
Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1158

Advisory Board: W. Brauer D. Gries J. Stoer

Stefano Berardi Mario Coppo (Eds.)

Types for
Proofs and Programs

International Workshop, TYPES '95
Torino, Italy, June 5-8, 1995
Selected Papers

Springe, r

Series Editors

Gerhard Goos, Karlsruhe University, Germany

Juris Hartmanis, Cornell University, NY, USA

Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Stefano Berardi
Mario Coppo
Universittt degli Studi di Torino, Dipartimento di Informatica
Corso Svizzera 185, 1-10149Torino, Italy
E-mail: {berardi/coppo} @di.unito.it

Cataloging-in-Publication data applied for

Die Deu t sche B ib l io thek - C I P - E i n h e i t s a u f n a h m e

Types for proofs and programs : se lected papers / I n t e rna t i ona l
W o r k s h o p TYPES '95, Tor ino , Italy, June 5 - 8, 1995. Stefano
Berardi ... (ed.). - Ber l in ; He ide lberg ; New Y o r k ; Barce lona ;
Budapest ; H o n g Kong ; L o n d o n ; Mi lan ; P a d s ; Santa Clara ;
Singapore ; Tokyo : Springer, 1996

(Lecture notes in computer science ; Vol. 1158)
ISBN 3-540-61780-9

NE: Berardi, Stefano [Hrsg.]; International Workshop TYPES <3, 1995,
Torino>; GT

CR Subject Classification (1991):F.4.1, F.3.1, D.3.3, 1.2.3

ISSN 0302-9743
ISBN 3-540-61780-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10549802 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

This book is a selection of papers presented at the third annual workshop held
under the auspices of the ESPRIT Basic Research Action 6453 Types for Proofs
and Programs. It took place in Torino, Italy, from the 5th to the 8th of June
1995. Eighty people attended the workshop.

We thank the European Community for the funding which made the work-
shop possible. We thank Franco Barbanera, Luca Boerio, and Ferruccio Dami-
ani, who took care of the local arrangements. Finally, we thank the following
researchers who acted as referees: P. Audebaud, T. Altenkirch, F. Barbanera,
G. Barthe, U. Berger, I. Beylin, T. Coquand, C. Comes, P. Curmin, M. Dezani,
P. Dybjer, H. Geuvers, E. Gim~nez, U. Herbelin, M. Hofmann, F. Honsell,
Z. Luo, L. Magnusson, V. Padovani, H. Persson, C. Paulin-Mohring, I. Polack,
A. Ranta, M. Ruys, A. Saibi, T. Schreiber, H. Schwichtenberg, K. Slind, J. Smith,
M. Stefanova, Y. Takayama, T. Tammet, D. Terrasse, J. von Plato.

This volume is a follow-up to Types for Proofs and Programs '93, LNCS 806,
edited by H.Barendregt and T.Nipkow and Types for Proofs and Programs '94,
LNCS 996, edited by P. Dybjer, B. Nordstrom, and J. Smith. Types for Proofs
and Programs is a continuation of ESPRIT Basic Research Action 3245 Logical
Frameworks: Design, Implementation and Experiments. Papers from the annual
workshops of these projects are collected in the books Logical Frameworks and
Logical Environments. Both volumes were edited by G. Huet and G. Plotkin and
published by Cambridge University Press.

Torino July 1996

Stefano Berardi and Mario Coppo

Contents

Introduction

Implicit Coercions in Type Systems
Gilles Barthe

A Two-Level Approach Towards Lean Proof-Checking
Gilles Barthe, Mark Rugs and Henk Barendregt

The Greatest Common Divisor: A Case Study for Program
Extraction from Classical Proofs
Ulrich Berger and Helmut Schwichtenberg

Extracting a Proof of Coherence for Monoidal Categories
from a Proof of Normalization for Monoids
Ilya Beylin and Peter Dybjer

A Constructive Proof of the Heine-Borel Covering Theorem
for Formal Reals
Jan Cederquist and Sara Negri

An Application of Constructive Completeness
Thierry Coquand and Jan Smith

Automating Inversion of Inductive Predicates in Coq
Cristina Cornes and Delphine Terrasse

First Order Marked Types
Philippe Curtain

Internal Type Theory
Peter Dybjer

An Application of Co-inductive Types in Coq: Verification of
the Alternating Bit Protocol
Eduardo Gimgnez

