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Abst rac t .  Security protocols are designed to meet particular security 
properties. In order to analyse such protocols formally, it is necessary 
to provide a formal definition of the property that they are intended 
to provide. This paper is concerned with the property of anonymity, tt 
proposes a definition of anonymity within the CSP notation, discusses 
the approach taken by CSP to anonymity with respect to different view- 
points, and illustrates this approach on some toy examples, and then 
applies it to a machine-assisted analysis of the dining cryptographers 
example and some variants. 

1 I n t r o d u c t i o n  

The notion of anonymity is used in a wide variety of situations, from anonymous 
donations to anonymous transactions. Computer systems may be used to support 
anonymity~ but the users have to be confident that  their anonymity requirements 
are actually provided by the system. 

This paper aims to provide the foundations of a process algebraic approach 
to analysing systems with regard to anonymity properties. Such an approach 
focuses on the interactions between system components and is appropriate for the 
analysis and verification of protocols designed to achieve these properties. This 
is in contrast to mathematical characterisations such as that  of [Wai90], where 
attention is focused on the information contained in outputs of communication 
rounds. This paper fits within the general framework described in [PfW94], where 
the authors identify the need to discuss properties in terms of the sequences of 
interactions (traces) possible at the interface between the system and the users. 
It fits in with the aims of [Sch96] ~o define a number of security properties within 
CSP, providing a uniform framework for describing and analysing protocols and 
thei~ properties. 

The principal intention of this paper is to describe the use of CSP to define 
anonymity properties and to analyse anonymity protocols. CSP is an appropriate 
formal method for describing and analysing communications protocols because it 
is designed to describe systems in terms of components which interact by means 
of message passing. To this end it is important  firstly to understand the concept 
of anonymity by examining the way it is generally used. Once a formal definition 
has been provided, it is explored and refined by applying it to known situations 
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and confirming that  the diagnosis provided by the definition corresponds to 
what is expected. It can then be used in the analysis of situations which are not 
already well understood, in order to see how it provides feedback and clarifies 
understanding. 

This paper is structured as follows: Section 2 investigates the nature of 
anonymity; Section 3 introduces the relevant CSP notation and theory; Section 4 
formulates a CSP definition of anonymity which aims to capture the concept, 
and illustrates the definition by applying it to a variety of simple situations. No- 
tions of abstraction, crucial for the consideration of anonymity with respect to 
different viewpoints, are also discussed; Section 5 explores and illustrates these 
definitions on the well-understood Dining Cryptographers anonymity protocol, 
and discusses how the FDR model-checking tool [FSEL94] provides feedback 
during protocol analysis. 

2 A n o n y m i t y  n o t i o n s  

If we are to analyse anonymity as a security property it is crucial to define it in a 
precise way. There are many real life activities which may be done anonymously: 
examples include donating money, publishing poems, sending mail, voting, in- 
forming the police, and posting to bulletin boards. A formal definition should 
be applicable to this wide variety of situations. 

A natural question that arises is whether anonymity is a property of events 
and messages or a property of agents. The scenarios described above suggest 
that  the anonymity involved in a particular message or event is a property of the 
agents associated with that event or message. For example, in a specific voting 
situation where members of a party voted to elect a new leader we might have 
as a requirement that  the voter associated with any particular vote should be 
anonymous. In another example, if someone informed the police, the informer 
would like to hide his identity. It is also the case that  the police would like 
in some cases to hide the nature of the information itself. It seems that  the 
hidden information itself (in contrast to the identity of the informant) would 
be better considered as confidential rather than anonymous. In this case, we 
use confidentiality to refer to messages whose content is to be kept secret, and 
anonymity to refer to messages whose originator or recipient is to be kept secret. 

We can identify various aspects of anonymity: 

1. It can be provided to agents as in the discussion above, where an agent wishes 
to hide his identity. In an anonymous mail, poem, donation, or informing 
police one wants to be anonymous. 

2. Viewing the world from particular viewpoints, one may have anonymity with 
respect to some information but not with respect to other (more privileged) 
information. For example, with regard to an anonymous donation, the or- 
ganisation receiving the donation may know the identity of the donor even if 
the general public does not. Hence the anonymity of the donor will be with 
respect to the absence of particular privileged information. Furthermore, the 
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anonymity is with respect to the relationship between the donor and the do- 
nation. The identity of the donor may be known in other contexts, but it is 
the fact that  the connection between the donor and the donation is hidden 
which provides anonymity. 

An issue that arises from this concerns who has control over withholding the 
particular privileged information that  is required to provide anonymity. Chaum 
is" concerned with this distinction, and has proposed protocols in which the agent 
himself is in possession of that  information. He has written a number of papers 
[Cha85, Cha88] on the subject in which two main kinds of transaction are identi- 
fied: payments, and credentials transactions. In Chaum's electronic cash scheme 

f o r  example, the author promises anonymity of the digital coins user so that 
the bank cannot associate a payment with the payer without their consent. The 
argument of Chaum is that  his system permits fraud detection and transac- 
tion tracing with the consent of the individual. His system Mso addresses other 
problems such as double spending of the same coin. 

We can use credentials as another example of demonstrating anonymity. Cre- 
dentials are usually needed to prove one's credibility and identity. With un- 
traceable credentials using pseudonyms one's credibility is proven without di- 
vulging the identity. When one can have only one pseudonym per organisation 
the problem of double identity is Mso addressed. Additionally, if one uses dif- 
ferent pseudonyms for different organisations nobody can trace him and with 
a suitable implementation the organisations can be convinced they are dealing 
with the correct individual. This saves the individual the trouble of giving po- 
tentially sensitive information in order to prove its identity. Both examples are 
published in [Cha85]. 

