
Merging Heterogeneous Security Orderings

P.A. Bonatti 1, M.L. Sapino 1 and V.S. Subrahmanian ~*

1 Universit~ di Torino
{bonatti,mlsapino} @di.unito.it

2 University of Maryland
vs~cs.umd.edu

Abstract . The problem of integrating multiple heterogeneous legacy
databases is an important problem. Many papers [7, 9, 3] to date on this
topic have assumed that all the databases comprising a mediated/feder-
ated system share the same security ordering. This assumption is often
not true as the databases may have been developed independently by
different agencies at different points in time. In this paper, we present
techniques by which we may merge multiple security orderings into a
single unified ordering that preserves the security relationships between
orderings. We present a logic programming based approach, as well as a
graph theoretical approach to this problem.

Keywords: Theoretical Foundations of Security, Heterogeneous Medi-
ated/Federated Systems.

1 I n t r o d u c t i o n

Complex applications in today's rapidly changing world require the ability to
access a wide variety of distributed, heterogeneous data sources. In order to as-
sist the author of such complex applications~ Wiederhold [14, 15] has proposed
the important concept of a mediator as a paradigm for integrating heteroge-
neous data and software. Major efforts towards the construction of mediators
are currently underway at many universities and companies [12, 1, 4, 10].

One of the fundamental problems faced by each and every one of these efforts
is the problem of security. Besides the standard problems related to security in
databases and information systems, one has to tackle specific problems raised by
the heterogeneous nature of data sources. In particular, it is not reasonable to
assume that all packages participating in a mediated system and the mediator
itself use the same security orderings.

* Partially supported by the Army Research Office under grant DAAH-04-95-10174,
by the Air Force Office of Scientific Research under grant F49620-93-1-0065, by
ARPA/Rome Labs contract Nr. F30602-93-C-0241 (Order Nr. A716), by NSF Young
Investigator award IRI-93-57756, by NSF award IRI-93-14905, and by the Army
Research Laboratory under Cooperative Agreement DAAL01-96-2-0002 Federated
Laboratory ATIRP Consortium.

184

For example, a Supply Mediator might use an inventory relation, created
by an Army Logistics agency, and a GIS database, developed by a defense con-
tractor, and it may very well be the case that these two groups used different
security orderings in their design. A mediator must be able to automatically
combine the security orderings used by the different packages in a semantically
meaningful and security-preserving way. Such a combination will result in a new
security level ordering that can be used by the mediator. In this paper, we will
present methods by which different security orderings used by individual pack-
ages may be neatly combined into a new security ordering that captures the
essential properties of the constituent orderings. Furthermore, we will show that
this combination may be elegantly implemented using well known logic program-
ming techniques and graph algorithms, and is solvable in polynomial time.

In the next section, we introduce the basic principles of our approach to
the combination of heterogeneous security orderings. In Sec. 3, we introduce an
axiomatization of the combinability problem based on a logic program P, and
show how a global security ordering can be computed by querying P. In Sec. 4
we introduce an alternative approach, based on a graph representation of the
problem, which leads to more efficient algorithms. We conclude with a section
on related work.

2 C o m b i n i n g H e t e r o g e n e o u s S e c u r i t y O r d e r i n g s

A security ordering is a partial order (S, <), where S is a set of security levels
and < is a partial order over S. Intuitively, in an individual data source, each
user is assigned a security level that determines the user's capabilities; higher
security levels correspond to higher clearance. Informally speaking, we would like
to construct a security ordering (S, <) that takes into account and semantically
merges the security orderings ($1, <_1),..., (Sz, <_z) that are used by the different
packages participating in a mediated system. Users may then be assigned security
levels from the merged ordering (S, <).

Example 1. Figure 1 shows two different security orderings used by two rela-
tional DBs, dbl and db2. The first database uses the ordering u (unclassified), s
(secret), ts (top-secret), ts-sci l , and ts-sci2, where ts-sci stands for top-secret
special compartmented information. The classification levels of rib2 may be read
similarly. For now, the reader can ignore the dotted line in Figure 1. There are
several things to note, however. As r and db2 may have been created inde-
pendently, it is entirely possible that these orderings refer to different things.
For example, it may well be the case that the classification level ts in (S1, _<1)
is equal to the classification level s in (S~, <~). Later (Example 2) we will show
how this may be captured within our framework. [3

The aim of this section is to find a way of combining a given set of secu-
rity orderings ($1, -<1),..,, (Sz, -<z). In our framework, we will merge the given
security orderings into a new ordering in such a way that certain constraints
are preserved. These constraints express relationships between security levels in

185

t s - sc i l ts-sci2 ts-sci3 ts-sci4

t s . S

t
f
u

(S1 , _~1) (,S'2, _~2)

Fig . 1. Two different Security Orderings

different security orderings, thus providing us with in format ion on how these
different securi ty orderings are linked. In order to avoid confusion, we will wri te
x : i to denote the securi ty level x of the ordering (Si, <i).

