
Lightweight Micro-cash for the Internet

Wenbo Mao

Hewle~t-Packard Laboratories
Bristol BS12 6QZ
United Kingdom

Abstrac t . We propose a micro-cash technique based on a one-time sig-
nature scheme: signing a message more than once leads to disclosure
of the signer's private key. In addition to usual cash properties such as
off-fine bank for payment and spender's anonymity, the technique also
provides a number of useful features. These include: identifying double
spender with strong proof, cash revocable for identified double spender,
independent of using tamper-resistant devices, coin sub-divisible to smal-
ler denominations, and system simplicity in terms of small-sized data for
cash representation as well as simple protocols for cash withdrawal, pay-
ment and deposit. We reason that these features support a lightweight
cash system suitable for handling very low value payment transactions,
such as information purchases on the Internet.
Keywords: Revocable cash for double spender, Internet electronic com-
merce.

1 I n t r o d u c t i o n

Today, the business potential of the Internet, particularly, of the world-wide-
web applications, forms a new dimension in electronic commerce. It is believed
that information purchases will form a big part of the activities in the Internet
electronic commerce [33]. A typical nature of this form of commerce is to deal with
large volume of low-value transactions. Usual price for a few information pages
can be as low as several cents. Various techniques proposed for macro payments,
e.g., [26, 33], are not suitable to be used here, as transaction fees may well
exceed the value of payments. Furthermore, these techniques (including [33]) do
not serve a proper purchaser's anonymity which can be an essentially important
feature in information purchases. On the other hand, the vast diversity nature of
the Internet information services means that the subscription-based services may
not be very attractive to a large number of one-off viewers.

It is thus reasonable to consider facilitating information purchases on the
Internet with a cash-like payment instrument.

Chaum's invention of blind signature techniques [7, 9] sets an important mile-
stone for electronic commerce in cash-like transactions. After Chaum's original
idea, the subject of electronic cash has widely been studied and many schemes
proposed to tackle various unsolved problems (see e.g., [2, 3, 4, 5, 6, 8, 10, 11,
12, 13, 14, 17, 18, 19, 20, 22, 27, 28, 34]). Early schemes for off-line cash (e.g.,
Chaum, Fiat and Naor [14], Hayes [22], Okamoto and Ohta [28]) are notoriously

16

inefficient as a result of using "cut-and-choose" techniques in cash withdrawal
as well as in payment phases in order to thwart cheating. (Though the method
of Okamoto and Ohta [28] includes a binary-tree technique for an efficient rep-
resentation of coin division into smaller denominations.) Franklin and Yung first
introduced a "line method" [19, 20] based on the Diffie-Hellman problem and set
off a promising approach to avoidance of cut-and-choose (their scheme still uses
cut-and-choose in withdrawal phase). More efficient "single-term" coins using
no cut-and-choose were subsequently achieved by Brands [3] and by Ferguson
[18]. Brands further generalised the line method into a "representation of Diffie-
Hellman problem in groups of prime orders" [5] which can be used to design an
electronic wallet with an observer nested in. Eng and Okamoto combined the
Brands' representation problem with the binary-tree method for an improved
efficiency of divisible coins [17].

Considering off-line cash with a decent anonymity service, an evident limit-
ation in various previous schemes is the high degree of system complexity. Some
of the above schemes, e.g., [14, 19, 20, 22, 28], require handling too large amount
of data to be economically usable. Others, e.g., [3, 4, 5, 15, 17], critically rely
on using a tamper-resistant device (a smartcard "observer" co-working with an
electronic wallet) to protect the system secret. If we regard that the former kind
of schemes have a high complexity in data processing, then the latter ones should
be regarded to be expensive in hardware configuration: considering ubiquitous
use of cash including on point sale, two co-working devices are necessary, a wal-
let to protect the personal secret and an observer to protect the system secret;
further, the observer should meet a high standard of tamper-resistance as the
holder has an incentive to open it.

In this paper we propose a micro-cash technique based on a new technique
to solve the high cost problem. In addition to usual cash properties such as off-
line bank for payment and spender's anonymity, the technique also provides a
number of useful features. These include: identifying double spender with strong
proof, cash revocable for identified double spender, independent of using tamper-
resistant devices, coin sub-divisible to smaller denominations, and system sim-
plicity in terms of small-sized data for cash representation as well as simple
protocols for cash withdrawal, payment and deposit. We will reason that these
features support a lightweight cash system suitable for handling very low value
payment transactions.

Similar to all other off-line cash techniques, a double spender will be identi-
fied after a double spending has occurred. However~ a unique and new feature
in our after-the-fact identification method is that the identification is in terms
of discovering the double spender's private key by the bank. Such a result of
identification is effective to stop double spending: the bank can simply show the
double spender's private key to the appropriate public-key certification authority
(CA); the associated public-key certificate and the public key (needed for making
payment) will be revoked instantly and unconditionally. Thus, double spending
will be stopped within the cash mechanism itself rather than resorting to external
forces. It is our understanding that every previous off-line cash scheme including

17

those relying on tamper-resistant devices uses some unspecified external mech-
anisms to stop double spending (a tamper-resistant device only adds difficulty
to double spending, once it is opened, double spending must be stopped by other
mechanisms). Typically, the external mechanisms are police and the law court
which are likely to be ineffective and too expensive for micro-cash payment sys-
tems.

The method proposed here also strongly deters double spending in the first
place: a new certificate for an identified double spender can be made sufficiently
expensive so that the price far outweighs the benefit of double spending low-
value coins. Notice that the use of public key and certificate for payment does
not mean that the spender's anonymity has to be compromised, as a certificate
can be devised not to denote its holder's identity provided it is not abused.

The remainder of this paper is organised as follows. In Section 2 we introduce
a one-time signature technique based on Schnorr's signature scheme. The special
use of Schnorr's scheme forms the main security basis of our cash technique.
In Section 3 the signature scheme will be applied to demonstrate the working
principle of a simple cash coin. In Section 4 we analyse the security of the basic
scheme. In Section 5 the basic scheme will be extended into one in which a coin
unit can be divided into smaller denominations without adding space complexity.
Using the extended scheme, a given payment amount can be made in one transac-
tion without increasing the quantity of data flow. Finally, Section 6 summarizes
the features of the electronic cash technique.

2 S c h n o r r ' s D i g i t a l S i g n a t u r e a s a O n e - T i m e S i g n a t u r e

S c h e m e

We use Schnorr's digital signature scheme [30, 31, 32] to describe a one-time
signature scheme to be applied in our cash technique. We start by presenting
Schnorr's original scheme 1

In Schnorr's scheme, users in the whole system can share some public values
as part of their public keys. First, choose two large primes, p and q where p is
sufficiently large (512-1024 bits) such that the discrete logarithm problem in Z v is
intractable; q is also large (160 bits) and q[(p- 1). Then, choose a number a ~ Zp
of order q; namely, q is the smallest positive integer satisfying a q _- 1 (mod p).
The number a can be computed as the (p - 1)/qth power of a primitive element
modulo p. It will be assumed that all parties in the system share these numbers.
To generate a particular private/public key pair, Alice chooses a random number
s for 0 < s < q. This is her private key. Then she calculates

v := (a-" mod p) (1)

The result v is Alice's public key. Schnorr's scheme uses a secure one-way hash
function. Let h(.) denote such a function which maps from the integer space to

1 The use of Schnorr's scheme is not necessary. Other schemes, such as EIGamal [16]
and DSS [1], can also be used.

]8

Z~ and symbol [[be bit-string concatenation. To sign a message m, Alice picks
a random number r E Z~ and does the following computations:

x : - (a r rood p) (2)

e := h(m II x) (a)

y := ((r + Be) m o d q) (4)

The signature on the message m is the pair (e, y). We will call the other two
quantities r and ac, secret and public signature generators (or SSG, PSG for
short), respectively. To verify the signature, Bob computes:

z := (aYv ~ mod p) (5)

and tests if e is equal to h(m I! z). If the testing is true, Bob accepts the signature
as valid.

Schnorr's signature scheme gets its security from the difficulty of calculating
discrete logarithm. The difficulty means that the private key s cannot be easily
derived from the public key v from their relation in (1). Similarly, the SSG r
cannot be easily derived from the non-secret number z from their relation in (2)
(x is equal to z available to the verifier). If SSG r can easily be discovered, then
the private key s can easily be derived from (4).

Besides relying on the difficulty of discrete logarithm, the security of the one-
way hash function h(.) also plays an important role. The security is in terms of
the infeasibility of inverting the function, and of finding two input values x # x'
such that h(z) = h(xr). When Bob verifies the signature, he knows from the
property of the hash function that, without knowing Alice's private key, it is
computationally infeasible to create the consistency among the numbers e, z and
m which are related under the hash function used.

Note that the SSG r must be treated as one-time material. It must not be
used more than once to generate different signatures. Assume that Alice has used
an SSG r before to sign a message m and now she re-uses it to sign a different
message m'. Let (e, y) and (e', y') be the respective signatures. Now that m' # m,
from (3) and the property of the hash function we know with an overwhelming
probability that e ~ # e (mod q). With these two signatures, Bob can compute
Alice's private key s by subtracting two instances of (4) and obtain

y-y '
* = (~ -77~ , m o d q) (6)

When creating a new signature, as long as Alice always choose a new SSG at
uniformly random from Z~, then subtraction of (4) will only result in

v - v' - r - ~' + 8(e - e') (rood q)

Here the value r - r ' # 0 (rood q) remains to be a secret that protects the private
key s just in the same way as in Schnorr's scheme. More precisely, Alice should
not use an SSG which is related to old SSG's in any known algorithmic way. As
long as this precaution measure is taken, no computationMly feasible method is

19

known to derive the private key from different instances of signatures. In fact,
the digital signature standard (DSS) proposed by NIST [1] uses essentially the
same principle to protect the signer's private key.

We can employ the property illustrated in (6) to prevent a user from using
certain data more than once. The idea is to let the user sign the data as a
condition of using the data and the signature must be generated in such a way
that the verifier can check whether the user has correctly complied with the
signing procedure: to have used a specified PSG. If the signature is generated
under challenge (e.g., to include time/location information), then the user cannot
sign (use) the data more than once without disclosing her/his private key.

Electronic cash forms a good example of such data. A coin can be constructed
to contain a PSG x. During the payment time Alice must sign the coin for the
merchant to verify. The coin will not be accepted if Alice's signature is generated
with using a wrong PSG (when the merchant sees z in (5) to be different from
x in the coin) even if the signature is valid in the sense of the original Schnorr's
scheme. If the signature also includes a t imestamp and a merchant identity, then
Alice cannot double spend a coin without identify herself since she cannot sign
the coin more than once without disclosing her private key.