This paper is concerned with providing a formal definition which may be ap- 
plied to this wide variety of situations. Although there are a variety of anonymity 
protocols, often the property which the protocol aims to guarantee is not explic- 
itly defined. Formal definition provides the starting point for formal analysis. 
Anonymity protocols can then be described in CSP, and the resulting system 
can be analysed to show that the anonymity property is present. 

3 C S P  n o t a t i o n  

CSP is an abstract language designed specifically for the description of communi- 
cation patterns of concurrent system components that  interact through message 
passing. It is underpinned by a theory which supports analysis of systems de- 
scribed in CSP. It is therefore well suited to the description and analysis of 
network protocols: protocols can be described within CSP, as can the relevant 
aspects of the network. Their interactions can be investigated, and certain as- 
pects of their behaviour can be verified through use of the calculus. This section 
introduces the notation and ideas used in this paper. In particular, only the trace 
model for CSP is used here. For a fuller introduction to the language the reader 
is referred to [Hoa85]. 
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E v e n t s  Systems are modelled in terms of the events that  they can perform. 
The set of all possible events (fixed at the beginning of the analysis) is denoted 
Z. Events may be atomic in structure or may consist of a number of distinct 
components.  For example, an event put.5 consists of two parts: a channel name 
put, and a da ta  value 5. An example of events used in this paper  are those of the 
form look.i.j.v consisting of a channel look, the first participant i, the second 
part icipant j ,  and the value v being communicated. This may be thought of 
either as a channel look which passes messages consisting of three components,  or 
as a collection of channels look.i.j which each pass a single component message. 
The CSP model treats these identically, though in this paper  we will prefer to 
think in terms of the second possibility. I f  M and N are sets of messages, then 
M . N  will be the set of messages {m.n ] m E M A n E N} .  I f  m is a single 
message then we elide the set brackets and define m . N  to be {m} .N .  Thus for 
example the set of events i . N . m  = { i .n .m [ n E N}.  A channel c is said to be 
of type M if for any message c.m E ~U it is the case that  m E M; and for any 
m E M it is the case that  c.m ~ ~ .  

P r o c e s s e s  Processes are the components of systems. They are the entities that  
are described using CSP, and they are described in terms of the possible events 
that  they may engage in. The process STOP is the process that  can engage in 
no events at  all. I f  P is a process then the process a --+ P is able initially to 
perform only a, following which it will behave in the way described by P. The 
process P [] Q (pronounced ' P  choice Q') can behave either as P or as Q: its 
possible communications are those of P and those of Q. An indexed form of 
choice [3~c z Pi is able to behave as any of its arguments  Pi.  

Processes may also be composed in parallel. I f  A is a set of events then the 
process P ][A]] Q behaves as P and Q acting concurrently, with the require- 
ment  that  they have to synchronise on any event in the synchronisation set A: 
in other words, any event in the set A can be performed only when both P 
and Q are simultaneously able to perform it, and they both participate in its 
occurrence. Events not in A may be performed by either process independently 
of the other. A special form of parallel operator in which the two components 
do not synchronise on any events is P I[[ Q which is equivalent to P I[{}]l q- 

Events occurring in process descriptions may be renamed by use of an event 
renaming function f : s ~ s The process f ( P )  performs the event f (a )  when- 
ever P would perform a. The process f - l ( p )  can perform any event from the 
set f - l ( a )  whenever P can perform a. 

Processes may  be recursively defined by means of equational definitions. Pro- 
cess names must appear  on the left hand side of such definitions, and CSP ex- 
pressions which may include those names appear  on the right hand side. For 
example, the definition 

LIGHT = on -+ off --+ LIGHT 

defines a process LIGHT whose only possible behaviour is to perform on and 
off alternately. 
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Traces  For the purposes of this paper we restrict attention to the trace se- 
mantics for CSP. This semantics associates a process P with the set of (finite) 
sequences of events (traces(P)) that  it may possibly perform. Examples of traces 
include (> (the empty trace, which is possible for any process) and (on, off, on> 
which is a possible trace of LIGHT. 

A n a l y s i n g  p r o c e s s e s  A process P is refined by a process Q (written P ___ Q) 
if traces(Q) c_ traces(p). This means that if P meets a specification then Q will 
also meet it. It also allows CSP processes to act as specifications: Q meets the 
specification P if it a refinement of it. 

Model-checking techniques allow the refinement relation P ~ Q to be checked 
mechanically (for finite-state processes). There are a number of tools that  have 
been designed to support model-checking. We will use the tool FDR which has 
been designed specifically for analysis of CSP processes. It takes two processes 
P and Q as input, and either confirms that  Q is a refinement of P, or provides 
a witness trace tr which is a trace of Q but not of P (which is concrete evidence 
that  traces(Q) ~ traces(p)). The trace tr is useful in debugging Q, since it 
contains information as to a behaviour of Q that  is disallowed by the specification 
P. 

Since two processes are equal if each refines the other~ equality of processes 
can be checked by checking P _E Q and Q E P. The definition of anonymity 
presented below will require that  a process P is equal to another process Q 
dependent on P. The tool FDR will allow automatic checking for this equality. 

