closed addressed terms and defined inductively by

P = M[s]* | (PM[s]*)" such that a ¢ addr(P) (Head Term)
su=P-s | l-s | id (LSubstitution)

We call terms of the form _[_] closures.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 17

Head Terms are closure terms that are argument local.

The insight is that these term classes capture the essence of sequential and call-by-
name/call-by-need reduction. Argument local terms ensure that right arguments of appli-
cations are never reduced since they cannot occur in the right argument of an application.
In fact, only terms in substitutions are updated.

Proposition 4.6. Given two terms P and T and a strategy S, such that P H/T> T. IfS

disables (Rap) and enables (FVarE) only when E (in 0[E® - s]*) is a value then if P is a
head term then T is a head term.

Proof. Since T is a head term then it has the form
(-~ (Nolso]™ Na[sa]®)® - - Ny[sa]*n)"

where the s;’s contain only terms of this form, and the a; do not belong to addr(Ng[so]*).
The proof is by case analysis of each rule of Acd,.

By
T = C{((AM)[s)° N[t]")*} = C{M[N[t]’ - s]"} = P
Since T is a head term, then each occurrence of the subterm ((AM)[s]¢ N[t]®)* is not
a right argument of an application. Hence replacing this subterm by M[N[t]® - s]¢
preserves head term property.
FvarE
T = CLO[AM)[s] -) — C{AMs]") = P
(FvarE) is restricted to values and this obviously preserves head term property. if it
is not restricted then one can get non argument local terms.
Apply the same reasoning to the other rules. [l

Corollary 4.7. Given a reduction M[id]* w——» T using a strategy S. If 8 is Call-by-needF,
Call-by-NeedG, or some combined Call-by-l\/éged strategy® then T is a head term

We conclude this section by relating the system we have developed to Ariolaet al.’s (1995)
“standard call-by-need Ajgt-calculus” shown in Fig. 5. In A, a substitution is represented
by nested lets which means that sharing is tied to the term structure. This corresponds
to machines with “shared environments” (i.e., using a linked list of frames) hence At cor-
responds to Acg with an environment-based evaluation strategy (the proof is given below).
Notice that, strictly speaking, the above rewrite system is higher order since E{z}* in the

3We mean a strategy that uses both rules (FvarE) and (FvarG).
4The notation E{_} is not a context but an evaluation context, i.e., a window in a term that enables us
to decide the redex to reduce.

RR n"3092

18 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

Syntax.
M,N:::J:|V|MN||etx:MinN (Terms)
Vi=ae M (Values)
A=V | let x = M in A (Answers)
E F:=]] | EM | let z =M in E | let = E in F{x} (Eval. Contexts)

Reduction. - is defined by the rules

Az M)N = leta=Nin M (lets-T)

let 2 =V in E{z} = let 2 =V in E{V} (lets-V)

(let z =M in A)N — let e = M in AN (lets-C)

etz =(lety=Min A)inE—>lety=Minletz=Ain E (lets-A)

Figure 5: Ariola et al.’s “standard call-by-need calculus,” Ajt.

left-hand side of (let;-V) means that z is the head subterm, i.e., the left-innermost subterm.
Indeed, this notation capture the following inductive class of terms

E{a} =2 | FE{z} M |let y= N in E{z} (1)

To show the equivalence between our call by need and that of Ariola et al. we have to
translate expressions of the Aj-calculus into addressed terms and vice versa. p and p’ are
lists of variables (z,y,), where p 4 p’ is the result of appending p and p’, and p(n) is p’s
n’th variable.

Definition 4.8 (translation At — Aol). Let p and p’ be lists of variables (z,y,---). p+
p' is the result of appending p and p’ and p(n) is p’s n’th variable. S [M] means S [M] id ()
given by

- S[-1sp S'[-1p
z (8" [z] p) [s]* n such that p(n) =z
Ae M (8' D M] p) [5)° AS' [M] (2 p)
MN (S [M59) (' [N] 9)[5)°)" §' M5 ' [N]p
etz = Nin M | SIMI(SINIsp)) (- p) | (A IMI(z) (S [N]0)

with a and b fresh everywhere.

Lemma 4.9. Given a Aje-term M, a Aol -substitution s, and an environment p. Then
there exist two Aol -terms N1 and Ny such that Ny = (S8'[M]p)[s]®, No = S[M] sp, and
N1 ﬁ) NQ.

w

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 19

Proof. The proof is by induction on the structure of M.
o if M =let z = N in M then

Ny = (8 [let z =N in M]p)[s]*
= (NS [M] (= 9))) (S' [NT)6l by definition

s (S IMI (e p)IS INTp)[s] - 5]

=S[M]((S[N]sp)-s)(z-p) by induction hypothesis
=8[let x =N in M] sp by definition
= N,

A similar proof applies to the other cases. [l

The main difficulty is to capture the sharing contained in a Acg,-term expressed by several
occurrences of a term labelled with the same address in a let-term. For instance, the term
E*E® is translated to let a = [E], pp in aa.

Definition 4.10 (partial translation Aol — Met). For an argument local term E¢, L [E?]
means A(C [E] @) where

_ A(M, _) where
{E*}US | A(let b= M'"in M,S) (M',S8")y=C[F] S
1} M
C[-1S

EM[s]” | (M (VIM[s] (), 8") | (M',8") =C[E] SU{s}
M[s] | (VIM[]T (), SU{s})

VI -1r
M | VIMEI G+ 0)
M{id] VIM]p
AM Az.(V[M] (z - p)) z a fresh variable
MN (VIM]p) (VINTp)
n p(n)

Lemma 4.11. If two de Bruiyn terms M and N, a Ao, -substitution s, and an environment
p, then

VIMN[sllp= (VIM[sllp)(V [N[s]]p)

Proof. Induction on the structure of s. O

RR n"3092

20 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

e — e e — e
CBNeedE let
['Hlet—(—‘Vﬂ'ﬂlet and ['Hkaﬁ,—(—‘Vll']]kag}
0O— — — — %o 00— — — — »
let CBNeedE

Figure 6: Soundness and Completeness.

Lemma 4.12 (projections). The projection diagrams, in Figure 6 are correct.

Proof. 1. projection of A in CBNeedE. The proof is by induction on the structure
of the evaluation context E. If the rewrite is at the root, we proceed by case analysis
of Ajet-rules:

let,-1

S[Az.M)NTid () = (AS"[M] (2 - p))(S" [N] ())[id])"
—5= (8" [M] (2 - p))[(S"[N] ()[id])° - id]*

= S[M] (SINTid() - id) (& - p)
=S8[let 2 =N in M]id ()

The other cases are similar and the most tedious case (let;-V) requires an induction
on the evaluation context F{z} to distribute the substitution through the term.

If £ = E4 M such that E; — E5 then by induction hypothesis S [E1] id ()
let
S[FE-] id () holds.

T e—d
CBNeedE

S[EAM] id () = (S [E2] id 0)(S' [M] ()[id]")"
o (S [Ba] 1 ()(S' [M] ())[id])”
= S[E,M]id()

If £ = letz=F;in F{z} such that F; — FE5 and by induction hypothesis
let
SUalid() o SE211d0)

S[E]id() = S[F{=}] (S[E]id()) -id) (z - ()

then by induction on F{z}, we can show that it is a CBNeedE rewrite.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 21

2. Projection of CBNeedE to A;. The proof is by induction on the structure of the
head term P following the condition of CBNeedE. If the rewrite is at the root, we
proceed by case analysis of Aol -rules:

App

L[MN[s]*] = A(C[MN[s]] @)
VIMNIsIT (), s)
VIM[SITOVIN[s]I(),s) by lemma4.11

[[[s] N[s]¢]] @) b and c are fresh addresses
[s]"N[s]°)°]

AAAA

A
A
A(C
L

[

The other cases are similar.
If P = (Q M[s]®)* such that Q “pNeoaw @' and by induction hypothesis D : £ [Q] —>
L [Q']- Notice that, in general, rewriting with CBNeedE the term P gives (Q'M[s']®)

and not (Q'M[s]®)2.

£[P] = A [(@M[s])*] »)
=AM (V[M[s]](),S")
such that (M',5") =C[Q] s
? AM"(V[M[s]]()),S”) using the same derivation D

=A@ M[s71)] @)
=L@ M[s7)]

If P=0[Q - s]® and @ eI @' and by induction hypothesis D’ : £[Q] A;)
ee let

L[Q']. Notice that, in general, rewriting with CBNeedE the term P gives 0[Q’ - s']°
and not 0[Q" - s]®.
Lipy=AC[O[Q-s]]2)

=AVIO[Q-5]1(). Q-5

=A(bE®-5) Q=E"

A(let b= M in b,S) where (M,S) =C[E]s

A;) A(let b= M"in b,S") using the same derivation D’

=AC[[@ -5

=L[0[Q" 5]

RR n"3092

22 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

The diagrams in Figure 6 do not express a one-to-one correspondence among computation
steps. This comes from the way substitutions are performed in each calculus. Aol works
at a more primitive level w.r.t substitutions. It is a small step calculus in the sense that
basic and constant-time operations are implemented. That requires sometime to distribute
the substitution of the evaluation context E{z} to get to the redex to reduce whereas in
Alet this action is performed in one step. But, the Ajg-calculus is primitive enough to reason
(equationally) about properties of call-by-need strategy.

Proposition 4.13. CBNeedE is sound and complete w.r.t. Aje.

Proof. A way to convince ourselves of the soundness and completeness of the two calculi is
to compare the number of B,-redex and let;-I-redex (which are § — redexz) starting with
a A-term. By the previous lemma we can notice that there are one to one correspondence
between these two rules, and (B,) is never used to project another rule. [l

5 Constructors and Recursion

In this section, we deal with two important features of functional programming languages,
namely algebraic data structures in the form of constructors that can be investigated using
a ‘case’ selector statement, and recursion in the form of an explicit fixed point operator.

5.1 Algebraic data structure

Definition 5.1. Aocl, is the system obtained by extending the definition of Acl (pure)
preterms to include

M,N:::~~-|C’i|<C’1:M1,...,C'm:Mm)

where the C; range over some finite set of constructors of fixed arity, ar(C;), such that

fi(C;) ={0,...,ar(C;) — 1}. The rule (Case) is a kind of application defined by
(Gi[T - s]° (C: NYF]O)* = Ni[T -1]° (Case)
WithT~s:T1~-~Tar(cl) -81 -89 -... and <6’ :]_\7>:<C'1 i N1,...,Ch i Np).

The definition highlights that the only reduction involving data is to select an entry of
a case argument corresponding to which particular C; it was built with. Also addresses are
never allowed inside constructions in accordance with the tradition that constructed objects
are considered as values similar to abstractions and hence no strategy should be allowed to
reduce “inside.”

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 23

Example 5.2. Suppose we have two constructors Z of arity 0 and S of arity 1. Consider the
reduction of the term (A 0 (Z : 1,S: K))Z.

(A0 (Z:1,S:K)2)id]* — (A 0 (Z :1,S : K))[id]*Z[id]*)*
= (0(Z 11,5 : KY)[Z[id)° - id]®
5 (0[Z[id]° - id)? (Z :1,S : K) [Z[id]° - id]*)*
5 (Z[id)*(Z :1,S : K) [Z[id]° - id]*)"
S \[Z[id]° - id]®

5.2 Recursive code and data

Recursion is somewhat more involved. Aocpl denotes the easy solution, which is to reduce
terms of the form pM by unfolding with

puM([s]® = M[uM][s]* - s]° b fresh (Unfold)

(Unfold) must of course be applied lazily to avoid infinite unfolding.

Another solution consists in delaying unfolding until needed. The trick is to augment the
explicit “horizontal” sharing that we have introduced in previous sections through addresses
with explicit “vertical” sharing (using the terminology of Ariola & Klop 1994). We have
chosen to do this using the ¢ “backpointer” syntax (Felleisen & Friedman 1989, Rose 1996):
reducing a fixed point operator places a e at the location where unfolding should happen
when (if) it is needed.

The difference is illustrated by Fig. 7. Consider the initial term with a large (shaded)

A A
An-e

Figure 7: A recursive redex occurrence.