T h e o r e m 1 Let a > l and a q = l (modp) . Then r ~ r' (modq) implies
(a ~ rood p) # (a ~' mod p).

P r o o f Assume a ~ = a " (rood p). We have a " - ' ' = 1 (mod p). Conjuncting
this with a q = 1 (mod p), we reach r - r ' (mod q). []

Theorem 1 insures that it is impossible for Alice to find two different SSG's
r ~ r ~ (mod q) that map to the same PSG x. Being able to do so would allow
Alice to cheat the bank since using (6) will not correctly reveal her private key,
and also to cheat the merchant as if a "correct" PSG has been used.

Finally, we should point out that a digital signature can be produced without
identifying the signer. In fact, a public-key can be certified to an anonymous
holder in such a manner that even the key certification authority cannot link a
certificate to its holder. Such a technique is reported in [25]. In the rest of this
paper, we will always assume that Alice uses an anonymous public key certificate
which does not contain her identity, even though the certificate will be denoted
by Cer tA .

3 A S i m p l e C a s h C o i n

We now devise a simple off-line electronic cash scheme. The scheme consists of
three protocols: withdrawal, payment and deposit.

20

3.1 W i t h d r a w a l

Alice can withdraw a coin by running a withdrawal protocol with a bank. The
bank need not be one in which she keeps an account. 2 The coin will be blindly
signed by the bank to worth a specified value and this can be validated by any
receiver if the signature is supported with a public-key certificate. Let B denote
the bank; (KB, NB) be the bank's RSA public key; f(.) be a secure one-way
hash function, x = (a r mod p) be a PSG pre-computed by Alice and v be Alice's
public key in Schnorr's scheme. Further, let b be a blinding factor in Chaum's
blind signature technique that is chosen by Alice at uniformly random from ZNB
(In RSA, there is no need to differentiate Z~v B and ZNB because the chance to
have chosen a number in Zjv, \ Z~v " is equivalent to have factorised NB). The
withdrawal protocol can be as follows.

Step 1. A + B: request, (b KB , f (x !1 v)) mod NB

Step 2. B --~ A : (b Ks * f (x !l v)) K~ mod NB, CertB

The message "request" in Step 1 represents a (credit or debit) transaction
request. It instructs the bank how to obtain money from Alice. For instance, it is
a result of another fund transfer protocol (e.g., SET [26]). Let L(x) be the length
of bit string x. Considering that usually n(f(.)) < L(NB), in implementation
f (x II v) can be replaced with a concatenation of itself for [L(NB)/L(f(.))J
times.

Upon receipt of the replied message from the bank, Alice can obtain her coin
by dividing the blinding factor b into the first chunk. We will use Coin to denote
the coin which has been blindly signed by the bank:

Coin = f (x II v) K~a rood NB

Notice that the withdrawal protocol does not go through any cut-and-choose
style of cheating detection procedure because there is no need to do so. It is
computationally infeasible for Alice to make more than one different coins out
of one withdrawal transaction. Also in her own interest, Alice will not construct
an invalid coin, such as one which encodes an invalid PSG x (replayed, or the
matching SSG is not known by Alice), or an invalid public key v (uncertified, or
not knowing the matching private key); or else the money is wasted.

3.2 Payment

When paying Coin to a merchant, Alice must sign a spending signature. The
signature should include the merchant's identity and a timestamp stating the
spending time. Let M be the merchant's identity, and DateTime be a timestamp.

2 This is a useful feature not available in any previous cash scheme: cash can be
withdrawn when the spender's bank is off-line (e.g., in a foreign country), or even
the spender need not be any bank account holder (e.g., a child).

21

The message to be signed should be "Coin, M, DateTime". Following (3) and
(4), the spending signature is a pair (e, y) where

e := h(Coin I I i II DateTime II x) (7)

y := ((r + se) rood q) (8)

and x := (a r mod p) as the PSG integrated in Coin. It suffices to use the follow-
ing single step to specify the payment protocol:

A-+ M : Coin, M, DateTime, e, y, v, CertA, CertB

Upon receipt of the payment, the merchant will validate the coin by verify-
ing the bank's blind signature on Coin, and verify the spending signature. The
verification of the spending signature goes as follows. The merchant should first
validate the public key v and the supporting anonymous certificate CertA. In
addition to the standard way of checking certificate, the merchant should also
check if the public key has been revoked. A revoked key should appear in his
local certificate revocation list (CRL) as a result of being periodically fed with
a shorter CRL called A-CRL from the network directory services to update his
local copy of CRL (see Section 12.6 of [23]). If v is properly backed by the an-
onymous certificate CertA and is not in the CRL, the merchant will carry on to
verify the spending signature. This is to compute z from a, v, e, y as in (5), and
test ifh(Coin II M II nateTime II z) is equal to e. If the testing passes, he should
also check the correct use of the PSG x and the public key v. The correct use of
these values is witnessed by hashing z and v into f (x II v) in Coin. Permitting
the use of a wrong PSG or an invalid public key will put the merchant in trouble
if Alice later double spends Coin (see section 4.3).

The payment protocol has a trivially low computational complexity for Alice
since to make a payment is merely to compute a hash function (7) and to give
a dot on the line (8). Considering that in real application cash should be us-
able ubiquitously and in some environment (e.g., point of sale), a smartcard-like
device should be used to protect trapdoor information for how to use cash (in
this technique, this consists of the SSG r and the private key s). In a point-of-
sale environment, payment should only be made by using such devices which in
general have very limited computing capacity. The extremely low computational
complexity for the customer to make payment is evidently desirable.

3.3 Deposit

In some time later, the merchant will redeem Coin by depositing it to the bank:

M --~ B : Sign M (Coin, M, DateTime, e, y, EM (z)), CertM

We call these data coin-deposit. Here, SignM (.) denotes a digital signature of
the merchant and EM (z) means that the merchant encrypts z using his own public
key. (Usual implementations of digital signatures use a one-way hash function and

22

so SignM (. . . , EM (m)) will not reveal the encrypted message rn.) The merchant as
signature on the coin-deposit means that the merchant has properly dealt with
the data in the payment protocol and in the deposit protocol. The bank cannot
alter the coin-deposit (e.g., to frame the merchant).

4 Analysis

Now we examine the security of the electronic cash scheme.

4.1 Anonymity

First, we assume that Alice does not double spend her coins. Her anonymity
of using the coins will be protected. This is because no data in the payment
and in the deposit protocols contains any information about her identity. In
this paper we only assume that the public-key certification authority (CA) is a
trusted anonymity server; it issues the anonymous certificate CertA to Alice and
is trusted not to identify Alice without a good reason. However, this trusted
service is not necessary. A blind certification technique is reported in [25]. Using
the technique, a certificate can be blindly issued to Alice such that after the
issuing, the CA loses the linkage between Alice and CertA.

With the trusted anonymity service, collusion among all banks and all mer-
chants will not identify the spender of a coin. If the blind certification technique
[25] is used, then even adding a collusive CA will not be able to identify an honest
spender.

4.2 Prac t ica l Unlinkability

A pragmatic unlinkability service is supplied. The service means that it is imprac-
tical for any party in the system to determine an anonymous spender's spending
pattern. We will reason that in order to determine the spending pattern of an
anonymous spender, there would have to be a large scale collusion between the
bank and merchants in the system. Note that because money will eventually con-
verge to the bank, the bank is in a better position than any merchant to partition
a large number of coins. Our analyses in unlinkability will therefore be focused
on the bank, with and without the help from merchants.

First of all, it is obvious that if public keys and/or the supporting anonymous
certificates are deposited together with coins, then coins can be partitioned by
public keys and/or anonymous certificates; all coins in the same partition are
spent by the same person. Depositing public keys or anonymous certificates to-
gether with coins is regarded as collusion. Slightly less obvious is that the value
z, if deposited, can also be used to derive the public key v. This is because of
the following congruence:

v e ~_ z la u (modp) (9)

23

Once v e is known, it is easy to reveal v as

v : = (v edmodp) where ed_=l (m o d p - 1) (10)

Without giving these values to the bank, it is computationally infeasible for
the bank to partition coins that have deposited. It suffices for a merchant to
be non-collusive if he simply forgets the anonymous spender's public key, the
anonymous certificate and the value z once the coin has been accepted. Each
coin is a function of a one-time random PSG, so is each spending signature.
Thus, in the absence of double-spending, no set of coin-deposit will give any
information whatsoever about its relationship with other sets of coin-deposits.
Brute-force searching through the public-key space, e.g., using a candidate public
key v and (5) to get a candidate value z followed by checking if they can be
hashed to f (x II v) in Coin (since z = z), is intractable as the searching has to
go through the vast space Zp, unless the bank has acquired a sufficiently large
number of public keys of the users in the system (which form a trivially small
subset of the whole public-key space). However to collect public keys requires a
large scale collusion among the banks and the merchants. Brute-force searching
z for a matching EM(Z), which would allow the computation of the associated
public key using (7) and (8), is as infeasible as searching the public-key space,
and the searching can also be thwarted by using randomised encryption in the
coding of EM (z).

Finally we point out that even the bank has successfully collected data needed
to investigate an anonymous person's spending pattern, the data are only good
for knowing the person's spending history. Linking future coins requires further
collusion. The necessity for maintaining a long-term collusion forms the founda-
tion for us to claim the impracticability of the collusion, or in other words, that
our technique gives unlinkability in practice.

4.3 Cor rec tness

Now we look at the difficulty for various parties to defraud. Assume that the
bank sees duplicated copies of Coin. This may be resulted from either (i) Alice's
double spending, or (ii) the merchant's replay or depositing of bad data, or (iii)
a collusion between Alice and the merchant.

Case (i) Alice double spends. There will be difference either in M, or in
DateTime, or in both, and any of these will result in two pairs of spending
signatures (e, y) and (e', y') where e ~ e' (rood q) (and hence y r y') with
an overwhelming probability. These two pairs will suffice the bank to discover
Alice's private key s using (6), and further obtain her public key v from (1).

The bank can see the correctness of the revealed keys by re-verifying the two
spending signatures as the merchants have done. Any incorrectness in the re-
verification indicates either a fraudulent merchant, or a collusion between Alice
and the merchant(s). These will be dealt with in Cases (ii) or (iii), respectively.
Assume that the re-verification of the spending signatures passes. Now the bank

24

can identify Alice by showing the revealed private/public key pair (s, v) to the
appropriate CA. (The private key s can contain a sub-string that points uniquely
to the CA which has issued the anonymous certificate to Alice.) Upon seeing the
revealed key pair, the CA will revoke the public key v by publishing it onto the
A-CRL. Alice's identity will also be revealed.

