Skip to main content

Multi-level test generation and fault diagnosis for finite state machines

  • Session 6 Testing
  • Conference paper
  • First Online:
Book cover Dependable Computing — EDCC-2 (EDCC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1150))

Included in the following conference series:

Abstract

In this paper, a new multi-level technique, based on alternative graphs, with uniform procedures at each level for test generation, fault simulation and fault diagnosis in finite state machines (FSM) is presented. For the description of function (behavior), structure and faults in FSM, three levels are used: functional (state transition diagrams), logical (signal path) and gate levels. In test generation, simultaneously all levels are used. Faults from different classes are inserted and activated at different levels by uniform procedures. State initialization and fault propagation are carried out only at the functional level. Backtracking will not cross level borders, hence, the high efficiency of test generation can be reached. Fault diagnosis is carried out using top-down technique, keeping the complexity of candidate fault sets in each level as low as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hennie F.C. Fault detecting experiments for sequential circuits. Proc. of 5th Symp. on Switching Circuit Theory and Logical Design, Princeton, N.J., Nov,1964, pp.95–110.

    Google Scholar 

  2. Ghosh A., Devadas S., Newton A.R. Sequential logic testing and verification. Kluwer Acad. Publish., 1992, 214 p.

    Google Scholar 

  3. Agrawal W.D. When to use random testing. IEEE Trans. on Computers, vol. C-27, Nov.1978,pp.l054–1055.

    Google Scholar 

  4. Cheng K.-T., Jou J.-Y. Functional test generation for FSMs. IEEE Int. Test Conference. 1990,pp.l62–168.

    Google Scholar 

  5. Grillmeyer O., Wilkinson A.J. The design and construction of a rule base and an inference engine for test system diagnosis. IEEE Int. Test Conf., 1985, pp.857–867.

    Google Scholar 

  6. Davis R. Diagnostic reasoning based on structure and behavior. Artificial Intelli-gence 24 (1984) 347–410.

    Google Scholar 

  7. Pitchumani V., Mayor P., Radia N. Fault diagnosis using functional fault model for VHDL descriptions. IEEE Int. Test Conf. Nashville, Oct., 1991, pp.327–337.

    Google Scholar 

  8. Ward, P.C., Armstrong, J.R. (1990). Behavioral fault simulation in VHDL. 27th ACM/IEEE Design Automation Conference, 1990, pp.587–593.

    Google Scholar 

  9. Ramamoorthy C.V. A structural theory of machine diagnosis. Proceedings of Spring Joint Computer Conference, 1967, pp.743–756.

    Google Scholar 

  10. Waicukauski J.A., Gupta V.P., Patel S.T. Diagnosis of BIST failures by PPSFP simulation. 18th IEEE International Test Conference, Washington, Sep.1987,pp.480–484.

    Google Scholar 

  11. Rajski J. Gemini — a logic system for fault diagnosis based on set functions. 18th Int. Symposium on Fault Tolerant Computing, Tokyo,1988, June,pp.292–297.

    Google Scholar 

  12. Ubar R. Test Synthesis with alternative graphs. IEEE Design & Test of Computers. Spring 1996, pp.48–57.

    Google Scholar 

  13. Bryant R.E. Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans. Computers, Vol. C-35, No. 8, Aug. 1986, pp.667–690.

    Google Scholar 

  14. Ubar R., Evartson T. Optimization of fault localization procedures in computer: hardware. In “CAD in electronical and computer engineering”, Part I., Vilnius, Lithuania, 1981, pp.I75–184 (in Russian).

    Google Scholar 

  15. Brik M., Ubar R. Hierarchical test generation for finite state machines. Proc. of the 4th Baltic Electronics Conference. Tallinn, October 1994, pp.319–324.

    Google Scholar 

  16. Sallay B., Petri A., Tilly K., Pataricza A. High Level Test Pattern Generation for VHDL Circuits. IEEE European Test Workshop, Montpellier, France, June 12–14, 1996, pp. 201–205.

    Google Scholar 

  17. Gramatova E., Cibakova T., Bezakova J. Test Pattern Generation Algorithms on Functional/Behavioral Level. Tech. Rep. FUTEG-4/1995.

    Google Scholar 

  18. Gulbins M., Straube B. Applying Behavioral Level Test Generation to High-Level Design Validation. The European Design & Test Conference, Paris, March 11–14, 1996, p. 613.

    Google Scholar 

  19. Niermann T.M., Patel J.H. Hitec: A test generation package for sequential circuits. Proc. European Design Automation Conference, 1991, pp.214–218.

    Google Scholar 

  20. Ghosh A., Devadas S., Newton A.R. Test generation and verification for highly sequential circuits. IEEE Trans. on CAD, Vol.10, No.S, May 1991.

    Google Scholar 

  21. Thatte S.M., Abraham J.A. Test Generation for Microprocessors, IEEE Trans. Computers, Vol.29, 1980, pp.429–441.

    Google Scholar 

  22. Minato S. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publish., 1996, 141 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrzej Hlawiczka João Gabriel Silva Luca Simoncini

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ubar, R., Brik, M. (1996). Multi-level test generation and fault diagnosis for finite state machines. In: Hlawiczka, A., Silva, J.G., Simoncini, L. (eds) Dependable Computing — EDCC-2. EDCC 1996. Lecture Notes in Computer Science, vol 1150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61772-8_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-61772-8_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61772-3

  • Online ISBN: 978-3-540-70677-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics