
CSP and Anonymity

Steve Schneider and Abraham Sidiropoulos

Department of Computer Science
Royal Holloway, University of London

Egham~ Surrey TW20 0EX

emaih { st eve, abraham}@dcs, rhbnc, ac. uk

Abst rac t . Security protocols are designed to meet particular security
properties. In order to analyse such protocols formally, it is necessary
to provide a formal definition of the property that they are intended
to provide. This paper is concerned with the property of anonymity, tt
proposes a definition of anonymity within the CSP notation, discusses
the approach taken by CSP to anonymity with respect to different view-
points, and illustrates this approach on some toy examples, and then
applies it to a machine-assisted analysis of the dining cryptographers
example and some variants.

1 I n t r o d u c t i o n

The notion of anonymity is used in a wide variety of situations, from anonymous
donations to anonymous transactions. Computer systems may be used to support
anonymity~ but the users have to be confident that their anonymity requirements
are actually provided by the system.

This paper aims to provide the foundations of a process algebraic approach
to analysing systems with regard to anonymity properties. Such an approach
focuses on the interactions between system components and is appropriate for the
analysis and verification of protocols designed to achieve these properties. This
is in contrast to mathematical characterisations such as that of [Wai90], where
attention is focused on the information contained in outputs of communication
rounds. This paper fits within the general framework described in [PfW94], where
the authors identify the need to discuss properties in terms of the sequences of
interactions (traces) possible at the interface between the system and the users.
It fits in with the aims of [Sch96] ~o define a number of security properties within
CSP, providing a uniform framework for describing and analysing protocols and
thei~ properties.

The principal intention of this paper is to describe the use of CSP to define
anonymity properties and to analyse anonymity protocols. CSP is an appropriate
formal method for describing and analysing communications protocols because it
is designed to describe systems in terms of components which interact by means
of message passing. To this end it is important firstly to understand the concept
of anonymity by examining the way it is generally used. Once a formal definition
has been provided, it is explored and refined by applying it to known situations

199

and confirming that the diagnosis provided by the definition corresponds to
what is expected. It can then be used in the analysis of situations which are not
already well understood, in order to see how it provides feedback and clarifies
understanding.

This paper is structured as follows: Section 2 investigates the nature of
anonymity; Section 3 introduces the relevant CSP notation and theory; Section 4
formulates a CSP definition of anonymity which aims to capture the concept,
and illustrates the definition by applying it to a variety of simple situations. No-
tions of abstraction, crucial for the consideration of anonymity with respect to
different viewpoints, are also discussed; Section 5 explores and illustrates these
definitions on the well-understood Dining Cryptographers anonymity protocol,
and discusses how the FDR model-checking tool [FSEL94] provides feedback
during protocol analysis.

2 A n o n y m i t y n o t i o n s

If we are to analyse anonymity as a security property it is crucial to define it in a
precise way. There are many real life activities which may be done anonymously:
examples include donating money, publishing poems, sending mail, voting, in-
forming the police, and posting to bulletin boards. A formal definition should
be applicable to this wide variety of situations.

A natural question that arises is whether anonymity is a property of events
and messages or a property of agents. The scenarios described above suggest
that the anonymity involved in a particular message or event is a property of the
agents associated with that event or message. For example, in a specific voting
situation where members of a party voted to elect a new leader we might have
as a requirement that the voter associated with any particular vote should be
anonymous. In another example, if someone informed the police, the informer
would like to hide his identity. It is also the case that the police would like
in some cases to hide the nature of the information itself. It seems that the
hidden information itself (in contrast to the identity of the informant) would
be better considered as confidential rather than anonymous. In this case, we
use confidentiality to refer to messages whose content is to be kept secret, and
anonymity to refer to messages whose originator or recipient is to be kept secret.

We can identify various aspects of anonymity:

1. It can be provided to agents as in the discussion above, where an agent wishes
to hide his identity. In an anonymous mail, poem, donation, or informing
police one wants to be anonymous.

2. Viewing the world from particular viewpoints, one may have anonymity with
respect to some information but not with respect to other (more privileged)
information. For example, with regard to an anonymous donation, the or-
ganisation receiving the donation may know the identity of the donor even if
the general public does not. Hence the anonymity of the donor will be with
respect to the absence of particular privileged information. Furthermore, the

200

anonymity is with respect to the relationship between the donor and the do-
nation. The identity of the donor may be known in other contexts, but it is
the fact that the connection between the donor and the donation is hidden
which provides anonymity.

An issue that arises from this concerns who has control over withholding the
particular privileged information that is required to provide anonymity. Chaum
is" concerned with this distinction, and has proposed protocols in which the agent
himself is in possession of that information. He has written a number of papers
[Cha85, Cha88] on the subject in which two main kinds of transaction are identi-
fied: payments, and credentials transactions. In Chaum's electronic cash scheme

f o r example, the author promises anonymity of the digital coins user so that
the bank cannot associate a payment with the payer without their consent. The
argument of Chaum is that his system permits fraud detection and transac-
tion tracing with the consent of the individual. His system Mso addresses other
problems such as double spending of the same coin.

We can use credentials as another example of demonstrating anonymity. Cre-
dentials are usually needed to prove one's credibility and identity. With un-
traceable credentials using pseudonyms one's credibility is proven without di-
vulging the identity. When one can have only one pseudonym per organisation
the problem of double identity is Mso addressed. Additionally, if one uses dif-
ferent pseudonyms for different organisations nobody can trace him and with
a suitable implementation the organisations can be convinced they are dealing
with the correct individual. This saves the individual the trouble of giving po-
tentially sensitive information in order to prove its identity. Both examples are
published in [Cha85].