D e f i n i t i o n 1. An interoperation security constraint set is a set of s t a t e m e n t s of
the fo rm x : i_--< y : j or x : i 7~ y : j where x E Si and y E Sj and i ~ j .
Somet imes , when an in te ropera t ion securi ty const ra in t set contains bo th the
cons t ra in ts x : i ~ y : j and y : j -~ x : i, we will replace t h e m by the single
cons t ra in t x : i = y : j . Similarly, when bo th x : i _ y : j and y : j 7~ x : i
belong to an in te ropera t ion securi ty const ra in t set, we will s o m e t i m e s replace
t h e m with x : i -4 y : j .

Example 2. Return ing to the securi ty orderings of Figure 1 (cf. also E x a m p l e 1),
it m a y very well be the case t ha t t s of ordering ($1, <1) and s of ordering ($2, <2)
are identical, and so are t s - s c i l and t s - s c i4 . In this case, we have two m e m b e r s
in our in te ropera t ion securi ty constra int set; these are:

t s : 1 = s : 2; t s - s c i l : l = t s - s c i 4 : 2 .

[]

Given the securi ty orderings ($1, < 1) . . . (Sz, <z), and a set of in te ropera t ion
securi ty cons t ra in ts ISC, we have to find a new, global securi ty ordering (S, _~)
and a fami ly of funct ions !bl : Si -+ S (1 < i < z) , t rans la t ing the given securi ty
levels into the new ones, 3 such tha t :

(C 1) the original orderings are preserved, i.e., for all x, y in any given Si ,

3 In other words, ~bi(x) is the new security level, corresponding to the given security
level x of Si �9

186

(C2) the interoperation constraints are satisfied, that is,

(x : i ~ y : j) e ISC-~ r ~ ej(y) ,

(x: i y : j) e Isc e j (y) .

D e f i n i t i o n 2 . A set of security orderings 7/ = { ($1, _<1),.. . , (Sz, <z) } is said
to be combinable w.r.t, a set of interoperation security constraints, ISC, iff there
exist a partially ordered set (S, ~) and a family of translation functions r :
S~ -+ S (1 < i < z) , such that conditions (C1) and (C2) hold. In this case, we
say that (S, ~), r ez constitute a witness to the combinability of 7/.

Example 3. Let us return to the security ordering of Figure 1 and the interoper-
ation security constraints of Example 2. The partial ordering shown in Figure 2
constitutes a witness to the cornbinability of such orderings, together with the
following translation functions: r : $1 -+ S is the identity function, while
r : $2 --+ S is the map:

s ~-~ ts; t s -sc i3 ~ ts-sci3; ts-sci4~-+ t s - se i l .

[]

t s - s c i l t s - s c i 2 t s - s c i 3

t s

I
u

(S,

Fig. 2. A security ordering that merges ($1, _<1) and ($2, _<2)

Example 4. Let us return to the security orderings of Figure 1 and consider the
situation when the interoperability constraint set contains the statements:

s : l = t s - s c i 3 : 2 , t s : l = s : 2 .

These orderings are not combinable with respect to the above interoperation
constraints. In fact, t s : l = s:2 __: t -sci3:2 = s : l . This violates the principle of
preservation of the given orderings, (C1), because t s : l is not smaller than s : l
in the given ordering. []

187

Remark. Condition (C1) implies that each r must be order-preserving and
injective (cf. [2]), that is, x ~i Y -+ r ~ r and x # y -+ r # r
These conditions, however, are not equivalent to (C1) (essentially, the "only if"
part of (C1) is not entailed, because every partial order can be linearized). We
omit the details here, because they are not relevant in this context.

Given ($1, <1) , . - . , (Sz, <z) and ISC, there are several natural problems to solve.
First, we have to check combinability. Then, if possible, a "conservative" witness
should be computed; by "conservative", we mean that security levels belonging
to different orderings should not be equated or made to satisfy an inequality
in the merged ordering unless doing so is absolutely necessary to satisfy the
combinability conditions (C1) and (C2). If the given orderings are not combin-
able w.r.t. ISC, then we need to find a minimal relaxation of the constraints
that allows for combinability. In the following sections, we will show how we can
solve these problems by exploiting logic programming techniques and standard
algorithms on graphs.
But first, we show that conservative witnesses are essentially unique; therefore, it
does not really matter which witness we choose, as far as it enjoys conservativity.
For this purpose, we formalize the notion of conservativity.

D e f i n i t i o n 3 . A witness {S* -~*~ . / , * * , - J, ~ ' l , . . - , r of the combinability of 74 w.r.t.
ISC is maximally conservative iff, for all other such witnesses (S, ~), r ez ,

f7(x) e;(y)

Besides conservativity, we are naturally interested in witnesses that do not con-
tain "useless" security levels, in the sense that each level in the witness corre-
sponds to some level in one of the given security orderings. These witnesses are
called parsimonious.

D e f i n i t i o n 4 . Let 7 / = { (S1, _<I),. . . , (S,, _<z) } be a set of security orderings.
�9 ~*~ . /1" * A witness (S* ,_ j , ~ 1 , ' ' ' , ez of the combinability of 74 is parsimonious iff for

all x* E S*, there exists x : i such that x* = r (x).

In the next section, we will show that each combinable 74 has a maximally
conservative and parsimonious witness (cf. Theorem 9 and Corollary 10). Here
we prove that all such witnesses are isomorphic to each other, and hence, roughly
speaking, they are essentially the same object.

T h e o r e m S . Let (S* ,_),r ez and(St,'~) , r 1 6 2 bewitnessesofthe
combinability of 74 w.r.t. ISC. I f they are parsimonious and maximally conserva-
tive, then they are isomorphic. Moreover, there is an isomorphism f : S* -+ S'
such that f o r --- r that is, the diagram in Fig. 3 commutes.

Proof. To show that the two witnesses are isomorphic, we have to prove that
(i) there is a bijection f : S* -+ S', and (ii) f preserves the orderings, that is,
x* _-_4" y* iff f(x*) _-_4' f (y*).

188

S* f S '

�9 * t ~ ~

N

Fig. 3. This diagram commutes, for all i = 1, . . . , z

(i) The function f is constructed as follows. For each element x* E S*, con-
sider the set X = {x : i [4*(x) = x*} (X is not empty because (S*,_*
) , r 1 6 2 is parsimonious), and define f(x*) = 'r for an arbitrary
x : i E X .
To see that f is well defined, we have to show that the choice of x : i does
not influence the value of f . For this purpose, it suffices to prove

(i ') for all z : i, y : j in X, 4~(x) = 43(y) �9
Note that, for all pairs of elements x : i, y : j in X, 4~(x) = x* = 41(y)
holds; furthermore, 4" (z) = r (y) iff 4" (x) ~* 42 (y) and r (y) _* 4[(x),
iff 4~ (x) ~ ' 43 (y) and 43 (y) ~ ' 4~ (x) (since the two witnesses are maximally
conservative), iff r = 4j(Y). This completes the proof that f is well
defined.
Next we prove that f is a bijection. To see that f is surjective, note that for
all x' E S', there exists x : i such that r = x' (because ~,tr wl, . ' / " . . , r
is parsimonious); then, by definition of f , f (~; (x)) = x ' . To see that f is
injective, assume that f(x*) = f(y*) ; we have to show z* = y*. By definition
of f , there exist x : i and y : j such that

(1)
(2)

r = r
](y*)=r (4)

From f(x*) = f(y*), (2) and (4), it follows that r = r ; this implies
4" (x) = r (Y)' because the two witnesses are maximally conservative (see
the proof of (i') above). From this fact, (1) and (3), derive x* = y*. This
completes the proof that f is injective, and the proof that f is a bijection.

189

(ii) Consider two elements x : i, and y : j such that r (x) = x* and r (y) = y*
~*~ L* . . , * (they exist because (S*, _), V1,. ez is parsimonious). Clearly, x* -<* y*

iff r Z* r iff r -~' r (maximal conservativity of the two
witnesses) iff f (x *) ~_' f (y*) (because f (x *) = r and f (y*) = r by
definition of f) .

Finally, note that f satisfies f o r = r by definition. []

Remark. If a witness W is maximally conservative but not parsimonious, then it
contains a parsimonious, maximally conservative witness, which coincides with
the restriction of W to the range of the translation functions. The proof is easy
and is omitted here.

3 Logic Programming Approach

In this section we prove that the combinability problem can be solved in polyno-
mial time by exploiting a suitable logic program. In the rest of the paper, without
loss of generality, we will assume that each ordering (Si, _<i) is represented as a
finite Hasse diagram (as shown in Figure 1).
The combinability problem can be represented in a natural way through a logic
program P, that encodes (a) the given security orderings, (b) the standard prop-
erties that must be satisfied by the ordering ~ of the witness, and (c) the inter-
operation constraints ISC.

D e f i n i t i o n 6. The Herbrand Universe Up (i.e. the set of ground terms) of the
program P consists of all the terms x : i where x 6 S i , (1 < i < z). The rules
of P comprise:

1. the axiomatization of the reflexive, antisymmetric and transitive properties:
X < X
X ~ Y e - X < _ Y , Y < X
X <_Y + - X < _ Z , Z <_Y

Note that above, _< and ~ are binary predicate symbols.
2. the facts

x : i < _ y : i

such that (x,y) is a link in the Hasse diagram of Si (principle of autonomy);
3. the facts

x : i < _ y : j .
such that (z : i _ y : j) is a constraint of ISC;

4. the rules
non_combinable +- x : i < y : i

whenever x is not smaller than y in Si (principle of security);
5. the rules

non_combinable +- x : i <_ y : j
such that (x : i 7(y : j) is a constraint of ISC.

190

R e m a r k . T h e re la t ion ~ in P is an equivalence relation.

R e m a r k . For al l given secur i ty order ings (Si , <_i),

x < _ i y i m p l i e s P ~ x : i _ < y : i .

E x a m p l e 5. Suppose we re tu rn to the two p a r t i a l o rder ings of Fig . 1. T h e logic
p r o g r a m P assoc ia ted wi th the p rob l em of combin ing these two secur i ty order ings
is given in Fig . 4. Note t h a t rule (a) is r edundan t , because if t s : 1 < u : 1 then,

X < _ X 6-
X < X 6- X < Z , Z < Y
X ~ X 6- X < Y , Y < X

u : l < s : l + -
s : l < t s : 1 6 -

t s : 1 < ts_sci1 : 1 6-
t s : 1 < ts_sei2 : 1 6 -

s : 2 < t s _ s e i 3 : 2 6 -

s : 2 < t s _ s c i 4 : 2 6 -

ts:l<s:26-
s:2<ts:l+-

ts_scll : 1 < ts_sci4 : 26-
ts_sci4 : 2 < t s_sc i l : 1 6-

non_combinable 6- s : 1 < u : 1
non_combinable 6- t s : 1 < u : 1
non_combinable 6- ts : I _< s : 1
non_combinable 6- t s_ se l l : 1
non_combinable e- t s_ se l l : I <
non.combinable 6- t s . s c | l : 1 <__
non_combinable 6- ts_se[1 : 1 _<
non_combinable e-. ts_se |2 : 1 ___
non_combinable 6- ts_se |2 : 1 <
non_combinable 6- ts_sel2 : 1 _<
non.combinable 6- ts_sci2 : 1 _<
non_combinable 6- ts_sc[3 : 2 <
non_combinable 6- t s . s c | 4 : 2 <_
non_combinable ~-- ts_sc[3 : 2 <
non_combinable 6- t s . s c i4 : 2 <

u : l
s : l
ts: 1
ts_sci2 : 1

u : l
s : l

ts:l

ts_sc|1 : 1
s:2

s:2

t s_sc |4 : 2
ts_sci3 : 2

(a)
(b)
(*)
(*)

(,)
(,)

Fig . 4. The program P for the orderings in Fig. 1

by t r ans i t iv i ty , t s : 1 < s : 1 , and hence non_combinab le can be der ived t h r o u g h
(b). S imi la r ly , the rules m a r k e d wi th (*) can be e l imina t ed . In general , a m o n g the
lower b o u n d s of a secur i ty level, only the m a x i m a l ones need to be considered.

191

T h e following l e m m a s h o w s tha t the above logic p r o g r a m is a sound formal iza t ion
of the combinab i l i ty p rob lem, in the sense t ha t the re la t ions which are entai led
by P m u s t hold in every possible witness 4

L e m m a 7. For all witnesses (S, _) , r Cz of the combinability of 7t,

P ~ z : i < y : j implies r _ r �9

Proof. I f x : i = y : j , then the p roper ty holds trivially. Otherwise, if P ~ x :
i < y : j , then (x : i < y : j) E T~p, since P is a Horn p rogram, and therefore
there exists n such t ha t (x : i < y : j) E T~p - T~p -1 .