{
Fabe Pror>

p-redex containing a smaller (white) redex. Now, we wish to reduce the outer and then the
inner redex. The top reduction shows what happens with (Unfold): the redex is duplicated

RR n"3092

24 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

before it is reduced. In contrast using an explicit backpointer, illustrated at the bottom,
malkes it possible to share the redex by delaying the unfolding until the reduction has hap-
pened. The price to pay is that all redexes of a term are no longer present in any of its
representation, since backpointers can block specific redexes. Moreover, the admissibility
definition becomes slightly more complicated and hence its preservation after a rewriting
with Aocl -rules has to be addressed carefully.

Definition 5.3 (cyclic addressing). Cyclic addressing is the following generalization of
Def. 3.8; assume a set of addressed terms T:

1. The cyclic addressed preterms: T* allow subterms of the form e? wherever an address
is otherwise allowed.

2. tis graphic if all addresses @ € addr(t) satisfy either t@Qa = {e%}, or t@a = {s?} where
s@a C {e”}. Admissible preterms are called terms; terms without e are acyclic.

3. Given a rewrite relation — on (acyclic terms) T. The cyclic extension, o—, is the
rewrite relation defined as follows. Assume ¢t — u. For each backpointer where admis-
sibility is violated: unfold the original definition for each possible C' with u = C{e%}
and a ¢ addr(C{ }), i.e., replace C'{e?} with C{t@a}.

Notice that the cyclic extension of a set of rules can be derived by inserting explicit
unfolding where an address is removed.

Definition 5.4 (Aocul?).

1. Aocpl?-terms are cyclic addressed Aocl -terms extended with recursion terms:

M,N:::~~~|,uM

2. docul? -reduction, o> is the cyclic extension of Aocl -reduction and the rule
uM|[s]® = M[e® - s]° (Cycle)

Let us briefly consider what “cyclic extension” means. It is clear that (Cycle) itself
preserves (cyclic) admissibility but not all the other rules do. Fortunately we can systema-
tically reformulate the rules in order to insert the unfoldings which are needed explicitly. If
we write T'{e% := U} for the operation which replaces each e in T' by U, then the principle
is simple: whenever an address a is removed from a subterm ¢ then all occurrences of e
instde t must be unfolded to the value of the entire subterm. This affects the Ac{ -rules from
Fig. 3 as follows:

(AM)[s]° U)* — M[U - (s{o" := AM[s]"})]" (B%)
0[E-s]* = (E{e® := 0[E"-5]"}) (FVarG*)
0[E- 5] = (E{e" := E"})" (FVarE®)

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 25

and (Case) from above changes as follows:
(Gi[T - s]° (C: NY[H])* — N;[T" - 1] (Case®)

with T =11 ... Tapcyy, T = T{o" := Gi[T - s]°}, t' = t{e¢ := (C : N) [t]°}.

We are going to prove that cycling rewriting implies unfolding rewriting. To do that
we use an intermediate rewriting which we call cycling rewriting with history whose main
idea is to keep track of substitutions of e along a cycling rewriting. A sequence of such
e assignments is called a history.

Definition 5.5 (History). A history is a sequence p of the form
{.al = ph [Sl]a R ofr 1= J1.% [Sn]}

Assigning a history p to an addressed term P yields a term Pp that substitutes all e of
p by their corresponding terms addressed with fresh addresses. A formal definition is left to
the reader.

Definition 5.6 (Cycling rewriting with history). Cycling rewriting with history Aocu2®p
rewrites a pair of a term and a history (P, p) to a similar pair (@,) such that P o Q
ocp

w

and p = m except when the rewrite from P to @ is a (Cycle) pM[s]* — M[e” - s]* whereas
m={e% := uM|[s]p} Up.