This paper is concerned with providing a formal definition which may be ap-
plied to this wide variety of situations. Although there are a variety of anonymity
protocols, often the property which the protocol aims to guarantee is not explic-
itly defined. Formal definition provides the starting point for formal analysis.
Anonymity protocols can then be described in CSP, and the resulting system
can be analysed to show that the anonymity property is present.

3 C S P n o t a t i o n

CSP is an abstract language designed specifically for the description of communi-
cation patterns of concurrent system components that interact through message
passing. It is underpinned by a theory which supports analysis of systems de-
scribed in CSP. It is therefore well suited to the description and analysis of
network protocols: protocols can be described within CSP, as can the relevant
aspects of the network. Their interactions can be investigated, and certain as-
pects of their behaviour can be verified through use of the calculus. This section
introduces the notation and ideas used in this paper. In particular, only the trace
model for CSP is used here. For a fuller introduction to the language the reader
is referred to [Hoa85].

201

E v e n t s Systems are modelled in terms of the events that they can perform.
The set of all possible events (fixed at the beginning of the analysis) is denoted
Z. Events may be atomic in structure or may consist of a number of distinct
components. For example, an event put.5 consists of two parts: a channel name
put, and a da ta value 5. An example of events used in this paper are those of the
form look.i.j.v consisting of a channel look, the first participant i, the second
part icipant j , and the value v being communicated. This may be thought of
either as a channel look which passes messages consisting of three components, or
as a collection of channels look.i.j which each pass a single component message.
The CSP model treats these identically, though in this paper we will prefer to
think in terms of the second possibility. I f M and N are sets of messages, then
M . N will be the set of messages {m.n] m E M A n E N} . I f m is a single
message then we elide the set brackets and define m . N to be {m} .N . Thus for
example the set of events i . N . m = { i .n .m [n E N}. A channel c is said to be
of type M if for any message c.m E ~U it is the case that m E M; and for any
m E M it is the case that c.m ~ ~ .

P r o c e s s e s Processes are the components of systems. They are the entities that
are described using CSP, and they are described in terms of the possible events
that they may engage in. The process STOP is the process that can engage in
no events at all. I f P is a process then the process a --+ P is able initially to
perform only a, following which it will behave in the way described by P. The
process P [] Q (pronounced ' P choice Q') can behave either as P or as Q: its
possible communications are those of P and those of Q. An indexed form of
choice [3~c z Pi is able to behave as any of its arguments Pi.

Processes may also be composed in parallel. I f A is a set of events then the
process P][A]] Q behaves as P and Q acting concurrently, with the require-
ment that they have to synchronise on any event in the synchronisation set A:
in other words, any event in the set A can be performed only when both P
and Q are simultaneously able to perform it, and they both participate in its
occurrence. Events not in A may be performed by either process independently
of the other. A special form of parallel operator in which the two components
do not synchronise on any events is P I[[Q which is equivalent to P I[{}]l q-

Events occurring in process descriptions may be renamed by use of an event
renaming function f : s ~ s The process f (P) performs the event f (a) when-
ever P would perform a. The process f - l (p) can perform any event from the
set f - l (a) whenever P can perform a.

Processes may be recursively defined by means of equational definitions. Pro-
cess names must appear on the left hand side of such definitions, and CSP ex-
pressions which may include those names appear on the right hand side. For
example, the definition

LIGHT = on -+ off --+ LIGHT

defines a process LIGHT whose only possible behaviour is to perform on and
off alternately.

202

Traces For the purposes of this paper we restrict attention to the trace se-
mantics for CSP. This semantics associates a process P with the set of (finite)
sequences of events (traces(P)) that it may possibly perform. Examples of traces
include (> (the empty trace, which is possible for any process) and (on, off, on>
which is a possible trace of LIGHT.

A n a l y s i n g p r o c e s s e s A process P is refined by a process Q (written P ___ Q)
if traces(Q) c_ traces(p). This means that if P meets a specification then Q will
also meet it. It also allows CSP processes to act as specifications: Q meets the
specification P if it a refinement of it.

Model-checking techniques allow the refinement relation P ~ Q to be checked
mechanically (for finite-state processes). There are a number of tools that have
been designed to support model-checking. We will use the tool FDR which has
been designed specifically for analysis of CSP processes. It takes two processes
P and Q as input, and either confirms that Q is a refinement of P, or provides
a witness trace tr which is a trace of Q but not of P (which is concrete evidence
that traces(Q) ~ traces(p)). The trace tr is useful in debugging Q, since it
contains information as to a behaviour of Q that is disallowed by the specification
P.

Since two processes are equal if each refines the other~ equality of processes
can be checked by checking P _E Q and Q E P. The definition of anonymity
presented below will require that a process P is equal to another process Q
dependent on P. The tool FDR will allow automatic checking for this equality.

4 F o r m a l i s a t i o n

The point of formalisation is to allow a better analysis of the real-world situation.
It is therefore necessary to translate the various aspects involved in anonymity
into the formal method. In particular, the CSP approach should be able to model
identities of agents, the various ideas of viewpoints of agents on the system, and
the idea of sensitive information. Furthermore, the results of the analysis should
provide feedback at the real-world level, in the sense that it should provide
information concerning why anonymity does not hold in particular cases.