By induct ion o n n : i f x : i < y : j E Tp 1, then x : i _< y : j E P , which
means t h a t ei ther (x : i ~ y : j) E ISC, and then r "~ e j (y) by definit ion of
witness, or i = j , and x _<i y, and then el(X) ~ r by definit ion of witness .
Assume t h a t the l e m m a holds for all the facts z : l < t : k E T~, and consider
(x : i < y : j) E T~p +t . Since (x : i _< y : j) E T~ +T, there mus t be a g round
ins tance x : i < y : j ~ x : i < z : l , z : l < y : j of a clause in P such t ha t bo th
x : i < z : l a n d z : l < y : j belong to T~. Therefore , bo th x : i < z : l and
z : l < y : j sat isfy the induct ive hypothesis : r _ e t (z) and e t (z) _ e j (y)
F rom the t rans i t iv i ty of _ , r ~ ej(y) . []

Intui t ively, if the given orderings are combinable , we can build a witness by
querying the p r o g r a m P . The new securi ty levels are ob ta ined by collapsing all
the pairs x : i and y : j such tha t P entai ls x : i ~ y : j . Technical ly speaking,
this is ob ta ined by tak ing the quot ient (U p / ~) as the witness domain . Similarly,
the order ing is ob ta ined by querying P , as specified below.

D e f i n i t i o n 8. T h e P-canonical security ordering associated with 7 / i s (S*, ~ *) ,
where

- S* is the quot ient set (Up/~);
- X ~ * Y h o l d s i f f P ~ x : i < y : j , f o r s o m e x : i E X a n d y : j E Y .

T h e t rans la t ion funct ions are defined as r (x) = [x : i], where [x : i] denotes the
equivalence class of x : i .

T h e o r e m 9. 7/ is combinable iff P does not entail non_combinable.

Proof. First we prove the "only if" par t . Let (S, ~) , r ez be a witness of
the combinab i l i ty of 7"/. Assume tha t P ~ non_combinable. This means t h a t
there exists n such t ha t non_combinable E T~ - T~p -1. Therefore , e i ther x : i <

4 The proof of this lemma, as well as proofs of some others, require the use of an
operator called Tp well known in logic programming [11] that may be associated with
a logic program P. Due to space restrictions, we briefly state the definition here. Tp
Lakes as input, a set I of ground atoms. Tp(I) is the set {A I A ~-- B1 B,~ is a
ground instance of a nile in P and { B j , . . . , B,,} C I}. Tp may be iteratively applied
as follows. ~p = 0; T~, +1 = Tp(T~). T~p = Ui>0 T~. It is well known [11] that 7~p is
identical to the set of all ground atoms that are logically entailed by P.

192

y : i e T~p -1, and x ~(i Y, or x : i < y : j E T~p -1, and (x : i 7(y : i) E ISC.
In the first case P ~ x : i g y : i, therefore, by Lemma 7, r -~ r and,
by definition of witness x _<i y; a contradiction. Consider now the second case.
P ~ x : i < y : j , and therefore, by Lemma 7, r ___ Cj(y). This contradicts
the hypothesis (x : i 7(y : j) E ISC, since, by definition of witness, it would
imply r 7r Cj(y). This means that also the second case is impossible, and
therefore it cannot be the case that P ~ non_combinable.

We are left to prove that if P ~= non_combinable, then 74 is Combinable.
For this purpose, we show that the canonical security ordering (S*, ~*), and the
canonical translations r , r constitute a witness of its combinability.

Condition (C1) is satisfied. Indeed, assume r ~* r i.e., [x : i] ___
[y : i]. Then, by definition, P ~ x : i < y : i, and therefore it must be x <i y
(otherwise, P would entail non_combinable). On the other hand, if x <_i y, then
P ~ z : i < y : i (Remark 3), and then, by definition, Ix : i] _* [y : z], i.e.,
ct (x) ct (y).

Condition (C2) is satisfied. Indeed, if (x : i _ y : j) E ISC, then the fact
x : i < y : j belongs to the program P. By definition, P ~ x : i < y : j implies
Ix: i] ~ [Y: J], i.e., r (z) ~ r (Y).

On the other hand, if (x : i 2~ Y : J) E ISC, then P ~= x : i < y : j , otherwise
P would entail non_combinable. From P ~= x : i < y : j it follows, by definition~
[x : i] 7([y: j], and then r (x) 7(* r (y). []

As a corollary of Theorem 9 and Lemma 7, we derive that the canonical secu-
rity ordering and the canonical translations integrate the given security order-
ings (Si, _<i) by introducing the least possible number of dependencies, thereby
achieving a maximally conservative composition.

C o r o l l a r y 10. If74 is combinable then r162 -<*~ ~I,* * ~ , _), w t , . . . , r is a maximally con-
servative and parsimonious witness.

Since deduction from Horn clauses can be done in polynomial time [5], also
the combinability check and the construction of a witness can be performed in
polynomial time.

T h e o r e m 11. Let n = ~'~=1 [S~I . Checking combinability and building the canon-
ical ordering with the LP method can be done in time and space O(nZ), that is,
the size of the ground instantiation of the program.

Proof. To check that 7t is combinable, it suffices to

- build the ground instance of the program P associated with 74, say Pgro~nd.
This can be done in time and space O(na), since the axiomatization of the
transitive property is the only rule in P in which three variables occur (the
other rules contain at most two variables);

- compute the least model of Pground. Pground is a ground Horn program, and
its least Herbrand model can be found in time and space linear in the size
of Pgrouna [5], that is, O(n3);

193

- verify that non_combinable does not belong to the least model of Pa, ouna.
The size of the least model is linear in the size of the Herbrand Universe of
P, that is, O(n); checking if non_combinable belongs to such a model can be
done in O(n).

The total cost is therefore O(n3). []

The canonical ordering can be computed by a naive algorithm in time O(n4),
by repeatedly scanning the least model of P (whose size is O(n2), and which
can be computed in time O(n3), cf. the proof of the above theorem). The naive
algorithm can be improved, but the cost is unlikely to drop below O(n 3) , as far
as general query methods for function-free logic programs are used. In fact, the
best general query methods have worst case complexity linear in the size of the
ground instantiation of the program, that is O(n 3) for P. We omit the details
here, because these complexity bounds can be improved by adopting a different,
more efficient technique, based on standard graph algorithms.

4 C o m p o s i n g S e c u r i t y O r d e r i n g s T h r o u g h G r a p h

A l g o r i t h m s

In this section we reformulate the notion of canonical security ordering in terms
of the graph defined below. The final goal is obtaining more efficient algorithms
for solving the various problems related to combinability.

De f i n i t i on12 . The graph associated with 74 = { (Sa, < a) , . . . , (Sr <z) } and
ISC is G = (V, E) , where V (the set of vertices) is the set of all z : i such that
x E S~ (1 < i < z), and where E (the set of edges) is the set of all ordered pairs
(x : i, y : j) such that either

(1) i = j and there is an edge from x to y in the Hasse diagram of Si, or
(2) i c j a n d (x : i - g y : j) ELSE.

The basic idea is that if two security levels belong to a cycle in G, then the
two levels must be identified to satisfy (C1) and (C2). The rest of the section
expands on this idea.

D e f i n i t i o n 13. The G-canonical security ordering associated to 74 is (S + , _~+),
where S + is the set of strongly connected components 5 of the graph G associated
to 74, and x _-_<+ y holds i ffx = y or there is a directed path in G from a member
of x to a member of y. The canonical translations 4 + are defined by

~p+ (x) = [x: i],

where [x : i] denotes the strongly connected component containing x : i .

Here, with a sfight abuse of notation, we identify the strongly connected components
of a directed graph with the maximal sets C of vertices such that each member of C
can be reached from any other member of C through a directed path.

194

The following is a soundness lemma, stating that the dependencies that hold in
the canonical security ordering must hold also in every witness.

L e m m a 14. Let (S +, 5 +) be the canonical security ordering of?t. Then, for all
witnesses (S,-~), r Cz of the combinability of 7/,

[= : i] 5 + [y: J] _

Proof. Assume that [x : i] 5 + [y : j] . By definition, it follows that either
x : i = y : j or there must be a path from x : i to y : j in G . The first case is
trivial, so we focus on the latter. Let the path be

X : i = X l : i l ,~2 :i2, . .o ,Zn : i n = y : j .

By definition of the edges of G, we have that for all k = 1, o.. , n - 1 one of the
following conditions holds:

(t) ik = ik+t and xk <~, xk+x. In this case, by (C1), we have f i , (x~) 5

(2) .ik r ik+l and (xk : i~ _ ~k+1 : ik+l) E ISC. Also in this case, we have
r "~ r247 by (C2).

It follows that r = r _ . . . _ r = Cj(y) , so, by transitivity,

This result, however, does not imply that the canonical ordering and the canoni-
cal translations constitute a witness, nor that 7 / i s combinable. For this purpose
we prove the next theorems.

T h e o r e m 15. 7 / i s combinable iff the corresponding canonical ordering (S + , 5 +
) and the canonical translations r 4 + , constitute a witness to the combin-
ability ofT/.

Proof. The "if" part is trivial. To prove the "only if" part, assume that 7i is
combinable, and let (S, 5), ~1,o.. , Cz be a witness to the combinability ofT/. We
have to show that (S + , ~+) and the canonical translations constitute a witness,
i.e., that they satisfy the conditions (C1) and (C2). To prove the "if" part of
(C1), assume x <i y ; then there is a path from z to y in the ttasse diagram of the
security ordering St ; by definition of G, there is a corresponding path from x : i
to y : i in G ; by definition of canonical ordering, it follows that Ix : i] 5 + [y : i] ;
then, by definition of r r -<+ r This proves the "if" part of (C1).
To prove the "only if part", assume that r + (x) _~+ 4 + (y); then, by definition
of r Ix: i] 5 + [y: i]; by Lemma14, it follows that ~b~(x) _ ~b~(y), and hence,
by (C1), z <i y . This completes the proof that (C1) holds.

We are left to prove that also (C2) is satisfied. For each constraint (~ : i 5 Y :
j) e ISC, G contains an edge from ~ : i to y : j ; therefore [~ : ~ --<+ [y : j] , and
hence r + (x) 5 + 4 + (y). This proves that all positive constraints are satisfied.
Now assume that some negative constraint (x : i 7~ Y : J) E ISC is not satisfied
by the canonical ordering, that is, r + (x) -<+ r (y). This is equivalent to Ix :
i] ~+ [y : j] ; by Lemmal4 , it tbllows that r ~ Cj(y) . But then, the witness
(S, _) , r Cn would violate (C2), which is absurd. D

195

As a corollary of the above results, we derive that the new notion of canonical
security ordering constitutes a maximally conservative witness.

C o r o l l a r y l 6 . I f T~ is combinable then [r -4+~ .h+ ~ ,-- P, vl , - . . , r is a maximally
conservative and parsimonious witness.

Therefore, by Theorem 5, the G-canonical witness is isomorphic to the P-canonical
witness, i.e. the two approaches are equivalent, from a semantic point of view.
On the contrary, there are some differences in efficiency. All the basic problems
related to combinability outlined in the previous sections can be solved in poly-
nomial time, with some improvements w.r.t, the logic programming approach.

Z T h e o r e m l T . Let n be the number of vertices of G, that is, n = Y~i=l [Sil .

(i) Deciding combinability can be done in time O(n ~ log n) .
(ii) The canonical ordering (S +, <_.+) can be computed in time O(n2).

(iii) A maximal satisfiable subset of ISC can be computed in time O(n 4 log n) .

Proof. (i) To check that 7 / i s combinable, it suffices to verify that the canonical
ordering and the canonical translations constitute a witness. This can be done
through the following steps:

(a) Construct the associated graph G (time: O(IGI)).
(b) Compute the strongly connected components of G (time: O(IGI) , cf. [13]).
(c) Verify condition (C1). This can be done by constructing the set L + =

{ (x, y) I Ix : i] ~+ [y : i] } and checking that it coincides with the set
Li = { (x, y) [x _<i Y } (1 < i < z). This can be done as follows:

(cl) Construct L + and Li as fists (time: O(n2)).
(c2) Sort L + and Li under lexicographic order (time: O(n 2 log n2)).
(c3) Verify that L + = Li (time: O(n2)).

Since the cost of (c2) dominates the cost of (cl) and (c3), the total cost of
step (c) is O(n21ogn~).

(d) Verify condition (C2). Clearly, the positive constraints of ISC are satisfied by
construction (cf. proof of Theorem 15), so we only have to check the negative
constraints. This can be done by

(dl) constructing the set N = { (x : i ,y : j) I (x : i 7(y : j) E ISC} and the
set L + = { (x : i ,y : j) I Ix : i] ~+ [y : j] } (1 < i < z); (time: O(n2));

(d2) verifying that the intersection of L + and N is empty; this can be done
in time O(n21ogn ~) by sorting L + and N and then visiting them one
time in parallel, in ascending order.

The total cost of step (d) is O(n 2 log n2). Now, since the size of IGI grows as n ~,
in the worst case, we have that the cost of (a) and (b) is dominated by the cost
of (c) and (d); therefore, the overall complexity of this algorithm is O(n 2 log n2).
Moreover, n 2 log n ~ = 2n 2 log n , and hence the asymptotic time complexity is
O(n ~ log n) .

(ii) Note that the canonical ordering can be constructed by performing steps
(a) and (b), and by computing the set n + (cf. step (dl)) which yields the relation

196

~+. It follows immediately that the canonical ordering can be constructed in
time O(n~).

(iii) Let X1,. . . , Xk be any enumeration of I$C. For i = 1 , . . . , k define

ISCo = r

ISCi
ISCi = ISC~

if 7/ is not combinable w.r.t. ISCi O { Xi }
U { Xi } otherwise.