Lemma 5.7. Given an addressed term P € Aocul -term®. If (P, {}))\—a.» (@, p) then
ocultp

w

Qp € docpl, i.e., @ contains no terms of the form o°.
Proof. Obvious. [l
Lemma 5.8. If P e Q then p and p' exist such that (P, p) o (@, p).
ocuy, ocul’p
Proof. The proof is by analysis of each rule of Agcul®. Assume p = {}. O

Lemma 5.9. If D : (P, {}) o——— (Q, p) such that P is a Aocpl, -term, then P —— Q'p
ocp

ocusts B

where Q' is an address renaming® of Q.
Proof. The proof is by induction on the length of D (denoted by |D|).

e If |D| = 1 then by induction on the structure of P. If the rewrite is at the root the
proof is by case analysis on the possible rule of Aocul®p. For instance, consider that
P is B, redex and since P = (AM|[s]’T)® is Aocu-term then AM[s]® contains no e°
subterms.

5The important point here is that P contains no .
8The renaming doesn’t affect terms of the form 2.

RR n"3092

26

Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

o If [D| = n+ 1 then D = (P, {}) m#) (P, p") o (@, p) and by induction
ocultp ocultp
hypothesis P w+—» P”p’ where P” is an address renaming of P’. We proceed by

Aocud,
induction on the structure of P’. If the rewrite is at the root then one has to analyze
each rule of Aoeul’p.

Cycle P' = uM]|s]®

(uM[s]*, p) woraer (M[e® - 5]%, {o% := uM[s]p} U p)

uMi[s]®p o M[uM][s]’]%p b fresh address
= Mo - 5o = uMs]p} Up

B!, P’ = (AM[s]°T)?. Two cases are possible:
If AM[s]® contains occurences of ° then p = {8 := uM'[s']} U p’ and we have
(B,) o> (CLAMS"1),) o (AMISPTY")
such that uM'[s"]®p" = pM'[s']®. Then there exists a reduction (uM’[s']®, {}))‘La.)
aeuy’p
(AM[s]?, p) and m < n. By induction hypothesis uM[s']® — AM [s3]°p where
acuy,
s3 is an address renaming of s.
(AMISTY?,) s (MIT - (s{e" = AMEP DI, (1o = g’ [51} U)
(AM[s]°T)*p = AM[s{uM'[s'1°})°T)%p" ¢ fresh

s MIT M

T MIT - s{M'[uM'[s']? - s'1°}]%p' d fresh

v MIT - s{\M[s"]°}]%p' where s" = s3{e" := uM'[s']}

ocul,
= M[T - s{AMss]o o ({o? = uM[$]} U)
~ MT - sOAMISPH (o = M[T} U)
since b is fresh w.r.t the term M[T - s{AM[s"]°}]%p’
(Unfold) introduces a new address whereas (B%)7 reuse the address b since it
becomes fresh after a B, rewrite step. In fact, B!, performs two tasks namely
to reduce the f-redex and to unfold the recursive function of this redex. This
explains why a renaming of addresses is necessary.
The other cases are similar to the two previous ones. [l

7Also (FVarE®), (FVarG®), and (Case®) reuses addresses when they make the unfolding.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 27

Theorem 5.10. If P o—» Q such that Pis a Aocul-term then p exists such that

Aocul?

P — Q'p, where @' is an address renaming of Q.
ocp

w

Proof. Combine Lemmas 5.8 and 5.9. |

6 “Trim:” A Space leak free calculus

In this section, we present the Trim-calculus. Its main point is to (Collect) just what is
necessary to preserve garbage-freeness (a concept we introduce). We first introduce the ge-
neral calculus, then we study its restrictions to the call-by-need strategy using environments,
finally we use this to show that the STG (Spineless Tagless Graph-reduction) machine of
Peyton Jones (1992) does not leak space.

Definition 6.1. Garbage-free terms are characterized by

Ty = Msp]® | (TTe)* | n* | L with sy = s¢|7i(ar)
spu=1id | Ty - s¢
Proposition 6.2. If T Hadijﬂ) U, then U is a garbage-free term.
Proof. The rule (Collect) collects all unreachable subterms. O

Space leak freeness (precisely formulated for a lazy abstract machine by Sestoft 1997)
means that every (Collect)-redex will eventually disappear in a computation. In other words,
no unreachable subterm stays indefinitely.