Conservativity of Equality Reflection over Intensional Type
Theory
Martin Hofmann

A Natural Deduction Approach to Dynamic Logic
Furio Honsell and Marino Mieulan

An Algorithm for Checking Incomplete Proof Objects in Type Theory
with Localization and Unification
Lena Magnusson

16

36

47

62

76

85

105

120

135

153

165

183

viii

Decidability of All Minimal Models
Vincent Padovani

Circuits as streams in Coq: Verification of a Sequential Multiplier
Christine Paulin-Mohring

Context-Relative Syntactic Categories and the Formalization of
Mathematical Text
Aarne Ranta

A Simple Model Construction for the Calculus of Constructions
Milena Stefanova and Herman Geuvers

Optimized Encodings of Fragments of Type Theory in First Order Logic
Tanel Tammet and Jan Smith

Organization and Development of a Constructive Axiomatization
Jan yon Plato

201

216

231

249

265

288

Introduction

The papers in these proceedings focus on various aspects of the development of
computer-aided systems for formal reasoning using logical frameworks based on
type theory. The most important applications we are interested in are the mech-
anization of mathematics and the realization of powerful tools for real software
development. A logical framework provides a formalism in which a large class of
theories can be represented. This is important since experience has shown that
different aspects of mathematics and computer science are better represented
using different theories. Moreover an implementation of the framework provides
a proof system for each of the theories represented in it.

Type theory is a formalism in which theorems and proofs, specifications and
programs can be represented in a uniform way. In particular, a type can be
understood both as a proposition and as a specification, and a term having
that type can be seen both as a proof of that proposition and as a program
meeting that specification. A characteristic feature of type theory is that it
supports constructive reasoning, a kind of reasoning frequently used in computer
science, but very little developed so far inside computer-aided systems. The
logical frameworks based on type theory which have been designed and tested
during the TYPES project are Alf, Coq, and LEGO. They follow the same
leading ideas but differ in the type theory on which they are based and in some
choices regarding implementation. A related logical framework is Isabelle, which
is based on higher order logic.

We expect these tools will soon help researchers in mathematics and com-
puter science in developing software and checking its correctness, as systems
like Mathematica or Maple already do in the more restricted field of symbolic
computing. As compared to these latter, computer-aided systems for formal rea-
soning are less advanced at present, but are intended to be of broader use since
they will help in any situation where logical or mathematical reasoning is re-
quired.

The papers in these proceedings deal with the three main aspects of the
project: foundations of type theory and logical frameworks, implementation, and
applications.

In the group of foundational papers, Barthe and Ruys and Barendregt de-
velop an equational description of a proof checking algorithm, which is a basic
tool in a logical framework. Barthe studies the possibility of including the notions
of inheritance and overloading in type theory. Berger and Schwichtenberg give
an example of extraction of a program from a classical proof. Cederquist and Ne-
gri describe the formalization in type theory of a central result of mathematical
analysis. Coquand and Smith explain how to derive a typical logical result inside
a constructive formalism. Curtain introduces an algorithm for the extraction of
a program from a constructive proof. Stefanova and Geuvers introduce a new
class of models for the calculus of construction, the formalism upon which the

•

Coq system is based. Hofmann and Padovani solve two interesting open prob-
lems in type theory. Von Plato, finally, presents a methodological reflexion on
the translation of mathematical concepts and results in our constructive setting.

Another group of papers deals more closely with implementation aspects.
Cornes and Terrasse describe a possible implementation of inductive reasoning
in Coq. Magnusson describes an implementation of a proof-checking algorithm
in All. Smith and Tammet investigate the theoretical background of a complex
proof search algorithm. Ranta's paper is a (mostly theoretical) study of an al-
gorithm for translating a symbolic proof in English.

The remaining papers are on the side of the applications. Under this heading
we classify both large-scale testing, like examples of development of theoretical
computer science within our systems, and industrial applications. Beylin and
Dybjer develop in Alf a basic result in category theory. Dybjer also formalizes
in Alf a part of the type theory on which All itself is based. Gim~nez reports
on an industrial application: a formal correctness proof for the alternating bit
protocol developed in Coq. Honsell and Miculan encode dynamic logic in Coq.
Finally, Paulin-Mohring develops a correctness proof for a multiplier circuit in
Coq using streams.