Case (ii) The merchan t rep lays da ta or depos i t s bad data. Because the
merchant is unable to generate a valid spending signature using other people's
coins, double depositing coins is confined to the following uninteresting scenario:
the merchant simply replays all messages in the deposit protocol. It is easy for
the bank to discover the replay and thereby only one instance of deposit will be
redeemed.

Note that since the merchant is required to digitally sign each coin-deposit,
depositing incorrect data containing gibberish as if they were "spending signa-
tures" will lead to identifying the merchant as fraudulent. This is because, as
long as a duplication of Coin is detected, the bank will demand the merchant
to prove his honesty in depositing by decrypting EM(Z) in the deposit and the
result of decryption, z, will suffice the bank to re-verify the spending signature
(using (9) and (10) to recover the public key v needed). We will see more about
this in Case (iii).

Case (iii) Alice and the merchan t collude. A collusion will make sense only
if it does not lead to identifying Alice. Feasible ways to achieve this include that
the merchant permits using incorrect public keys (uncertified or not matching v
in Coin), or incorrect PSG's (not matching x in Coin). For instance, in the case
of permitting the use of incorrect keys, a coin can be double spent by different
people, or by the same person who holds different public keys (certified or not).

Firstly, we assume that the merchant permits the use of an uncertified public
key; namely, the public key used in spending signature verification is not suppor-
ted by a valid anonymous certificate. This collusion will be discovered because
the correctly revealed private key (assuming it is in a valid format pointing to a
known CA) will not lead to identification of a certificate holder from the CA's
database. Such a public key will also be revoked (published in the CRL) to stop
any further collusion. The merchant responsible will be identified (see below).

In other scenarios of collusion listed above, upon seeing duplication of Coin,
the bank's computation using (6) will not reveal a correct private key, either.
For instance, assume that two spending signatures (el, Yl) and (e2, Y2) have been
generated by two different key pairs where the private keys are sl and s2, re-
spectively. Then, using (6) will result in the following vMue:

s' = (8 ! e l - s2e2 rood q)
e I -- e 2

Similarly, assume a merchant permits Alice to use an incorrect PSG which is
mapped from a wrong SSG r ~ r ~ (rood q) where r' may or may not be a valid

25

SSG. Then (6) will disclose the following value:

s' = (s(l - e2) + - e) rood q)
el -- e2

Other wrong forms of "private keys" can also be derived by mixed uses of
wrong/good keys and wrong/good PSG's. Let v ~ be the matching "public key"
computed from s' using (1). The bank will always re-verify the two spending
signatures using the revealed public key v ~ as the merchant(s) have supposedly
done during the two runs of the payment protocol. The re-verification will result
in inconsistency; e.g., either s ~ is in an invalid format (does not point to a cor-
rect CA), or the two spending signatures (el,2, Yl,2) are incorrect regarding the
verification key v' used, or the hashed value f(z' I[v') does not match f (z II v) in
Coin. (N.B. the re-verification excludes any possibility of mistakenly identifying
an innocent user whose private key coincides with s ~ because even in such an
extremely unlikely case, the "spending signatures" (el,2, Yl,2) will be found to
be incorrect when verified using v ~ as the "signatures" were not created by s ~ at
all.)

In these situations, the two merchants (let them be M1 and M2) will be asked
to decrypt EM~ (z) and EM2 (z), respectively, in order to prove their honesty. An
honest merchant will be indicated by a z which can derive a public key v using (9)
and (10) such that v is not in CRL, and using it the spending signature deposited
by him can be re-verified as correct (using the same way as he has done during
the payment time). The other merchant will be identified as fraudulent.

To this end, we see that Alice and the merchant cannot help each other to
achieve double spending without identification. It is however interesting to point
out that, as long as a coin is not to be double spent or double deposited, using
invalid public keys or incorrect PSG's or even depositing gibberish spending
signatures will not be detected since the bank will not and cannot verify the fake
spending signature. Indeed, the bank need not be concerned with anything other
than double spending.

Finally we point out that since each payment is signed by the merchant, the
bank cannot frame the merchant by forging data.

5 D i v i s i b l e C o i n

In this section we will extend the basic scheme to one with which Alice can pay
varied amount of moneies to various merchants who will be denoted as M1, M2,
�9 �9 -. The basic idea of the extension follows the Payword technique of Rivest and
Shamir [29], or in a different topic, attributes to Lamport 's original password
identification technique [24] (also known as the S/Key technique [21]). It is to
apply a secure one-way hash function, recursively, on a secret for a specified
number of times. In the following three subsections we provide revised protocols
for cash withdrawal, payment and deposit.

26

5.1 W i t h d r a w a l

To prepare withdrawal, Alice constructs a stick of n coins Co, C1, C2," . , Cn-1
by applying the hash function f(.) recursively:

Ci = f(Ci+l) for i = 0, 1, 2, . . - , n - 1 (11)

where Cn+i is a secret random number (it is not a coin) chosen by Alice. She also
chooses the first SSG rl and computes the respective PSG zi := (a rl modp),
and creates

Top := C0 [I f (z l II v)11 n (12)

The withdrawal protocol is similar to that for a single coin:

Step 1. A --+ B : request, (b KB * Top) mod NB

Step 2. B -+ A : (b KB * Top) g[~ rood NB, CertB

Upon receipt of the replied message from the bank, Alice can obtain her coin
stick by dividing the blinding factor b into the first chunk. We will use Stick(n)
to denote the coin stick blindly signed by the bank containing n coins:

S t i c k (n) = TopK;~ 1 mod lVB (13)

Due to the one-way-ness of the hash function, the signature means that the bank
has actually signed all of the n coins. The system can stipulate the bank's public
key (Ks, NB) to be only good for supporting a stick containing n coins. There
will be no point for Alice to construct a longer stick Stick(m) for m > n since
upon using (Ks, Nu) the merchant will not accept more than n coins from the
stick. Thus, no cheating detection is needed still.