Anonymity is concerned with protecting the identity of agents with respect to
particular events or messages. The messages themselves need not be protected.
Hence it is natural to consider events in the system under analysis as consisting
of two components: the identity of the agent performing that event, and the
content itself. For anonymity, we consider events of the form i.z, where i is the
identity of the agent, and x is the content of the event.

The point of anonymity is that a message that could have originated from
one agent could equally have originated from any other (perhaps any other from
some set of users). Hence we wish our definition to capture the notion that any
message of the form i.z could equally well have been of the form j .x. If the set
USERS consists of the set of all users whose identities should be masked by the

203

system in providing anonymity, then the set of messages we wish to confuse for
a given piece of information x is given by the set A:

A = {i .x [i E USERS}

Rather than talk directly about the identity of users, we can capture anonymity
by requiring that whenever any event from the set A occurs, it could equally well
have been any other event. In terms of agent identity and content, this means
that if an observer has access only to the content of the message then it is not
possible to deduce the identity of the agent associated with it.

This may be encapsulated in an equation for the system P

D e f i n i t i o n 1 A process P is strongly anonymous on an alphabet A if:

fA~(fA(P)) = P

where equality is with respect to traces, and

f A (z) = ~ i f z E A
fA(x) : x if x ~ A

where a r
This definition states that if every occurrence of every event from A were

renamed to some new dummy event a (thus considering all events from A to be
equivalent) which is the situation in the process fA(P), then whenever an a is
possible in this renamed process, any possible event from A should have been
possible in the original process. The process f ~ l (Q) makes every event from
A available whenever a is available in Q, so fA~(fA(P)) makes all events from
A available whenever any such event is possible. The equation states that this
process is identical to the original process P, which means that the process P
makes all events in A available whenever any of them is.

C o n s e q u e n c e s o f t h e d e f i n i t i o n A number of aspects of anonymity follow
immediately from the definition:

1. I f P is anonymous on both A and A ~, and A N A ~ r ~ then P is anonymous
on A U A ~

2. I f P is anonymous on A and A' _C A then P is anonymous on A ~
3. Anonymity is not preserved by CSP refinement with respect to nondeter-

minism.

From these properties it can be seen that if P provides anonymity for A then
it need not follow that some event from A must have occurred whenever any
of them could have occurred. For example, if P provides anonymity for the set
{O.gives, 1.gives} and in some situation it was possible that O.gives occurred, it
need not be the case that either O.gives or 1.gives must have occurred; it is also
possible that some other event (such as 2.gives) could have occurred, or even no
such event at all. Anonymity on a set simply means that events from that set
should be indistinguishable in the sense that if one could have occurred then so
could any - - i t does not mean that this should be a maximal set.

204

I l l u s t r a t i o n o f t h e def init ion As an example, consider a charity which accepts
donations. In fact there are only two possible donors, and only one of them will
provide a donation. If donor 0 offers to give, then he always gives s 5; if donor
1 offers to give, then she always gives s 101. The charity always announces
its thanks publicly (in the form 'we have received a donation'). This setup is
described by the process EXO.

EXO = O.gives -+ s -+ thanks -+ S T O P

[] 1.gives -+ s --+ thanks -+ S T O P

The donors require anonymity concerning who decides to give. In other words,
anonymity is required for the set A ={O.gives, 1.gives}.

To see whether this setup provides anonymity, we have to consider whether
f A t (f A (E x O)) = EXO. In fact

f2~(f .4 (EXO)) = O.gives -~ s ~ thanks ~ S T O P

[] O.gives -+ s -+ thanks --+ S T O P

[] 1.gives -+ s --+ thanks --+ S T O P

[] 1.gives -+ s -+ thanks -+ S T O P

which has different traces to EXO. One of the traces it has is (O.gives, s
which is not possible for EXO. This indicates that the occurrence of the event
s allows a distinction to be made between different events in A, and so the
system does not provide anonymity. This situation corresponds to the scenario
where the donors disguise themselves (so as not to be identified) but all other
events are public.

O b s e r v a t i o n

The definition given above requires that any event from A should be made
available whenever any of them is. From the point of view of a possible observer,
this is intended to ensure that whenever the observer can deduce that one of
the events was performed, then no knowledge is obtained about which event it
was. The observer is able to make such deductions from the information which
is available in the form of seeing events which the system has performed.

Anonymity is often with respect to particular observers or particular view-
points. In other words, anonymity is provided in cases where an observer has
access only to certain kinds of information, and might not be provided in cases
where more information is availab]e. For example, a donation to a charity would
be anonymous if the only information available is details of the amounts of money
passing through particular accounts, but might not be anonymous if all details
of particular transactions are available.

z Names of donors have been removed to protect their identi~ies

205

In general, an observer does not have complete access to all of the events
occurring in a system, but has only limited or no direct access to some events.
The events that an observer has access to could be captured as another set B.

It is an immediate requirement for anonymity that A N B = ~. If an observer
has direct access to the very events that we wish to mask, then it will always
be possible to tell some events in A (in particular, those also in B) from some
others.

The events that are not in A or B are those events that the observer does not
have direct access to. From the point of view of modelling the system in order to
analyse for anonymity, the other events should be abstracted, since the system to
be analysed for anonymity should encapsulate the information available to the
observer. There are a number of forms of abstraction, corresponding to various
ways in which events can be hidden from the observer. CSP contains a number
of abstraction mechanisms.

For example, in the process EXO above an observer might have access only
to event thanks. In this case B = {thanks} and the other events, s and s
should be abstracted away before analysis begins.