Definition 6.3 (space leak free reduction). Let D be a Ao’ -reduction path starting at
a garbage-free term Tp:

D:Tywls Tyowley 7y uils

D is space leak free if when T,, = C{E®} such that E® is garbage then there exists m > n
such that E? is collected in Tj,. A reduction relation — (of Aol -calculus) is space leak

free if all its reduction paths starting at a garbage-free term are space leak free.

#—+ is not a space leak free reduction. A naive way to provide space leak reductions is
to normalize w.r.t. (Collect) after several steps of By, 4+ ¢ rewriting. This corresponds to
garbage collection.

Proposition 6.4. HW» s 1s space leak free.
wto

Proof. By proposition 6.2, it is clear that after each reduction step, there remain no addres-
sed subterms which are garbage. |

RR n"3092

28 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

When analyzing the rules of Acl,, one notices that only (B,) and (App) produce unrea-
chable terms: (App) introduces two new subaddressed terms of the form _[_]* (closures)
on which an application of (Collect) might be necessary, and (By) adds a new addressed
term (argument) to the function’s substitution. If we know that the By-redex is garbage
free then it is necessary to check only whether the argument is reachable or not. The rule
(Case) can also introduce unreachable terms in the substitution 77 - ... T, -t. Hence, we
need to apply (Collect). Thus, we replace these rules with the following:

B M
(MN)[s]* %(MIslaan))*Nslaw]9)* b, ¢ fresh (TApp)

(Gi[T1° (Cy i N1y, G s Nip) [19)* % Ni[(T - 1) |agvy] (TCase)

With T = T} ... Tuc,). Note that none of the recursion rules (Unfold) and (Cycle)

introduce space leaks.

Definition 6.5. The Trim-calculus is the calculus over addressed terms combining the ori-
ginal (FVarE), (FVarG) and (RVar), with the new (TB,), (TApp), and (TCase). We write
this reduction e

Remark 6.6. Notice that +—2 = w2 by e s and —2 = w2 . ::a’dl""dm
(TApp) (App) c c (TCase) (Case) c

where the d; are the addresses of the 7;.

Theorem 6.7 (Preservation). Let T be a garbage-free term. If T W U then U is a

garbage-free term.

Proof. By case analysis of each rule of g O

Corollary 6.8. Trim is space leak free.

Since we cannot rewrite in useless terms, we can claim that Trim is isomorphic modulo
substitution under A to the weak version of Wadsworth’s (1971) “A-graph reduction.” The
Trim-calculus ensures that all its strategies are space leak free. However, we remind the
reader that collecting incurs an overhead, so one has to minimize this task.

In the remainder of this section, we study optimization of call-by-need w.r.t. space leak
freeness, in particular we show that STG does not leak space. One feature of call-by-need
is that it always selects the leftmost outermost redex. If we apply (App) to the term
C{(M N)[s]} then we know that the left term (namely, M[s]) will be evaluated first. Hence
trimming this term is unnecessary w.r.t. space leaking. Similarly, a trimmed version of (By,)
and (Case) are not necessary. The trimmed (App) for call by need becomes

(MN)[s]* % (M[S]bN[S|ﬁ(N)]c)a b, c fresh (TAppN)

Replacing (App) of the Aol-calculus by (TAppN) forms Trimy.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 29

Theorem 6.9. Trimy is space leak free for call by name (CBN) and call by need CBNeedE
and CBNeedG.

Proof. Trimy trims all terms where computations is postponed, namely, right argument of
applications. [l

The STG-language, described in Figure 8, is a subset of A-calculus® enriched with local de-
finitions (let-expressions), constructors including built-in functions and literals (constants),
selection instruction (case), and explicit recursion (letrec). It is not difficult to define a map
from the STG-language to our Aocpl’-terms. The STG-machine uses update technique, i.e.,
updates the argument in the heap after its evaluation for further use, and hence the stra-
tegy underlining the STG-machine is Call-by-NeedE. As we can see in Figure 8, the rule (let)
creates closures by assigning the environment p to the bounded expressions N;’s and stores
them in the heap. Each environment of IV; is trimmed to its free variables. This operation
is expressed in the Figure8 by (pvs;). We conclude that the STG-machine is a duplicated
environment machine.

Corollary 6.10. Peyton Jones’s (1992) STG-machine does not leak space.

Proof. In the STG-language, the arguments of applications and constructors must be va-
riables which are bound by a let expression. Consider the term M N ... N, which is written
let 21 = N1,...2, = N, in Mz ...x, where Ny,..., N, are annotated with their free va-
riables. Hence, it suffices to trim the environment in let expressions w.r.t free variable of
the N;’s which is done by the let-rule of the STG-machine (see figure 8).

O

7 Conclusions

We have studied calculi of weak reduction with sharing, and proposed original solutions to
several problems well-known from implementations, e.g., understanding the consequences of
sharing and cycles on correctness, proving an adequate model for call-by-need, space leaking,
and on a generic implementation design.

Acknowledgements. The authors would like to thank Eva Rose and the anonymous
referees for useful suggestions to the manuscript. Finally, the third author is grateful to
INRIA Lorraine for funding while this work was undertaken.

References

Abadi, M., Cardelli, L., Curien, P.-L. & Lévy, J.-J. (1991), ‘Explicit substitutions’, Journ.
Funct. Progr. 1(4), 375-416.

8This subset is called restricted \-calculus, it imposes that the second argument of applications are made
of variables only

RR n"3092

30 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

Syntax. The language of the STG is defined inductively by

e =let (var = vsy \muvs, —€)t ine (Local definition)
| letrec (var = vsy \mvsy, — €)t ine (Local recursion)
| case e of ((const vs|var |literal) —)t (Case expression)
| var (var |literal)* (Application)
| const (var |literal)* (Saturated constructor)
| prim (var |literal)* (Saturated Built-in op)
| literal

where the’vsy and the’vs, are the free and bound variables of e. 7 is mark to determine if
the expression has been updated.

State. contains seven components of four kinds.

Code. Expressions,

Environments. There are two environment local p and global o. They are defined by a
map from variables to addresses to the heap.

Heap. h, is defined by a map from addresses to closures, defined by a couple of code and
local environment,

Stacks. There are three kind of stacks: the argument stack as, the return stack rs that
contains continuations, and the update stack us

The let evaluation rule
let @1 = wsy \m 2zs1 — €1

FEval p as rs us h o
Ty = USy \Tn TSy, — €,
in e
— Fuval e p as rs us h' o

where p' = p [z — Addr ay, ..., z, — Addr a,)

a; — (vsy \my &1 = e1)(pras vs1)
M o=hnl| ... For the letrec rule, replace prps
an = (VSp \Tp 8y, = €n)(pras USn)
Prhs = P
by p’ instead of p.

Figure 8: Part of the STG-machine

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 31

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. & Wadler, P. (1995), A call-by-
need lambda calculus, in ‘22nd Principles of Programming Languages’, San Francisco,
California, pp. 233-246.

Ariola, Z. M. & Klop, J. W. (1994), Cyclic lambda graph rewriting, in ‘Logic in Computer
Science’, IEEE Computer Society Press, Paris, France, pp. 416-425.

Bloo, R. & Rose, K. H. (1995), Preservation of strong normalisation in named lambda calculi
with explicit substitution and garbage collection, in ‘CSN ’95 — Computer Science in
the Netherlands’, pp. 62-72.
(URL: ftp: //ftp.diku.dk/diku/semantics/papers/D-246.ps)

Cardelli, L. (1983), The functional abstract machine, Technical Report TR-107, Bell Labs.

Church, A. (1936), ‘An unsolvable problem of elementary number theory’, Amer. J. Math.
39, 472-482.

Curien, P.-L. (1983), Combinateurs catégoriques, algorithmes séquentiels et programmation
applicative, These de Doctorat d’Etat, Université Paris 7.

Curien, P.-L. (1991), ‘An abstract framework for environment machines’, Theor. Comp. Sci.

82, 389-402.

Curien, P.-L., Hardin, T. & Lévy, J.-J. (1992), Confluence properties of weak and strong
calculi of explicit substitutions, Rapport de Recherche 1617, INRIA. To appear in
Journ. ACM.

Curry, H. (1930), ‘Grundlagen der kombinatorischen logik’, American Journal of Mathema-
tics 52, 509-536, 789-834.

Curry, H. B. & Feys (1958), Combinatory Logic, Vol. 1, Elsevier Science Publishers B. V.
(North-Holland), Amsterdam.

de Bruijn, N. G. (1972), ‘Lambda calculus with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem’, Proc. Koninkl.
Nederl. Akademie van Wetenschappen 75(5), 381-392.

Felleisen, M. & Friedman, D. P. (1989), ‘A syntactic theory of sequential state’, Theor.
Comp. Sci. 69, 243-287.

Godel, K. (1931), ‘Uber formal unentscheidbare Sétze der Principia Mathemathica und
verwandter Systeme I’, Monatsh fir Math. u Phys. 12(XXXVIII), 173-198.

Henderson, P. (1980), Functional Programming—Application and Implementation, Prentice-

Hall.

RR n"3092

32 Zine-El-Abidine Benaissa, Pierre Lescanne , Kristoffer H. Rose

Huet, G. & Lévy, J.-J. (1991), Computations in orthogonal rewriting systems, II, in J.-L.
Lassez & G. Plotkin, eds, ‘Computational Logic’, The MIT press, chapter 12, pp. 415—
443.

Hughes, J. M. (1982), Super-combinators: A new implementation method for applicative
languages, in ‘1982 ACM Symposium on LISP and Functional Programming’, Pitts-
burgh, Pensylvania, pp. 1-10.

Klop, J. W. (1992), Term rewriting systems, in S. Abramsky, D. M. Gabbay & T. S. E.
Maibaum, eds, ‘Handbook of Logic in Computer Science’, Vol. 2, Oxford University
Press, pp. 1-116.

Landin, P. J. (1965), ‘A correspondance between ALGOL 60 and Church’s lambda notation’,
Comm. ACM 8, 89-101 and 158-165.

Launchbury, J. (1993), A natural semantics for lazy evaluation, in ‘20th Principles of Pro-
gramming Languages’, pp. 144-154.

Maranget, L. (1991), Optimal derivations in weak lambda calculi and in orthogonal rewriting
systems, n ‘18th Principles of Programming Languages’, pp. 255-268.

McCarthy, J. (1960), ‘Recursive functions of symbolic expressions’, Comm. ACM 3(4), 184—
195.

Peyton Jones, S. L. (1992), ‘Implementing lazy functional programming languages on stock
hardware: the spineless tagless G-machine’, Journ. Funct. Progr. 2(2), 127-202.

Plotkin, G. D. (1975), ‘Call-by-name, call-by-value, and the A-calculus’, Theor. Comp. Sci.
1, 125-159.

Plotkin, G. D. (1977), ‘LCF considered as a programming language’, Theor. Comp. Sci.
5, 223-255.

Rose, K. H. (1996), Operational Reduction Models for Functional Programming Languages,
PhD thesis, DIKU, Dept. of Computer Science, Univ. of Copenhagen, Universitetspar-
ken 1, DK-2100 Kgbenhavn @. DIKU report 96/1.

Rosen, B. K. (1973), ‘Tree-manipulating systems and Church-Rosser theorems’; Journ. ACM
20(1), 160-187.

Schonfinkel, M. (1924), ‘Uber die Bausteine der mathematischen Logik’, Math. Ann. 92, 305—
316.

Sestoft, P. (1997), ‘Deriving a lazy abstract machine’, Journ. Funct. Progr. 7(3).
(URL: ftp://ftp.dina.kol. dk/pub/Staff/Peter. Sestoft/papers /amlazy5.ps.gz)

Turing, A. M. (1936), On computable numbers, with an application to the entscheidung-
sproblem, in ‘Proc. London Math. Soc.’, Vol. 42 of 2, pp. 230-265.

INRIA

Modeling Sharing and Recursion for Weak Reduction Strategies using Explicit Substitution 33

Turner, D. A. (1979), ‘A new implementation technique for applicative languages’, Software
and Practice and Ezperience 9, 31-49.

Wadsworth, C. (1971), Semantics and pragmatics of the lambda calculus, PhD thesis, Ox-
ford.

RR n®3092

/<

Unit e de recherche INRIA Lorraine, Technop ©le de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rh™0ne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