5.2 P a y m e n t

We begin with an informal description on the basic idea of how Alice pays coins
to the first merchant Mi. After the informal description on the special case, we
will specify the payment protocol in a general setting.

Assume that Alice is to pay i coins (1 < i < n) to the first merchant M1.
The idea is that in addition to sending a signed payment (on Stick(n)), Alice
should also disclose Ci in the stick to the merchant. The merchant can verify the
validity of the i coins between the Co and C~ by recursively applying the hash
function for i times, starting from Ci and finishing at Co. To this end, the bank's
blind signature on Stlck(n) can be verified (see (11, 12, 13)). However, this only
tells the merchant the good structure of the coins. The merchant will only accept
the coins provided that Alice has also correctly signed the spending signature on
Stick(n).

If i r n, then the coins in Stick(n) has not been used up, and the merchant
should make change. To let change be made, Alice should generate a second
pair of SSG and PSG. Let them be r~ and xu := (a r~ mod p) respectively. She

27

sends the hashed value f(x= II v) to the merchant (can be sent together with
the payment). These values together with Ci will allow the merchant to return
change. To return change, the merchant M1 generates and send back the following
value which we will denote by St ick (n - 1):

St ick (n - i) := SignM~ (Ci, f(x2 II v) ,n - i)

A nice feature in Schnorr's scheme is that, the SSG, PSG pairs can be pre-
computed before the signing time. Thus, there will be no problem for Alice to
prepare these pairs for future use.

Now we describe the general setting. Assume Alice has spent j (j < n) coins
with k - 1 previous merchants M1, M2, .. . , Mk-1 (some or all of them may be
the same merchant) and she now holds

St ick (n - j) = SiynMk_, (Cj, f (x k l] v), n - j) , CertMk_,

which have been returned as change from the merchant Mk-1 with whom Alice
has shopped most recently. Under the general setting, we specify the payment
protocol with which Alice pays i coins to the next merchant Mk for k > 0. These
i coins are in St ick (n - j) . Note that in the above, we have informally described
a special case where j = 0, k = 1 and M0 = B.

P a y m e n t step

A - + Mk : S t ick(n) , S t i c k (n - j) , Da teT ime , e~, Yk

i, c~+;, f(xk+~ II v), v, CertA, CertB, CertM~_,

Here

and

ek = h(S t ick (n - j) II Mk tl D a t e T i m e II xk)

Yk = (rk + sek mod q)

Upon receipt of the message in P a y m e n t step, the merchant Mk will first
validate the coins by applying the hash function for i times to see if he can start
from Cj+i and reach Cj. Then after having checked the previous merchant's
signature on St ick(n - j) , he can further apply the hash for another j times to
reach Co followed by verifying the bank's blind signature on St ick(n) .

Assume the coins pass the validation, the merchant will verify the spending
signature on St iek (n - j) . Analogous to (5), this is by computing zk as follows:

zk = (a yk v r mod p)

and checking if the following equation holds:

ek = h (S t i ck (n - j) II Mk 11 D a t e T i m e II zk)

Besides this, he must also check the spending signature has been generated using
correct PSG Xk and public key v. If everything goes well, these i coins will be
accepted.

28

If there are still unspent coins left (i.e., n - j - i > 0), there is a need to make
change. In such a case, the merchant Mk should send the following message back
to Alice:

Change step:

Mk -~ A : S t i ck (n - j - i), CertM~

where
S t i ck (n - j - i) = SignMk (Cj+i, f (x k+ l li v) , n - j - i)

Note that although the scheme requires a merchant generate the integral com-
bination between remaining coins and the (PSG, public-key) pair, this does not
mean that the next merchant who is to be paid with the remaining coins has to
trust the previous merchant. The signature merely indicates that the merchant
has followed the protocol. Alice has freedom to choose any PSG she likes. It is
purely Alice's interest to let each merchant combine a good PSG and the correct
public key with the remaining coins.

In the next subsection, we will analyse the impossibility for any merchant to
help Alice to spend more than n coins from St ick (n) without being identified.

5.3 Deposit

Later, the merchant Mk can redeem the i coins he has been paid from the bank
B by depositing the following data:

Mk --~ B : S t i ck (n) , S t i ck (n - j) , S t i ck (n - j - i),

S i g n M k (M k , D a t e T i m e , ek, Yk, EMk(Xk)) , CertMk, CertMk_l

The certificate of the previous merchant Mk-1 is needed in order to allow veri-
fication of his signature on S t i ck (n - j) and thereby allow the current merchant
Mk to correctly redeem i coins between S t i c k (n - j) and S t i c k (n - j - i).