4 F o r m a l i s a t i o n  

The point of formalisation is to allow a better analysis of the real-world situation. 
It is therefore necessary to translate the various aspects involved in anonymity 
into the formal method. In particular, the CSP approach should be able to model 
identities of agents, the various ideas of viewpoints of agents on the system, and 
the idea of sensitive information. Furthermore, the results of the analysis should 
provide feedback at the real-world level, in the sense that it should provide 
information concerning why anonymity does not hold in particular cases. 

Anonymity is concerned with protecting the identity of agents with respect to 
particular events or messages. The messages themselves need not be protected. 
Hence it is natural to consider events in the system under analysis as consisting 
of two components: the identity of the agent performing that  event, and the 
content itself. For anonymity, we consider events of the form i.z, where i is the 
identity of the agent, and x is the content of the event. 

The point of anonymity is that  a message that could have originated from 
one agent could equally have originated from any other (perhaps any other from 
some set of users). Hence we wish our definition to capture the notion that  any 
message of the form i.z could equally well have been of the form j .x.  If the set 
USERS consists of the set of all users whose identities should be masked by the 



203 

system in providing anonymity, then the set of messages we wish to confuse for 
a given piece of information x is given by the set A: 

A = {i .x  [i E USERS} 

Rather  than talk directly about  the identity of users, we can capture anonymity  
by requiring that  whenever any event from the set A occurs, it could equally well 
have been any other event. In terms of agent identity and content, this means 
that  if an observer has access only to the content of the message then it is not 
possible to deduce the identity of the agent associated with it. 

This may be encapsulated in an equation for the system P 

D e f i n i t i o n  1 A process P is strongly anonymous on an alphabet  A if: 

fA~(fA(P))  = P 

where equality is with respect to traces, and 

f A ( z )  = ~ i f z E A  
fA(x) : x if x ~ A 

where a r 
This definition states that  if every occurrence of every event from A were 

renamed to some new dummy event a (thus considering all events from A to be 
equivalent) which is the situation in the process fA(P),  then whenever an a is 
possible in this renamed process, any possible event from A should have been 
possible in the original process. The process f ~ l ( Q )  makes every event from 
A available whenever a is available in Q, so fA~(fA(P)) makes all events from 
A available whenever any such event is possible. The equation states that  this 
process is identical to the original process P, which means that  the process P 
makes all events in A available whenever any of them is. 

C o n s e q u e n c e s  o f  t h e  d e f i n i t i o n  A number of aspects of anonymity follow 
immediately from the definition: 

1. I f  P is anonymous on both A and A ~, and A N A ~ r ~ then P is anonymous 
on A U A ~ 

2. I f  P is anonymous on A and A' _C A then P is anonymous on A ~ 
3. Anonymity is not preserved by CSP refinement with respect to nondeter- 

minism. 

From these properties it can be seen that  if P provides anonymity  for A then 
it need not follow that  some event from A must have occurred whenever any 
of them could have occurred. For example, if P provides anonymity  for the set 
{O.gives, 1.gives} and in some situation it was possible that  O.gives occurred, it 
need not be the case that  either O.gives or 1.gives must have occurred; it is also 
possible that  some other event (such as 2.gives) could have occurred, or even no 
such event at all. Anonymity on a set simply means that  events from that  set 
should be indistinguishable in the sense that  if one could have occurred then so 
could any - - i t  does not mean that  this should be a maximal  set. 
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I l l u s t r a t i o n  o f  t h e  def init ion As an example, consider a charity which accepts 
donations. In fact there are only two possible donors, and only one of them will 
provide a donation. If donor 0 offers to give, then he always gives s 5; if donor 
1 offers to give, then she always gives s 101. The charity always announces 
its thanks publicly (in the form 'we have received a donation').  This setup is 
described by the process EXO. 

EXO = O.gives -+ s -+ thanks -+ S T O P  

[] 1.gives -+ s --+ thanks -+ S T O P  

The donors require anonymity concerning who decides to give. In other words, 
anonymity is required for the set A ={O.gives, 1.gives}. 

To see whether this setup provides anonymity, we have to consider whether 
f A t ( f A ( E x O ) )  = EXO. In fact 

f2~( f .4 (EXO))  = O.gives -~ s  ~ thanks ~ S T O P  

[] O.gives -+ s -+ thanks --+ S T O P  

[] 1.gives -+ s --+ thanks --+ S T O P  

[] 1.gives -+ s -+ thanks -+ S T O P  

which has different traces to EXO. One of the traces it has is (O.gives, s 
which is not possible for EXO. This indicates that  the occurrence of the event 
s allows a distinction to be made between different events in A, and so the 
system does not provide anonymity. This situation corresponds to the scenario 
where the donors disguise themselves (so as not to be identified) but all other 
events are public. 

O b s e r v a t i o n  

The definition given above requires that  any event from A should be made 
available whenever any of them is. From the point of view of a possible observer, 
this is intended to ensure that whenever the observer can deduce that  one of 
the events was performed, then no knowledge is obtained about which event it 
was. The observer is able to make such deductions from the information which 
is available in the form of seeing events which the system has performed. 

Anonymity is often with respect to particular observers or particular view- 
points. In other words, anonymity is provided in cases where an observer has 
access only to certain kinds of information, and might not be provided in cases 
where more information is availab]e. For example, a donation to a charity would 
be anonymous if the only information available is details of the amounts of money 
passing through particular accounts, but might not be anonymous if all details 
of particular transactions are available. 

z Names of donors have been removed to protect their identi~ies 
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In general, an observer does not have complete access to all of the events 
occurring in a system, but has only limited or no direct access to some events. 
The events that an observer has access to could be captured as another set B. 