If C is the set of events that are to be abstracted from P, then the system
to be analysed is ABSo(P), where ABSc is one of the abstraction mechanisms
to be discussed below. In each case the requirement will be to check

fA (fAI(ABSc (P))) = ABSc (P)

H i d i n g The most straightforward form of abstraction is hiding. In the process
P \ C (pronounced ' P hide C') all events in the set C that P is able to perform
now become internal events, and their performance will no longer be visible to
Ps environment.

If a set of events is hidden then they are entirely internal to the process, and
observers obtain no direct information about their occurrence. It may of course
be possible to deduce such information from the occurrence of visible events.

This form of abstraction would be used in cases where the observer is com-
pletely unable to observe the occurrence of events outside B.

In the case of EXO this means that the occurrence of the cash transaction is
completely invisible to an observer.

This form of abstraction yields the following analysis

EXO \ C = O.gives -+ thanks --+ STOP

1.gives -+ thanks -4 STOP

It is the case that EXO \ C satisfies the anonymity equation, that

/AI(fA(EXO \ C)) = EXO \ C

and so the system does provide anonymity on A when s and s are invisible
to the observer. This is exactly what we would expect--all the observer can now
see is the occurrence of event thanks, and this provides no information about
which of the two possible initial events was actually performed.

206

Another example is provided by EX1, where donor 1 gives two donations.

E X 1 = O.gives --+ s --+ thanks --~ S T O P

[] 1.gives --~ s -+ s --+ thanks -+ S T O P

This also provides anonymity when the set C is hidden. Although the second
choice will lead to more activity, this will be completely hidden from the observer.
In fact, EX1 \ C = E X O \ C, from which it follows immediately that EX1 \ C
satisfies the anonymity definition.

R e n a m i n g It is also possible that an observer might know that some event is
occurring, but unable to detect which. For example, a donation might be posted
in an envelope. It may be clear to an observer that a donation is occurring,
but its nature remains unknown. This situation can be modelled using the same
renaming operation that was used in the definition of anonymity. The process
describing the information available to the observer is given as f c (P), where C
is the set of events to be abstracted.

In the case of EXO this form of abstraction yields the following

f c (EXO) = O.gives --7 envelope --+ ~hanks -+ S T O P

1.gives --+ envelope --+ thanks -+ S T O P

It is the case that fAl(fA(fC (EXO))) - f c (EXO) , and so the system does provide
anonymity on A when all that is known about s and s is when one of them
occurs (but not which one). Again, this is exactly what we would expect - -a l l the
observer can now see is the occurrence of an envelope followed by event thanks,
and this provides no information about which of the two possible initial events
was actually performed.

In the case of E X 1 an observer does have some indication of the abstracted
activity, but no direct information concerning its precise nature. We obtain

f r EX1) = O.gives -+ envelope --+ thanks -+ STOP

1.gives --+ envelope -+ envelope --4 thanks -+ S T O P

This process does not meet the anonymity definition, since the sequence of events
(O.gives, envelope, envelope) is not a trace of this process, but it is a trace of the
renamed process f A I (f A (f v (E X 1))) . This illustrates the fact that it is possible
for anonymity to fail even without any direct information to the observer, if
the abstract ion mechanism is not strong enough. I f the event thanks were also
abstracted in E X 1 so the observer does not even have access to any information
directly, the process would still fail to provide anonymity, since the observer can
detect the level of abstracted activity.

207

M a s k i n g Another third of abstraction, first presented in [Ros94], corresponds
to events being masked by the occurrence of other events which act as noise. In
the charity example we consider the possibility that there are other donations
flowing in, so in the case of any particular donation it is unclear whether it is
from one of the donors we are interested in or whether it is from somewhere else.
Events are observed but it is unclear whether they are events from the process
of interest, or whether they are other events.

This form of abstraction is described by running the process P in parallel
with RUN(C), the process which can always perform any events from the set C.
The resulting description P Ill RUN(C) is always able to perform an event from
C, so an observer cannot know whether any particular occurrence of such an
event was due to P or due to RUN(C). RUN({s s models the situation
of donations occurring from sources other than those we are considering. The
fact that thanks is not also in the set indicates that thanks can occur only in
response to the donors of interest. I f thanks could also occur elsewhere, then
that would also be contained in the set.

In this situation, the observer is in a position to know that P has not per-
formed any events from C in the case where none have been performed. In any
case, an observer will have an upper bound on the number of events from C that
P has performed at any po in t - - t he total number of events from C that have
been observed.

In the case of EXO, the situation is that donations come in from a variety
of sources, and their values are known to an observer. The thanks event is not
masked.

Analysis of EXO in this situation reveals that anonymity is not provided in
this case. The process fAI(fA(EXO]][RUN(C))) contains the seqnece of events
(O.gives, s thanks) as a possible trace, though it is not possible for the process
EXO][IRUN(C). The reason anonymity breaks down is that although s and
s events are masked, it is still possible for an observer to deduce tha t no such
events have occurred, if none are performed by the masking process or by the
process under consideration. Hence once a thanks event has occurred, if a s
has occurred but no s events then it will be clear to the observer that O.gives
cannot have occurred. In such a situation, O.gives is distinguishable from 1.gives.

The same phenomenon also appears in EX 1.

C o m b i n i n g m a s k i n g a n d r e n a m i n g These forms of abstraction combine
naturally, and it is often appropriate to use a combination in a system where
observers have different kinds of access to events. The system P \ C Ill RUN(D)
for example describes the situation where no events from C can be observed,
and events from D are masked.