Upon receipt of the coin-deposit message, the bank will check duplication of
the coins. If any coin Ct for j <_ l < j + i is found in the database, a fraud has
been detected. The bank can differentiate double spending from double deposit-
ing, and deal with these frauds accordingly (see below). If everything is OK, it
will credit the merchant the value of i coins. Data S t i c k (n - j) , S t i c k (n - j - i),
together with the signature and certificate of the merchant will be archived.

P r o p e r t y 2 The merchant Mk can only get paid for coins between S t i c k (n - j)
and S t i c k (n - j - i).

Reason ing Firstly, Mk cannot get paid for coins above S t i ck (n - j) because
the previous merchants Mt for l < k wilt claim them and whenever disputes
occur between Mk and Mr, it can easily be checked that Mk does not have cor-
rect spending signatures from Alice. Secondly, Mk cannot claim any coins below
S t i ck (n - j - i) because the next merchant will claim them using the signature

29

of Mk on the top of that stick. Similarly, no other merchants can claim coins
between S t i c k (n - j) and S t i c k (n - j - i). []

P r o p e r t y 3 N o m e r c h a n t is able to help A l ice to spend m o r e than n coins out
o f S t i c k (n) .

Reasoning Assume that the merchant Mk helps Alice by making two different
coin sticks which will be viewed by subsequent merchants as:

S t i c k (n - j - l) = S ignM~ (Cj+l , f (x II v), n - j - l)

S t i c k (n - j - m) = Sign. II v) , n - j -

where x 5~ x ~ and 1 may or may not be equal to m. The intention of this help is
to let Alice use these different coin sticks and so she can spend more than n coins
from S t i c k (n) . The collusion must not demand Alice make two different spending
signatures on S t i c k (n - j) , otherwise it is a simple double spending of S t i c k (n - j) .
The collusive merchant can only deposit either coins between S t i c K (n - j) and
S t i c k (n - j - l), or those between S t i c K (n - j) and S t i c k (n - j - m) , but
not coins in both of the cases. In the first case of depositing, Alice cannot use
S t i c k (n - j - m) because the next merchant who deposits it will turn in the
collusive merchant M~. Samely, Alice cannot use S t i c k (n - j - l) in the alternative
case of depositing. Even if the collusive merchant does not deposit any coins, he
will still be turned in as long as Alice uses the both sticks made by him. []

6 C o n c l u s i o n

Finally we conclude the paper with a summary of the features of the electronic
cash scheme.

An effective way to stop double spending. Double spending can be stopped
within the cash mechanism. This is a unique feature that is not available in any
previous off-line electronic cash schemes. After detection of a double spending,
all the bank need to do is to revoke the double spender's public key. Since the
identification of double spender is a strong proof, it is simple to achieve. This
method of stopping double spending is cost effective.

S t r o n g a n o n y m i t y fo r t he s p e n d e r . The spender enjoys a decent anonym-
ity service as long as she does not double spend. Collusion among banks and
merchants will not lead to any computationally feasible way to compromise the
anonymity. If the anonymous certificate is issued blindly, then even adding col-
lusive CA's will not be able to identify an honest spender.

Independent o f u s ing tamper-resistant devices. It is not necessary to use
tamper-resistant devices because there is no system secret need to be protected.
Of course, in a point-of-sale environment, using tamper-resistant devices (e.g.,

30

smartcards) by the spender will undoubtedly be helpful in protecting the private
key and in preventing accidental human errors. However, cheap devices suffice
because there is no need to prevent the device holders from extracting data in
the devices. (In fact, they should keep safe backup of the data.)

Coin sub-divis ib le to var iant denominat ions . For instance, a typical coin
stick can be St ick(l , 000) to worth 10 dollars with each coin in it to worth 1 cent.
During spending, after having released a top coin with spending signature, Alice
can then continuously release coins down to 1-cent refinement, no further sig-
nature on these subsequent coins is needed, until she feels enough services have
been purchased. This why of payment is particularly suitable for web-based in-
teractive information page purchase.

S y s t e m simplicity. The protocols for cash withdrawal, payment and deposit
are simple and the data size for coin representation is small. The payment pro-
tocol has an exceptionally low computational complexity for the spender because
to compute hash function is efficient and to generate a spending signature is
merely to release a dot in a line. These are attractive features for making point-
of-sale payment using smartcards. Further, cash can easily be withdrawn from a
foreign bank and usable by a non-bank-account holder.

We believe that the proposed electronic cash technique is readily workable
and has potential to lead to a full-fledged electronic commerce for Internet in-
formation purchases.

Acknowledgemen t s

Part of the work was completed when the author was participating in the re-
search programme in Computer Security, Cryptography and Coding (the CCC
Programme) at the Newton Institute, Cambridge University, April, 1996. Dis-
cussions with Tatsuaki Okamoto and Claus Schnorr during the CCC Programme
were very interesting and helpful. The author would also like to thank Dipankar
Gupta, Miranda Mowbray and anonymous reviewers for their helpful comments
on an early version of this paper.

R e f e r e n c e s

1. Proposed Federal Information Processing Standard for Digital Signature Standard
(DSS). Federal Register, v.56, n.169, August 1991.

2. J.-P. Boly et al. The ESPRIT Project CAFE - - High Security Digital Payment
Systems. In Computer Security - - ESORICS'94 (LNCS 875), pages 217-230.
Springer-Verlag, 1994.

3. S. Brands. Untraceable off-fine cash in wallet with observers. In Advances in
Cryptology - - Proceedings of CRYPTO'93 (LNCS 773), pages 302-318. Springer-
Verlag, 1993.