It is an immediate requirement for anonymity that A N B = ~. If an observer 
has direct access to the very events that we wish to mask, then it will always 
be possible to tell some events in A (in particular, those also in B) from some 
others. 

The events that are not in A or B are those events that the observer does not 
have direct access to. From the point of view of modelling the system in order to 
analyse for anonymity, the other events should be abstracted, since the system to 
be analysed for anonymity should encapsulate the information available to the 
observer. There are a number of forms of abstraction, corresponding to various 
ways in which events can be hidden from the observer. CSP contains a number 
of abstraction mechanisms. 

For example, in the process EXO above an observer might have access only 
to event thanks. In this case B = {thanks} and the other events, s and s 
should be abstracted away before analysis begins. 

If  C is the set of events that are to be abstracted from P, then the system 
to be analysed is ABSo(P),  where ABSc is one of the abstraction mechanisms 
to be discussed below. In each case the requirement will be to check 

fA ( fAI(ABSc (P))) = ABSc (P) 

H i d i n g  The most straightforward form of abstraction is hiding. In the process 
P \ C (pronounced ' P  hide C') all events in the set C that P is able to perform 
now become internal events, and their performance will no longer be visible to 
Ps environment. 

If  a set of events is hidden then they are entirely internal to the process, and 
observers obtain no direct information about their occurrence. It may of course 
be possible to deduce such information from the occurrence of visible events. 

This form of abstraction would be used in cases where the observer is com- 
pletely unable to observe the occurrence of events outside B. 

In the case of EXO this means that the occurrence of the cash transaction is 
completely invisible to an observer. 

This form of abstraction yields the following analysis 

EXO \ C = O.gives -+ thanks --+ STOP 

1.gives -+ thanks -4 STOP 

It is the case that EXO \ C satisfies the anonymity equation, that  

/AI(fA(EXO \ C)) = EXO \ C 

and so the system does provide anonymity on A when s and s are invisible 
to the observer. This is exactly what we would expect--all  the observer can now 
see is the occurrence of event thanks, and this provides no information about 
which of the two possible initial events was actually performed. 
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Another example is provided by EX1,  where donor 1 gives two donations. 

E X 1  = O.gives --+ s --+ thanks --~ S T O P  

[] 1.gives --~ s -+ s --+ thanks -+ S T O P 

This also provides anonymity when the set C is hidden. Although the second 
choice will lead to more activity, this will be completely hidden from the observer. 
In fact, EX1  \ C = E X  O \ C, from which it follows immediately that  EX1  \ C 
satisfies the anonymity definition. 

R e n a m i n g  It is also possible that  an observer might know that  some event is 
occurring, but unable to detect which. For example, a donation might be posted 
in an envelope. It may be clear to an observer that  a donation is occurring, 
but its nature remains unknown. This situation can be modelled using the same 
renaming operation that  was used in the definition of anonymity. The process 
describing the information available to the observer is given as f c  (P),  where C 
is the set of events to be abstracted.  

In the case of EXO this form of abstraction yields the following 

f c (EXO)  = O.gives --7 envelope --+ ~hanks -+ S T O P 

1.gives --+ envelope --+ thanks -+ S T O P  

It  is the case that  fAl( fA(fC (EXO))) - f c (EXO) ,  and so the system does provide 
anonymity on A when all that  is known about  s and s is when one of them 
occurs (but not which one). Again, this is exactly what we would expect - -a l l  the 
observer can now see is the occurrence of an envelope followed by event thanks, 
and this provides no information about  which of the two possible initial events 
was actually performed. 

In the case of E X  1 an observer does have some indication of the abstracted 
activity, but no direct information concerning its precise nature. We obtain 

f r  EX1)  = O.gives -+ envelope --+ thanks -+ STOP 

1.gives --+ envelope -+ envelope --4 thanks -+ S T O P 

This process does not meet the anonymity definition, since the sequence of events 
(O.gives, envelope, envelope) is not a trace of this process, but it is a trace of the 
renamed process f A I ( f A ( f v ( E X 1 ) ) ) .  This illustrates the fact that  it is possible 
for anonymity to fail even without any direct information to the observer, if 
the abstract ion mechanism is not strong enough. I f  the event thanks were also 
abstracted in E X  1 so the observer does not even have access to any information 
directly, the process would still fail to provide anonymity, since the observer can 
detect the level of abstracted activity. 
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M a s k i n g  Another third of abstraction, first presented in [Ros94], corresponds 
to events being masked by the occurrence of other events which act as noise. In 
the charity example we consider the possibility that  there are other donations 
flowing in, so in the case of any particular donation it is unclear whether it is 
from one of the donors we are interested in or whether it is from somewhere else. 
Events are observed but it is unclear whether they are events from the process 
of interest, or whether they are other events. 

This form of abstraction is described by running the process P in parallel 
with RUN(C), the process which can always perform any events from the set C. 
The resulting description P Ill RUN(C) is always able to perform an event from 
C, so an observer cannot know whether any particular occurrence of such an 
event was due to P or due to RUN(C). RUN({s s models the situation 
of donations occurring from sources other than those we are considering. The 
fact that  thanks is not also in the set indicates that  thanks can occur only in 
response to the donors of interest. I f  thanks could also occur elsewhere, then 
that  would also be contained in the set. 

In this situation, the observer is in a position to know that  P has not per- 
formed any events from C in the case where none have been performed. In any 
case, an observer will have an upper bound on the number of events from C that  
P has performed at any po in t - - t he  total  number  of  events from C that  have 
been observed. 