A particularly natural combination is tha t of masking with renaming: the
identity of particular events is not known, and their occurrence may be observed
but may also be masked. In the charity case, this corresponds to donations being
provided in envelopes, from the donors of interest and also from other donors.

The situation is described by fc(P) Ill RUN({envelope}) (where fc maps

208

events to envelope). The only information an observer has concerning the ab-
stracted events is an upper bound on the number of such even t s - -a total number
of envelopes will have been seen, and so the process in question can have per-
formed no more than this.

This form of abstraction yields anonymity for EXO:

fc(EXO) !11 RUN({enveIope}) = fAI(fA(fc(EXO) Itl RUN({envelope})))

However, it does not yield anonymity for EX 1. The process after the renam-
ing, which is

fAl (fA(fc(EX1) Ill RUN({enveIope})))

has a trace (1.gives, envelope, thanks} which is not possible for the left-hand
process fc(EXO)][I RUN({envelope}). This indicates that if a single envelope
is observed, and then thanks is observed, then the only possible donor is 0.
An observer has an upper bound on the number of donations provided by the
process under consideration (i.e. EX1) which is the number of envelope events
that appear in the trace: one in this case. Since thanks will not occur for donor
1 after only one envelope we have a situation where an observer can distinguish
one donor from the other.

In the case described by EX2~ where donor 1 can receive thanks after a single
donation, then anonymity is indeed provided under this form of abstraction,
where masking and renaming are combined. The situation where donor 1 gives
two donations is masked by donations coming in i~om other sources.

EX2 : O.gives --+ s --~ thanks -~ STOP

[] 1.gives --+ s -+ s --+ thanks -+ STOP o s -+ thanks --+ STOP

Note that anonymity is not provided by EX 2 if the form of abstraction is either
simply masking or simply renaming.

5 T h e D i n i n g C r y p t o g r a p h e r s

This protocol is taken from [Cha88]. The introductory example of the paper
describes a situation in which three cryptographers share a meal. At the end of
the meal, each of them is secretly informed by the NSA whether or not she is
paying. Either at most one is paying, or else the NSA is itself picking up the bill.

The cryptographers would like to know whether it is one of them who is
paying, or whether it is the NSA that is paying; but they also wish to retain
anonymity concerning the identity of the payer if it one of them.

They each toss a coin, which is made visible to themself and their r ight-hand
neighbour. Each cryptographer then examines the two coins tha t they can see.
There are two possible announcements that can be made by each cryptographer:
that the coins agree~ or that they disagree. If a cryptographer is not paying then
she will say that they agree if the results on the coins are the same, and that
they disagree if the results differ; a paying cryptographer will say the opposite.

209

If the number of 'disagree' announcements is even, then the NSA is paying.
If the number is odd, then one of the cryptographers is paying. The two cryptog-
raphers not paying will not be able to identify the payer from the information
they have available.

Analysis

This protocol (and variants) will be coded up in CSP and analysed as follows:

1. The protocol will be analysed for functional correctness: that it can be de-
cided from the cryptographers' announcements whether or not the NSA is
paying.

2. It will be analysed from the point of view of anonymity of the payer with
respect to an eavesdropper at another table

3. Anonymity of the payer with respect to the other cryptographers will be
tested

4. The situation of one of the coins being double-headed will be analysed
5. The situation of four dining cryptographers will be analysed for anonymity

of the payer where two of the other cryptographers pool their information

Model l ing the p ro toco l

lout.O

ays.(notpays.O

.W"/)X. /Z..."-...pays.2

7 . 2
~ look.2.1

1ook.2,2

~~out.2

Figure 1: Components of the protocol

210

The protocol is modelled in CSP as the parallel combination of cryptog-
raphers and coins, and a master process dictating who pays, as illustrated in
Figure 1. The events of the form pays.i and notpays.i are the instructions from
the NSA concerning payment. Events of the form look.i.j.x model cryptographer
1 reading value x from coin j . The channels out.i axe used for the cryptographers
to make their declaration.

The MASTER process nondeterministically chooses either to pay, or one of
the cryptographers to pay.

MASTER = (~i:CRYPTNAMES pays.i-+ notpays.((i + 1) m o d 3)
-+ notpays.((i + 2) r o o d 3) -+ STOP)

notpays.O -+ notpays.1 --+ notpays.2 --+ STOP

Each cryptographer process follows the protocol. This is described in CSP as
follows:

CRYPT(i) = notpays.i -+ look.i.i?x --+ look.i.((i + 1) r o o d 3)?y -+

(if (x = y) t h e n (o~.i.ag~ee --~ STOP)
else (out.i.disagree -+ STOP))

[] (pays.i -~ look.i.i?x -+ look.i.((i + 1) r o o d 3)?y --~

(if (x = y) t h e n out.i.disagree -+ STOP
else out.i.agree -+ STOP))

Each coin is modelled as a choice between reading heads and reading tails:

COIN(i) = HEADS(i) • TAILS(i)

HEADS(i) = look.i.ilheads -~ HEADS(i)

[] look.((i - 1) r o o d 3).i[heads -~ HEADS(i)

TAILS(i) = look.i.i!taiIs -+ TAILS(i)

[] Zook.((i - 1) m o a 3).i!taiIs -~ TAILS(i)

The master either sends a pay message to one of the cryptographers or a
don' t pay message to all of them.

The system is constructed from the cryptographers and coins, which are two
collections of independent processes.

CRYPTS -= CRYPT(O)Iit CRYPT(l) f l l CRYPT(2)

COINS = COIN(O)Ill COIN(l)LII COXN(2)

They must synchronise on the events representing the examination of coins
and the MASTER decides who is paying.

MEAL -- ((CRYPTS I[took]l COINS) l[pays, notpays]1 MASTER) \ notpays

211

It is also possible to provide a parametric description of the system for an
arbitrary number n of cryptographers; but automatic verification will be possible
only once a particular n is chosen.

F u n c t i o n a l c o r r e c t n e s s The protocol is functionally correct if it is possible
to distinguish the possibilities of a cryptographer paying from the NSA paying.
The description of the protocol itself indicates how this is to be achieved: by
means of counting the 'disagree' declarations and checking whether there were
an odd or an even number of them.

Although this is very simple to express, if it is to be checked using FDR
then it is necessary to construct an explicit CSP %est-harness' to count the
number of 'disagree' events and then output the result. This will be the process
COUNTS(O, 0) below.

The specification then captures the idea that either one of the cryptographers
pays, in which case an answer 'crypt ' should result, or none of them pays and
the answer 'nsa' should result:

SPEC -= ([-] i:cnYPTNAM1,jS (pays.i ---+ crypt --~ STOP))
(nsa --> STOP)

The specification is that if one of the cryptographers is asked to pay, then the
protocol yields 'crypt ' ; otherwise it yields 'nsa'.

The process of telling the difference is captured by COUNTS(O, 0) where
COUNTS(i, j) is defined as follows:

COUNTS(i,j) = (if (i = 3)

t h e n (i f (j = O)
t h e n (crypt -+ STOP)
else (nsa --+ STOP))

else out.i?x --+ (i f (z = disagree)
t h e n COUNTS(i + 1, j)
else COUNTS(i + 1, ((j + 1) r o o d 2))))

The meal together with the protocol captured by COUNTS(O, 0) is then
captured as follows:

SYSTEM = (MEAL I[out Jl COUNTS(O, 0)) \ {look, out}

All of these descriptions are easily coded up within the CSP syntax required
for FDR, which confirms that

SPEC E SYSTEM

or in other words, that the system really does meet the specification: the protocol
is correct.

212

Anonymity with respect to an o u t s i d e r Anonymity is required for the
system described by MEAL.

An observer sitting at the next table sees only the calls made by the cryp-
tographers: such an observer has access only to the set out, as illustrated in
Figure 2

out.O

>W0~" I ""-..%.
. 3 look.~Jk"~ ~/ "-.look.0.2

//: ~ 3 ~ ' pays.(: m t l ~ a y ~ ~ " " :

" ok.l.0 M~A, FER~ 1ook.2.2 !
i x/Sk, /~--,pays.2 i

',. / _ _ ~ m t p a y s . 1 " " ~ \ :'
',. ~I~R'~ I:'T11 " ~~R5 PT2)., /

................ ,ook yj:

Figure 2 : The abstracted cryptographers

We may test for anonymity between all the cryptographers, by checking for
anonymity on the set pays. The set of abstracted events in this case is all the
internal events except pays, i.e. the set look.

We will use the abstraction fv(pays.i) = ct to identify all the pays events.
If the observer cannot even tel] when a cryptographer is looking at a coin,

then hiding abstraction is most appropriate. The check required for anonymity
is therefore:

MEAL \ look ~ f ~ I (f p (M E A L \ look))

On the other hand, if the observer can see when a cryptographer is looking at
a coin, then renaming abstraction is appropriate: the observer can tell that some
event is occurring, but does not know its precise nature. We may use the renam-
ing function f~(look.i.j.z) = look.i.j. The observer can tell which cryptographer
is looking at which coin, but cannot tel] what is seen.

The check required in this case is

f~(MEAL) E_ f ; l (fp(f~(MEAn)))

213

In both cases, FDR confirms that the relationship holds: that the protocol
does provide anonymity.

A n o n y m i t y a ga in s t o t h e r c r y p t o g r a p h e r s The protocol is intended not
only to provide anonymity against outsiders, but also against the other cryptog-
raphers. In this situation we require that any particular cryptographer cannot
distinguish between the other two pay.i events on the strength of the available in-
formation. Now there is much more information with which to break anonymity.
A cryptographer has access to two of the coins, and so has more information.

By symmetry of the system, we have only to consider cryptographer 0. In this
case, there is extra information consisting of the Iook.O events; so the only hidden
events are the look.1 and the look.2 events. We aim to estabhsh anonymity for
the set pays.l, pays.2.

If the look.i events are completely invisible to CRYPTO then hiding is most
suitable, and the appropriate check is

MEAL \ {look.l, look.2} E f~(fpl~(MEAL \ {look.l, look.2}))

where fp12(pays.1) = fp12(pays.2) = a.
On the other hand, if the cryptographer can see when the other cryptogra-

phers are looking at a coin, then renaming abstraction is more suitable. In this
case we use the renaming function

fl12(Iook.i.j.x) = look.i.j if i = 1 or i = 2
look.i.j.x otherwise

to rename only look.1 and look.2.
The check required in this case is

flt2(MEAL) ~ f~1~(fp12(fa2(MEAL)))

Again, in both cases, FDR confirms that the relationship holds: that the
protocol does provide anonymity for each cryptographer against the others.

A d o u b l e - h e a d e d coin If the system contains a double-headed coin, then
the situation is subtly changed. Although CRYPTO still has access to the same
information, it is within the context of a slightly altered system description, and
anonymity may thereby be compromised.

The double headed coin is described by HEADS(i): it can only provide heads.
We will consider the situation where it could be any of the three coins. In this
case the description of the coins becomes

COINS' = HEADS(O) Ill COIN(l) 1[[COIN(2)
7] COIN(O)[[I HEADS(l)]1t COIN(2)

COIN(O) Ill COIN(l)Ill HEADS(2)

214

The behaviour of the cryptographers remains unMtered, but the description
of the meal must change to reflect the changed description of the coins:

MEAL' = ((CRYPTS I[Iook]t COINS')f[pays, notpays]l MASTER) \ notpays

Checking this system for anonymity with respect to {pays. 1, pays.2} against
cryptographer 0 we check

MEAL \ {look.l, look.2} ~_ f~(fp12(MEAL \ {look.l, look.2}))

Applying FDR to this description reveals that the refinement relation fails
to hold. FDR's debugging facihties provide a witness trace: one which is possible
for the right hand side but not for the left.

The trace obtMned is ~r = (pays.l, ouL2.agree, look.O.O.taiIs, look.O.l.tails}.
This trace is not possible for the system for the following reason: if two coins

have both been observed with tails, then the knowledge that one of the three
coins must read heads allows the deduction (provided it is known that the coin
is biased) that the third coin COIN2 must be the double-headed one. Since
ouL2.agree has been observed, and it is also known that the two coins seen by
CRYPT2 read differently, this sequence cannot follow the event pays.1.

On the other hand, the events observed by CRYPTO are possible if the
initial event was pays.2, since then the protocol dictates that CRYPT2 Should
announce agree if the coins disagree. In other words~ the sequence of events
(pays.2, out.2, agree, look.O.O.tails, look.O. 1.tails} is a possible trace of the process
MEAL \ {look.l, look.2}. For this reason the trace tr above is possible for the
right-hand process.

This illustrates the way in which the feedback from the FDR debugger may
be used to gain an understanding of why anonymity does not hold. The messages
seen by cryptographer 0 are possible when one of the other cryptographers is
paying, but not when the other one is. So there are situations where cryptogra-
pher 0 can identify who is paying. In this case it is possible when both visible
coins read tails. This allows the deductiort that the third coin reads heads, which
means that the coins both sides of each of the other cryptographers are known,
enabling cryptographer 0 to tell whether each agree or disagree declaration is
appropriate.

All the FDR checks in this section took abou~ 5 seconds on a spare 5.

F o u r c r y p t o g r a p h e r s 'The situation extends naturally to four cryptographers,
and verification that anonymity for any cryptographer against any one of the
others is easily established.

A new situation of interest arises when there are four cryptographers: the
possibilities of anonymity in the case where two of the participants share their
information.

The description alters in the obvious way:

215

M A S T E R = (Ri:CRYPTNAMES pays.i -+ notpays.((i + 1) rood 4)

-+ notpays.((i + 2) rood 4)

--+ notpays.((i + 3) rood 4) --+ STOP)

N notpays.O -+ no,pays.1 -+ notpays.2 --+ notpays.3 -+ STOP

CRYPT(i) = notpays.i -+ iook.i.i?x --+ look.i.((i + 1) rood 4)?y --+

(if (x = y) t h e n (out.i.agree --+ STOP)
else (out.i.disagree --+ STOP))

[] (pays.i --+ look.i.i?x -+ look.i.((i + 1) rood 4)?y -+

(if (x -= y) t h e n out.i.disagree --+ STOP
else out.i.agree --+ STOP))

COIN(i) = HEADS(i) [~ TAILS(i)

HEADS(i) = look.i.i!heads --~ HEADS(i)

[] look.((i - 1) rood 4).i!heads --+ HEADS(i)

TAILS(i) = look.i.i!tails -+ TAILS(i)

[] look.((i - 1) rood 4).i!taiIs -+ TAILS(i)

C R Y P T S = CRYPT(O)III CRYPT(l) I I] CRYPT(2)III CRYPT(3)

COINS : COIN(O)HI COIN(l)I l l COIN(2)It[COIN(3)

MEAL = ((CRYPTS [[look]1 COINS) I[pays, not_pays]1 MASTER) \ notpays

Consider first the possibility of two adjacent cryptographers pooling their in-
formation. Without loss of generality we may consider them to be cryptographers
0 and 1.

In this case, the information available to these cryptographers is given by the
set out U look.O U look.l, and we require anonymity for {pays.2~ pays.3}.

In this case the following check is appropriate:

MEAL \ (look.2, look.3} ~ f~w \ {look.2, look.3}))

where fv28(pays.2) = fpsa(pays.3) = ~.
FDR confirms that the check indeed holds. This check took approximately

35 seconds on a sparc 5.
The other possibility is that opposite cryptographers pool their information.

In this case we will assume that they are cryptographers 0 and 2.

216

In this case, the information available to these cryptographers is outU look.O U
look.2, and we require anonymity for {pays.l, pays.3}.

The following check is performed:

MEAL \ (look.l, look.3} 7_ fv-l~(fp13(MEAL \ {look.l, look.3)))

where fpls(pays.1) = fvla(pays.3) = a.
In this case FDR establishes that the check fails, (also in approximately 35

seconds) and provides a witness trace, possible for the right hand process but
not for the left:

(pays.l, out.3.disagree, look.2.2.tails, Iook.2.3.taiIs, look.O.O.tails)

The information obtained by Iook.2.3. tails and Iook.O.O. tails is that the two coins
adjacent to CRYPT3 both read tails. Hence it is not possible to have observed
out.3.disagvee following pays.l, since if cryptographer 3 is not paying then the
declaration should match the readings on the coins.

However, such observations as have been made by cryptographers 0 and 2
are possible following an occurrence of pays.3. Hence they are able to distinguish
the events pays.1 and pays.3 and hence to deprive cryptographer 3 of anonymity.

6 D i s c u s s i o n

This paper has proposed a formal CSP definition of anonymity and has illus-
trated its use with the example of the dining cryptographers. The availability of
the FDR model-checking tool [FSEL94] for CSP means that anonymity proper-
ties can be checked for systems in a mechanical fashion. Furthermore, in cases
where anonymity fails, the CSP analysis provides useful feedback as to the par-
ticular behaviour of the system which violates the anonymity requirement. Use
of a small example such as the dining cryptographers acts as a feasibility study
for the approach and tests the definition against our general understanding of
anonymity. We intend next to apply this approach to larger systems and to
real-world anonymity protocols.

This notion of anonymity is appropriate for situations where every anony-
mous event is entirely independent of every other such event, as might be the
case in cash-transactions. But there are some situations where this requirement
is too strong, such as anonymous voting protocols. Even if anonymity is re-
quired for the identity of the voter, it must still be ensured that different votes
such as al.v 1 and a2.v2 are generated by different agents. Hence two different
votes are not entirely independent, since at and a2 must be distinct. Such a
voting system would fail our definition above, which requires that each of two
votes could independently have originated from the same agent: that the trace
(as. vl, a3. v2) should be possible. It appears likely that subtly different definitions
of anonymity will be required for different situations depending on the particular
requirements. The formalisation of these definitions will allow the distinctions
to be understood explicitly, and will facilitate the correct choice. The authors

217

are currently exploring further notions of anonymity, and their relationship to
the definition of this paper.

Treatments of anonymity often include an analysis of the probabilistic be-
haviour of the system. For example, in [Waig0] the scheme is proven to have
the property that the conditional probability for an input vector given the ob-
served output vector is the same as the a priori probability for that input vector:
in other words the output vector provides no additional information about the
probabilities associated with the inputs. This paper has not considered proba-
bility, focusing instead on simple possibilities. This identifies anonymity for an
agent with the possibility, however unlikely, that other agents could equally have
performed the same event. In this analysis, if a set of biased coins was used
where each had a 99% chance of landing heads, then any cryptographer may
have be paying given any particular outputs, but it is much more likely in the
case of two agree calls that the one who called disagree is actually the one who
is paying: the conditional probability given the outputs is not the same as the a
priori probability.

It seems likely that the use of probabilistic CSP [Sei92, Low93] could directly
address this issue. This would allow the association of probability values with
particular traces. It may be the case that the same definition of anonymity will
extend directly to probabilistic models for CSP: that fA I (fA (P)) = P. In a
probabilistic model this would mean that the identification of different events
should not make any difference to the probabilities associated with each of those
event. The definition captures the idea that it is not possible to tell the difference
between the outcomes of a number for different events. What is meant precisely
by 'telling the difference' is defined by the CSP model being used. In the traces
model it simply means that all resulting processes should have the same traces; a
model with probabilities will also require that resulting probabilistic behaviours
should also be the same.

7 A c k n o w l e d g e m e n t s

Thanks are due to Peter Ryan for posing the dining cryptographers as a chal-
lenge for anonymity, and for his comments; to Birgit Pzitzmann for a thorough
reading and detailed comments; and also to Irfan Zakiuddin, Dieter Gollmann,
Bill Roscoe, Gavin Lowe, and Michael Goldsmith for other comments on various
stages of this work. We are also grateful to the anonymous referees for their
reviews and suggestions.

The authors are grateful to t, he DRA and to Peter Ryan for funding this
research.

R e f e r e n c e s

[Cha85] D. Chaum, Security without Identification: Card Computers to make Big
Brother Obsolete, CACM 28(10), 1985.

218

[Cha88]

[FSEL94]

[HoaS5]
[Low93]

[PfW94]

[Ros94]

[Sch96]

[Sei92]

[Wai90]

D. Chaum, The dining cryptographers problem: unconditional sender and
recipient untraceability, J. Cryptology (1), 1988.
Formal Systems (Europe) Ltd, Failures Divergences Refinement User Man-
ual and Tutorial, 1994.
C.A.R. goare, Commun/cating Sequential Processes, Prentice-Hall, 1985.
G. Lowe, Probabilities and priorities in timed CSP~ D.Phil thesis, Oxford,
1993.
B. Pfitzmarm and M. Waidner, A general framework for formal notions of
"secure" system, Hildesheimer Informatik-Berichte 11/94, Institut ffir Infor-
matik, Universit~t Hildesheim, 1994.
A.W. Roscoe, CSP and determinism in security modelling, Submitted for
publication, 1994.
S.A. Schneider, Security properties and CSP, IEEE Symposium on Security
and Privacy, 1996.
K. Seidel, Probabilistic Communicating Processes, D.Pliil Thesis, Oxford,
1992.
M. Waidner, Unconditional sender and recipient untraceability in spite of
active attacks, Eurocrypt'89~ LNCS 434, Springer, 1990.