Clearly, 7/ is combinable w.r.t. ISCo (the given orderings remain unrelated),
therefore, by construction, ISCk is a maximal satisfiable subset of ISC. By (i),
each iteration can be computed in time O(n 2 log n) ; moreover, k < n 2 , therefore
ISCk can be computed in time O(n 4 log n). [3

Remark. Point (iii) considers the worst case in which the size of ISC grows
as n 2. However, in real applications, it seems reasonable to assume that the
set of constraints is sparse. Clearly, if we assume that the cardinality of ISC is
proportional to n, then the algorithm for computing a maximal satisfiable subset
of ISC runs in time O(n 3 log n).

5 R e l a t e d W o r k

Gong and Qian [6] studied the complexity of secure interoperation in a flame-
work that is similar to ours in several respects. Their principles of autonomy
and security are equivalent to our combinability condition (C1). The major dif-
ference between the two approaches lies in the treatment of negative constraints
(restricted access relation in [6]). In the extended version of their paper, Gong
and Qian note that a negative constraint can be violated by the transitive closure
of the permitted accesses (permitted by the individual secure systems, or by the
positive constraints, which they call permitted access relation). On the contrary,
in our approach, negative constraints are satisfied by the transitive closure as
well. Our combinability checking algorithm (which runs in time O(n ~ log n)), is
slightly more efficient than their security evaluation algorithm, whose complex-
ity is O(n3). By using our methods for comparing sets of edges (cf. steps (c)
and (d) in the proof of Theorem 17), the complexity of their algorithm can be
reduced to O(n ~ log n), as well. When the inter0Peration constraints are not sat-
isfiable, Gong and Qian consider appealing forms of constraint relaxation (e.g.
which maximize the cardinality of the satisfiable subset) which we do not con-
sider here; they show intractability results and characterize tractable subclasses
for these problems.

Jones and Winslett [8] consider role based secure interoperation (as opposed
to the clearance level approach) in object-oriented databases. In that framework,
roles with identical attributes are identified; on the contrary, in the approaches
based on security levels, different levels should be identified only if the inter-
operation constraints force them to coincide. In [8] no negative constraints are
considered.

197

Acknowledgements. We thank Xiaolei Qian for her comments concerning the
relationship between our algorithm and that of Gong and Qian.

References

1. Y. Arens, C.Y.Chee, C.N. Hsu and C. Knoblock. Retrieving and Integrating Data
from Multiple Information Sources, Intl. J. of Intelligent Cooperative Info. Systems,
2, 2, pp. 127-158, 1994.

2. G. Birkhoff. Lattice Theory, American Math. Society, Providence, 1967.
3. K.S. Candan, S. Jajodia and V.S. Subrahmanian. Secure Mediated Databases, to

appear in:Proc. 1996 IEEE Con[. on Data Engineering.
4. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.

UNman and J. Widom. (1994) The TSIMMIS Project: Integration of Heterogeneous
Information Sources, Proc. IPSJ Conf., Tokyo, Japan, Oct. 1994.

5. W.F. Dowfing, J.H. Gallier. Linear-time algorithms for testing satisfiability o f
propositional Horn formulae. Journal of Logic Programming, 3:267-284, (1984).

6. L. Gong and X. Qian. (1996) Computational Issues in Secure Interoperation, IEEE
Trans. on Software Engineering, 22, 1, pp. 43-52.

7. N. B. Idris, W. A. Gray and R. F. Churchhouse, Providing Dynamic Security
Control in a Federated Database, Proc. 199~ Intl. Conf. on Very Large Databases,
pp. 13-23.

8. V.E. Jones and M. Winslett. (1993) Secure Database Interoperation via Role
Translation, in "Security for Object Oriented Systems (eds. B. Thuraisingham, R.
Sandhu amd T.C. Ting), Springer Verlag.

9. D. Jonscher and K. R. Diittrich, An approach for building secure database feder-
ations, Proc. 2Oth VLDB Conf., 1994.

10. Laks V.S. Lakshmanan, F. Sadri and [.N. Subramanian, On the logical foundations
of schema integration and evolution in Heterogeneous Database Systems, Proc.
DOOD-93, Phoenix, Arizona, 1993.

11. J.W. Lloyd. (1987) Foundations of Logic Programming, Springer.
12. V.S. Subrahmanian, et al. (1995) HERMES: A Heterogeneous Reasoning and Me-

diator System, submitted for publication.
13. R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. of Computing,

1(~):146-160 (1972)
14. G. Wiederhold, Mediators in the Architecture of Future Information Systems,

IEEE Computer, pp. 38-49, March 1992.
15. G. Wiederhold, Intelligent Integration of Information, Proceedings of the ACM

Conference on Management of Data, pp. 434-437', 1993.