In the case of EXO, the situation is that  donations come in from a variety 
of sources, and their values are known to an observer. The thanks event is not 
masked. 

Analysis of EXO in this situation reveals that  anonymity is not provided in 
this case. The process fAI(fA(EXO ]][ RUN(C))) contains the seqnece of events 
(O.gives, s thanks) as a possible trace, though it is not possible for the process 
EXO ][IRUN(C). The reason anonymity breaks down is that  although s and 
s events are masked, it is still possible for an observer to deduce tha t  no such 
events have occurred, if none are performed by the masking process or by the 
process under consideration. Hence once a thanks event has occurred, if a s 
has occurred but no s events then it will be clear to the observer that  O.gives 
cannot have occurred. In such a situation, O.gives is distinguishable from 1.gives. 

The same phenomenon also appears  in EX 1. 

C o m b i n i n g  m a s k i n g  a n d  r e n a m i n g  These forms of abstraction combine 
naturally, and it is often appropriate  to use a combination in a system where 
observers have different kinds of access to events. The system P \ C Ill RUN(D) 
for example describes the situation where no events from C can be observed, 
and events from D are masked. 

A particularly natural  combination is tha t  of masking with renaming: the 
identity of  particular events is not known, and their occurrence may be observed 
but may  also be masked. In the charity case, this corresponds to donations being 
provided in envelopes, from the donors of interest and also from other donors. 

The situation is described by fc(P) Ill RUN({envelope}) (where fc maps 
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events to envelope). The only information an observer has concerning the ab- 
stracted events is an upper bound on the number of such even t s - -a  total  number 
of envelopes will have been seen, and so the process in question can have per- 
formed no more than this. 

This form of abstraction yields anonymity for EXO: 

fc(EXO) !11 RUN({enveIope}) = fAI(fA(fc(EXO) Itl RUN({envelope}))) 

However, it does not yield anonymity for EX 1. The process after the renam- 
ing, which is 

fAl ( fA( fc(EX1)  Ill RUN({enveIope}))) 

has a trace (1.gives, envelope, thanks} which is not possible for the left-hand 
process fc(EXO) ][I RUN({envelope}). This indicates that  if a single envelope 
is observed, and then thanks is observed, then the only possible donor is 0. 
An observer has an upper bound on the number of donations provided by the 
process under consideration (i.e. EX1) which is the number of envelope events 
that  appear  in the trace: one in this case. Since thanks will not occur for donor 
1 after only one envelope we have a situation where an observer can distinguish 
one donor from the other. 

In the case described by EX2~ where donor 1 can receive thanks after a single 
donation, then anonymity is indeed provided under this form of abstraction, 
where masking and renaming are combined. The situation where donor 1 gives 
two donations is masked by donations coming in i~om other sources. 

EX2 : O.gives --+ s --~ thanks -~ STOP 

[] 1.gives --+ s -+ s --+ thanks -+ STOP o s -+ thanks --+ STOP 

Note that  anonymity is not provided by EX 2 if the form of abstraction is either 
simply masking or simply renaming. 

5 T h e  D i n i n g  C r y p t o g r a p h e r s  

This protocol is taken from [Cha88]. The introductory example of the paper  
describes a situation in which three cryptographers share a meal. At the end of 
the meal, each of them is secretly informed by the NSA whether or not she is 
paying. Either at most one is paying, or else the NSA is itself picking up the bill. 

The cryptographers would like to know whether it is one of them who is 
paying, or whether it is the NSA that  is paying; but they also wish to retain 
anonymity concerning the identity of the payer if it one of them. 

They each toss a coin, which is made visible to themself and their r ight-hand 
neighbour. Each cryptographer then examines the two coins tha t  they can see. 
There are two possible announcements that  can be made by each cryptographer: 
that  the coins agree~ or that  they disagree. If  a cryptographer is not paying then 
she will say that  they agree if the results on the coins are the same, and that  
they disagree if the results differ; a paying cryptographer will say the opposite. 
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If the number of 'disagree' announcements is even, then the NSA is paying. 
If the number is odd, then one of the cryptographers is paying. The two cryptog- 
raphers not paying will not be able to identify the payer from the information 
they have available. 

Analysis 

This protocol (and variants) will be coded up in CSP and analysed as follows: 

1. The protocol will be analysed for functional correctness: that it can be de- 
cided from the cryptographers' announcements whether or not the NSA is 
paying. 

2. It will be analysed from the point of view of anonymity of the payer with 
respect to an eavesdropper at another table 

3. Anonymity of the payer with respect to the other cryptographers will be 
tested 

4. The situation of one of the coins being double-headed will be analysed 
5. The situation of four dining cryptographers will be analysed for anonymity 

of the payer where two of the other cryptographers pool their information 

Model l ing  the  p ro toco l  

lout.O 

ays.( notpays.O 

.W"/)X. /Z..."-...pays.2 

7 .  2 
~ look.2.1 

1ook.2,2 

~~out.2 

Figure 1: Components of the protocol 
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The protocol is modelled in CSP as the parallel combination of cryptog- 
raphers and coins, and a master process dictating who pays, as illustrated in 
Figure 1. The events of the form pays.i and notpays.i are the instructions from 
the NSA concerning payment.  Events of the form look.i.j.x model cryptographer 
1 reading value x from coin j .  The channels out.i axe used for the cryptographers 
to make their declaration. 

The MASTER process nondeterministically chooses either to pay, or one of 
the cryptographers to pay. 