31

4. S. Brands. Electronic cash on the internet. In Proceedings of the Internet Society
1995 Symposium on Network and Distributed System Security, 1995.

5. S. Brands. Off-line electronic cash based on secret-key certificates. Technical Re-
port: CS-R9506, 1995.

6. J. Carnenisch, J-M. Piveteau, and Stadler M. An efficient electronic payment sys-
tem protecting privacy. In Computer Security - - ESORICS'94, (LNCS 875), pages
207-215. Springer-Verlag, 1994.

7. D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology
- - Proceedings of Crypto'82, pages 199-203. Plenum Press, 1983.

8. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030-1044, October 1985.

9. D. Chaum. Blind signatures systems. U.S. Patent No 4,759,063, July 1988.
10. D. Chaum. Privacy protected payments: Unconditional payer and/or payee un-

traceability. In Smartcard 2000. North Holland, 1989.
11. D. Chaum. Online cash checks. In Advances in Cryptology - - Proceedings of

EUROCRYPT'89 (LNCS 434), pages 288-293. Springer-Verlag, 1990.
12. D. Chaum. Achieving electronic privacy. Scientific American, pages 96-101, Au-

gust 1992.
13. D. Chaum, B. den Boer, E. van Heyst, S. Mjolsnes, and A. Steenbeek. Efficient

offiine electronic checks. In Advances in Cryptology -- Proceedings of EURO-
CRYPT'89 (LNCS 434), pages 294-301. Springer-Verlag, 1990.

14. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in
Cryptology - - Proceedings of CRYPTO'88 (LNCS 403), pages 319-327. Springer-
Verlag, 1990.

15. D. Chaum and T. Pedersen. Wallet databases with observers. In Advances in
Cryptology - - Proceedings of CRYPTO'92 (LNCS 740), pages 89-105. Springer-
Verlag, 1992.

16. T. E1Gamal. A public-key Cryptosystem and a signature scheme based on discrete
logarithms. In Advances in Cryptology - - Proceedings of CRYPTO'84 (LNCS 196),
pages 10-18. Springer-Verlag, 1985.

17. T. Eng and T. Okamoto. Single-term divisible electronic coins. In Advances
in Cryptology - - Proceedings of EUEOCRYPT'94 (LNCS 950), pages 306-319.
Springer-Verlag, 1995.

18. N. Ferguson. Single term off-line coins. In Advances in Cryptology - - Proceedings
of EUROCRYPT'93 (LNCS 765), pages 318-328. Springer-Verlag, 1994.

19. M. Franklin and M. Yung. Towards provably secure efficient electronic cash. Tech-
nical Report: TR CUCS-018-92, April 1992.

20. M. Franklin and M. Yung. Secure and efficient off-line digital money. In Proceed-
ings of ICALP'93, (LNCS 700), pages 265-276. Springer-Verlag, 1993.

21. N.M. Hailer. The S/Key one-time password system.
h t t p : / / f t p , cer t . dfn. de/pub/t ools/password/Sgey/.

22. B.. Hayes. Anonymous one-time signatures and flexible untraceable electronic cash.
In Advances in Cryptology - - Proceedings of A USCRYPT'90 (LNCS 453), pages
294-305. Springer-Verlag, 1990.

23. ITU/ISO/IEC. Draft Amendment 1 to ITU Rec. X.509 (1993) - - ISO/IEC 9594-
8: Information Technology - - Open Systems Interconnection - - The Directory:
Authentication Framework, Amendment 1: Certificate Extensions. ISO/IEC JTC
1/SC 21/WG 4 and ITU-T Q 15/7 Collaborative Editing Meeting on the Directory,
Ottawa, Canada, July 1995.

32

24. L. Lamport. Password identification with insecure communications. Communica-
tions of the ACM, 24(11):770-772, 1981.

25. W. Mao. Blind Certification of Public Keys and Off-Line Electronic Cash. HP
Laboratories Technical Report, HPL-96-71, May 1996.

26. MasterCard and Visa Secure Electronic Transaction (SET) (see, e.g.,
h t tp ://www. visa. corn/), February 1996.

27. G. Medvinsky and B.C. Neuman. NetCash: A design for practical electronic cur-
rency on the Internet. In Proceedings of First A CM Conference on Computer and
Communications Security, pages 102-196. ACM Press, 1993.

28. T. Okamoto and K. Ohta. Universal electronic cash. In Advances in Cryptology --
Proceedings of CRYPTO'91 (LNCS 576), pages 324-337. Springer-Verlag, 1992.

29. R.L. Rivest and A. Shamir. Payword and micromint: Two simple micropayment
schemes, http://theory.lcs.mit.edu/'rivest/publications.html, December
1995.

30. C.P. Schnorr. Efficient signature generation for smart cards. In Advances in
Cryptology -- Proceedings of CRYPTO'89 (LNCS ~35), pages 239-252. Springer-
Verlag, 1990.

31. C.P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):161-174, 1991.

32. C.P. Schnorr. A method for identifying subscribers and for generating and veri-
fying electronic signatures in a data exchange system. U.S. Patent No. 4,995,082,
February 1991.

33. M. Sirbu and J.D. Tygar. NetBill: An Internet Commerce System.
http ://www. ini. cmu. edu/netbill/CompCon, html.

34. UK banks introduce Mondex, the cashless cash card. Newsbytes News Network
(also see http://www.mondex.com/), January 1993.