MASTER = (~i:CRYPTNAMES pays.i-+ notpays.((i + 1) m o d  3) 
-+ notpays.((i + 2) r o o d  3) -+ STOP) 

notpays.O -+ notpays.1 --+ notpays.2 --+ STOP 

Each cryptographer process follows the protocol. This is described in CSP as 
follows: 

CRYPT(i)  = notpays.i -+ look.i.i?x --+ look.i.((i + 1) r o o d  3)?y -+ 

( if  (x = y) t h e n  (o~.i.ag~ee --~ STOP) 
else ( out.i.disagree -+ STOP)) 

[] (pays.i -~ look.i.i?x -+ look.i.((i + 1) r o o d  3)?y --~ 

(if  (x = y ) t h e n  out.i.disagree -+ STOP 
else out.i.agree -+ STOP)) 

Each coin is modelled as a choice between reading heads and reading tails: 

COIN(i) = HEADS(i) • TAILS(i) 

HEADS(i) = look.i.ilheads -~ HEADS(i) 

[] look.((i - 1) r o o d  3).i[heads -~ HEADS(i) 

TAILS(i) = look.i.i!taiIs -+ TAILS(i) 

[] Zook.((i - 1) m o a  3).i!taiIs -~ TAILS(i) 

The master either sends a pay message to one of the cryptographers or a 
don' t  pay message to all of them. 

The system is constructed from the cryptographers and coins, which are two 
collections of independent processes. 

CRYPTS -= CRYPT(O)Iit CRYPT(l) f l l  CRYPT(2) 

COINS = COIN(O)Ill COIN(l)LII COXN(2) 

They must synchronise on the events representing the examination of coins 
and the MASTER decides who is paying. 

MEAL -- ((CRYPTS I[ took ]l COINS) l[pays, notpays ]1 MASTER) \ notpays 
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It is also possible to provide a parametric description of the system for an 
arbitrary number n of cryptographers; but automatic verification will be possible 
only once a particular n is chosen. 

F u n c t i o n a l  c o r r e c t n e s s  The protocol is functionally correct if it is possible 
to distinguish the possibilities of a cryptographer paying from the NSA paying. 
The description of the protocol itself indicates how this is to be achieved: by 
means of counting the 'disagree' declarations and checking whether there were 
an odd or an even number of them. 

Although this is very simple to express, if it is to be checked using FDR 
then it is necessary to construct an explicit CSP %est-harness' to count the 
number of 'disagree' events and then output  the result. This will be the process 
COUNTS(O, 0) below. 

The specification then captures the idea that  either one of the cryptographers 
pays, in which case an answer 'crypt '  should result, or none of them pays and 
the answer 'nsa' should result: 

SPEC -= ([-] i:cnYPTNAM1,jS (pays.i ---+ crypt --~ STOP)) 
(nsa --> STOP) 

The specification is that if one of the cryptographers is asked to pay, then the 
protocol yields 'crypt ' ;  otherwise it yields 'nsa'. 

The process of telling the difference is captured by COUNTS(O, 0) where 
COUNTS(i, j) is defined as follows: 

COUNTS(i,j) = (if  (i = 3) 

t h e n  ( i f  (j = O) 
t h e n  (crypt -+ STOP) 
else (nsa --+ STOP)) 

else out.i?x --+ ( i f  (z = disagree) 
t h e n  COUNTS(i + 1, j )  
else COUNTS(i + 1, ((j + 1) r o o d  2)))) 

The meal together with the protocol captured by COUNTS(O, 0) is then 
captured as follows: 

SYSTEM = (MEAL I[ out Jl COUNTS(O, 0)) \ {look, out} 

All of these descriptions are easily coded up within the CSP syntax required 
for FDR, which confirms that  

SPEC E SYSTEM 

or in other words, that the system really does meet the specification: the protocol 
is correct. 
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Anonymity with respect to  an  o u t s i d e r  Anonymity is required for the 
system described by MEAL.  

An observer sitting at the next table sees only the calls made by the cryp- 
tographers: such an observer has access only to the set out, as illustrated in 
Figure 2 

out.O 

>W0~" I ""-..%. 
. ......... 3 look.~Jk"~ ~/ "-.look.0.2 ....... 

//: ~ 3 ~ '  pays.( : m t l ~ a y ~  ~ " " :  

" ok.l.0 M~A, FER~ 1ook.2.2 ! 
i x/Sk, /~--,pays.2 i 

',. / _ _ ~ m t p a y s . 1  " " ~ \ :' 
',. ~I~R'~ I:'T11 " ~~R5 PT2)., / 

................  ,ook  yj:  

Figure 2 : The abstracted cryptographers 

We may test for anonymity between all the cryptographers, by checking for 
anonymity on the set pays. The set of abstracted events in this case is all the 
internal events except pays, i.e. the set look. 

We will use the abstraction fv(pays.i) = ct to identify all the pays events. 
If the observer cannot even tel] when a cryptographer is looking at a coin, 

then hiding abstraction is most appropriate. The check required for anonymity 
is therefore: 

MEAL \ look ~ f ~ I ( f p ( M E A L  \ look)) 

On the other hand, if the observer can see when a cryptographer is looking at 
a coin, then renaming abstraction is appropriate: the observer can tell that some 
event is occurring, but does not know its precise nature. We may use the renam- 
ing function f~(look.i.j.z) = look.i.j. The observer can tell which cryptographer 
is looking at which coin, but cannot tel] what is seen. 

The check required in this case is 

f~(MEAL) E_ f ; l  (fp(f~(MEAn))) 
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In both cases, FDR confirms that the relationship holds: that  the protocol 
does provide anonymity. 

A n o n y m i t y  a ga in s t  o t h e r  c r y p t o g r a p h e r s  The protocol is intended not 
only to provide anonymity against outsiders, but also against the other cryptog- 
raphers. In this situation we require that  any particular cryptographer cannot 
distinguish between the other two pay.i events on the strength of the available in- 
formation. Now there is much more information with which to break anonymity. 
A cryptographer has access to two of the coins, and so has more information. 

By symmetry of the system, we have only to consider cryptographer 0. In this 
case, there is extra information consisting of the Iook.O events; so the only hidden 
events are the look.1 and the look.2 events. We aim to estabhsh anonymity for 
the set pays.l, pays.2. 

If the look.i events are completely invisible to CRYPTO then hiding is most 
suitable, and the appropriate check is 

MEAL \ {look.l, look.2} E f~(fpl~(MEAL \ {look.l, look.2})) 

where fp12(pays.1) = fp12(pays.2) = a. 
On the other hand, if the cryptographer can see when the other cryptogra- 

phers are looking at a coin, then renaming abstraction is more suitable. In this 
case we use the renaming function 

fl12(Iook.i.j.x) = look.i.j if i = 1 or i = 2 
look.i.j.x otherwise 

to rename only look.1 and look.2. 
The check required in this case is 

flt2( MEAL) ~ f~1~(fp12(fa2( MEAL) ) ) 

Again, in both cases, FDR confirms that  the relationship holds: that the 
protocol does provide anonymity for each cryptographer against the others. 

A d o u b l e - h e a d e d  coin  If the system contains a double-headed coin, then 
the situation is subtly changed. Although CRYPTO still has access to the same 
information, it is within the context of a slightly altered system description, and 
anonymity may thereby be compromised. 

The double headed coin is described by HEADS(i): it can only provide heads. 
We will consider the situation where it could be any of the three coins. In this 
case the description of the coins becomes 

COINS' = HEADS(O) Ill COIN(l) 1[[ COIN(2) 
7] COIN(O)[[I HEADS(l)]1t COIN(2) 

COIN(O) Ill COIN(l)Ill HEADS(2) 
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The behaviour of the cryptographers remains unMtered, but the description 
of the meal must change to reflect the changed description of the coins: 

MEAL' = ((CRYPTS I[ Iook ]t COINS')f[pays, notpays ]l MASTER) \ notpays 

Checking this system for anonymity with respect to {pays. 1, pays.2} against 
cryptographer 0 we check 

MEAL \ {look.l, look.2} ~_ f~(fp12(MEAL \ {look.l, look.2})) 

Applying FDR to this description reveals that the refinement relation fails 
to hold. FDR's debugging facihties provide a witness trace: one which is possible 
for the right hand side but not for the left. 

The trace obtMned is ~r = (pays.l, ouL2.agree, look.O.O.taiIs, look.O.l.tails}. 
This trace is not possible for the system for the following reason: if two coins 

have both been observed with tails, then the knowledge that  one of the three 
coins must read heads allows the deduction (provided it is known that  the coin 
is biased) that the third coin COIN2 must be the double-headed one. Since 
ouL2.agree has been observed, and it is also known that  the two coins seen by 
CRYPT2 read differently, this sequence cannot follow the event pays.1. 

On the other hand, the events observed by CRYPTO are possible if the 
initial event was pays.2, since then the protocol dictates that CRYPT2 Should 
announce agree if the coins disagree. In other words~ the sequence of events 
(pays.2, out.2, agree, look.O.O.tails, look.O. 1.tails} is a possible trace of the process 
MEAL \ {look.l, look.2}. For this reason the trace tr above is possible for the 
right-hand process. 

This illustrates the way in which the feedback from the FDR debugger may 
be used to gain an understanding of why anonymity does not hold. The messages 
seen by cryptographer 0 are possible when one of the other cryptographers is 
paying, but not when the other one is. So there are situations where cryptogra- 
pher 0 can identify who is paying. In this case it is possible when both visible 
coins read tails. This allows the deductiort that  the third coin reads heads, which 
means that  the coins both sides of each of the other cryptographers are known, 
enabling cryptographer 0 to tell whether each agree or disagree declaration is 
appropriate. 

All the FDR checks in this section took abou~ 5 seconds on a spare 5. 

F o u r  c r y p t o g r a p h e r s  'The situation extends naturally to four cryptographers, 
and verification that  anonymity for any cryptographer against any one of the 
others is easily established. 

A new situation of interest arises when there are four cryptographers: the 
possibilities of anonymity in the case where two of the participants share their 
information. 

The description alters in the obvious way: 
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M A S T E R  = (Ri:CRYPTNAMES pays.i -+ notpays.((i + 1) rood  4) 

-+ notpays.((i + 2) rood  4) 

--+ notpays.((i + 3) rood  4) --+ STOP) 

N notpays.O -+ no,pays.1 -+ notpays.2 --+ notpays.3 -+ STOP 

CRYPT( i )  = notpays.i -+ iook.i.i?x --+ look.i.((i + 1) rood  4)?y --+ 

(if (x = y ) t h e n  (out.i.agree --+ STOP) 
else ( out.i.disagree --+ STOP)) 

[] (pays.i --+ look.i.i?x -+ look.i.((i + 1) rood  4)?y -+ 

(if (x -= y ) t h e n  out.i.disagree --+ STOP 
else out.i.agree --+ STOP)) 

COIN(i)  = HEADS(i)  [~ TAILS(i)  

HEADS(i)  = look.i.i!heads --~ HEADS(i)  

[] look.((i - 1) rood  4).i!heads --+ HEADS(i)  

TAILS(i)  = look.i.i!tails -+ TAILS(i)  

[] look.((i - 1) rood  4).i!taiIs -+ TAILS(i)  

C R Y P T S  = CRYPT(O)III CRYPT(l ) I I]  CRYPT(2)III  CRYPT(3)  

COINS : COIN(O)HI COIN(l)I l l  COIN(2)It[ COIN(3) 

MEAL = ( (CRYPTS  [[ look ]1 COINS) I[pays, not_pays ]1 MASTER)  \ notpays 

Consider first the possibility of two adjacent cryptographers pooling their in- 
formation. Without loss of generality we may consider them to be cryptographers 
0 and 1. 

In this case, the information available to these cryptographers is given by the 
set out U look.O U look.l, and we require anonymity for {pays.2~ pays.3}. 

In this case the following check is appropriate: 

MEAL \ (look.2, look.3} ~ f~w \ {look.2, look.3})) 

where fv28(pays.2) = fpsa(pays.3) = ~. 
FDR confirms that  the check indeed holds. This check took approximately 

35 seconds on a sparc 5. 
The other possibility is that opposite cryptographers pool their information. 

In this case we will assume that  they are cryptographers 0 and 2. 
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In this case, the information available to these cryptographers is outU look.O U 
look.2, and we require anonymity for {pays.l, pays.3}. 

The following check is performed: 

MEAL \ (look.l, look.3} 7_ fv-l~(fp13(MEAL \ {look.l, look.3))) 

where fpls(pays.1) = fvla(pays.3) = a. 
In this case FDR establishes that the check fails, (also in approximately 35 

seconds) and provides a witness trace, possible for the right hand process but 
not for the left: 

(pays.l, out.3.disagree, look.2.2.tails, Iook.2.3.taiIs, look.O.O.tails) 

The information obtained by Iook.2.3. tails and Iook.O.O. tails is that  the two coins 
adjacent to CRYPT3  both read tails. Hence it is not possible to have observed 
out.3.disagvee following pays.l, since if cryptographer 3 is not paying then the 
declaration should match the readings on the coins. 

However, such observations as have been made by cryptographers 0 and 2 
are possible following an occurrence of pays.3. Hence they are able to distinguish 
the events pays.1 and pays.3 and hence to deprive cryptographer 3 of anonymity. 

6 D i s c u s s i o n  

This paper has proposed a formal CSP definition of anonymity and has illus- 
trated its use with the example of the dining cryptographers. The availability of 
the FDR model-checking tool [FSEL94] for CSP means that anonymity proper- 
ties can be checked for systems in a mechanical fashion. Furthermore, in cases 
where anonymity fails, the CSP analysis provides useful feedback as to the par- 
ticular behaviour of the system which violates the anonymity requirement. Use 
of a small example such as the dining cryptographers acts as a feasibility study 
for the approach and tests the definition against our general understanding of 
anonymity. We intend next to apply this approach to larger systems and to 
real-world anonymity protocols. 

This notion of anonymity is appropriate for situations where every anony- 
mous event is entirely independent of every other such event, as might be the 
case in cash-transactions. But there are some situations where this requirement 
is too strong, such as anonymous voting protocols. Even if anonymity is re- 
quired for the identity of the voter, it must still be ensured that  different votes 
such as al.v 1 and a2.v2 are generated by different agents. Hence two different 
votes are not entirely independent, since at and a2 must be distinct. Such a 
voting system would fail our definition above, which requires that  each of two 
votes could independently have originated from the same agent: that  the trace 
(as. vl, a3. v2) should be possible. It appears likely that subtly different definitions 
of anonymity will be required for different situations depending on the particular 
requirements. The formalisation of these definitions will allow the distinctions 
to be understood explicitly, and will facilitate the correct choice. The authors 
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are currently exploring further notions of anonymity, and their relationship to 
the definition of this paper. 

Treatments of anonymity often include an analysis of the probabilistic be- 
haviour of the system. For example, in [Waig0] the scheme is proven to have 
the property that the conditional probability for an input vector given the ob- 
served output  vector is the same as the a priori probability for that  input vector: 
in other words the output vector provides no additional information about the 
probabilities associated with the inputs. This paper has not considered proba- 
bility, focusing instead on simple possibilities. This identifies anonymity for an 
agent with the possibility, however unlikely, that  other agents could equally have 
performed the same event. In this analysis, if a set of biased coins was used 
where each had a 99% chance of landing heads, then any cryptographer may 
have be paying given any particular outputs, but it is much more likely in the 
case of two agree calls that the one who called disagree is actually the one who 
is paying: the conditional probability given the outputs is not the same as the a 
priori probability. 

It seems likely that  the use of probabilistic CSP [Sei92, Low93] could directly 
address this issue. This would allow the association of probability values with 
particular traces. It may be the case that the same definition of anonymity will 
extend directly to probabilistic models for CSP: that fA I ( fA (P) )  = P. In a 
probabilistic model this would mean that the identification of different events 
should not make any difference to the probabilities associated with each of those 
event. The definition captures the idea that  it is not possible to tell the difference 
between the outcomes of a number for different events. What  is meant precisely 
by 'telling the difference' is defined by the CSP model being used. In the traces 
model it simply means that  all resulting processes should have the same traces; a 
model with probabilities will also require that resulting probabilistic behaviours 
should also be the same. 
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