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Preface 

This book is a selection of papers presented at the third annual workshop held 
under the auspices of the ESPRIT Basic Research Action 6453 Types for Proofs 
and Programs. It took place in Torino, Italy, from the 5th to the 8th of June 
1995. Eighty people attended the workshop. 

We thank the European Community for the funding which made the work- 
shop possible. We thank Franco Barbanera, Luca Boerio, and Ferruccio Dami- 
ani, who took care of the local arrangements. Finally, we thank the following 
researchers who acted as referees: P. Audebaud, T. Altenkirch, F. Barbanera, 
G. Barthe, U. Berger, I. Beylin, T. Coquand, C. Comes, P. Curmin, M. Dezani, 
P. Dybjer, H. Geuvers, E. Gim~nez, U. Herbelin, M. Hofmann, F. Honsell, 
Z. Luo, L. Magnusson, V. Padovani, H. Persson, C. Paulin-Mohring, I. Polack, 
A. Ranta, M. Ruys, A. Saibi, T. Schreiber, H. Schwichtenberg, K. Slind, J. Smith, 
M. Stefanova, Y. Takayama, T. Tammet, D. Terrasse, J. von Plato. 

This volume is a follow-up to Types for Proofs and Programs '93, LNCS 806, 
edited by H.Barendregt and T.Nipkow and Types for Proofs and Programs '94, 
LNCS 996, edited by P. Dybjer, B. Nordstrom, and J. Smith. Types for Proofs 
and Programs is a continuation of ESPRIT Basic Research Action 3245 Logical 
Frameworks: Design, Implementation and Experiments. Papers from the annual 
workshops of these projects are collected in the books Logical Frameworks and 
Logical Environments. Both volumes were edited by G. Huet and G. Plotkin and 
published by Cambridge University Press. 

Torino July 1996 

Stefano Berardi and Mario Coppo 
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Introduction 

The papers in these proceedings focus on various aspects of the development of 
computer-aided systems for formal reasoning using logical frameworks based on 
type theory. The most important applications we are interested in are the mech- 
anization of mathematics and the realization of powerful tools for real software 
development. A logical framework provides a formalism in which a large class of 
theories can be represented. This is important since experience has shown that 
different aspects of mathematics and computer science are better represented 
using different theories. Moreover an implementation of the framework provides 
a proof system for each of the theories represented in it. 

Type theory is a formalism in which theorems and proofs, specifications and 
programs can be represented in a uniform way. In particular, a type can be 
understood both as a proposition and as a specification, and a term having 
that type can be seen both as a proof of that proposition and as a program 
meeting that specification. A characteristic feature of type theory is that it 
supports constructive reasoning, a kind of reasoning frequently used in computer 
science, but very little developed so far inside computer-aided systems. The 
logical frameworks based on type theory which have been designed and tested 
during the TYPES project are Alf, Coq, and LEGO. They follow the same 
leading ideas but differ in the type theory on which they are based and in some 
choices regarding implementation. A related logical framework is Isabelle, which 
is based on higher order logic. 

We expect these tools will soon help researchers in mathematics and com- 
puter science in developing software and checking its correctness, as systems 
like Mathematica or Maple already do in the more restricted field of symbolic 
computing. As compared to these latter, computer-aided systems for formal rea- 
soning are less advanced at present, but are intended to be of broader use since 
they will help in any situation where logical or mathematical reasoning is re- 
quired. 

The papers in these proceedings deal with the three main aspects of the 
project: foundations of type theory and logical frameworks, implementation, and 
applications. 

In the group of foundational papers, Barthe and Ruys and Barendregt de- 
velop an equational description of a proof checking algorithm, which is a basic 
tool in a logical framework. Barthe studies the possibility of including the notions 
of inheritance and overloading in type theory. Berger and Schwichtenberg give 
an example of extraction of a program from a classical proof. Cederquist and Ne- 
gri describe the formalization in type theory of a central result of mathematical 
analysis. Coquand and Smith explain how to derive a typical logical result inside 
a constructive formalism. Curtain introduces an algorithm for the extraction of 
a program from a constructive proof. Stefanova and Geuvers introduce a new 
class of models for the calculus of construction, the formalism upon which the 
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Coq system is based. Hofmann and Padovani solve two interesting open prob- 
lems in type theory. Von Plato, finally, presents a methodological reflexion on 
the translation of mathematical concepts and results in our constructive setting. 

Another group of papers deals more closely with implementation aspects. 
Cornes and Terrasse describe a possible implementation of inductive reasoning 
in Coq. Magnusson describes an implementation of a proof-checking algorithm 
in All. Smith and Tammet investigate the theoretical background of a complex 
proof search algorithm. Ranta's paper is a (mostly theoretical) study of an al- 
gorithm for translating a symbolic proof in English. 

The remaining papers are on the side of the applications. Under this heading 
we classify both large-scale testing, like examples of development of theoretical 
computer science within our systems, and industrial applications. Beylin and 
Dybjer develop in Alf a basic result in category theory. Dybjer also formalizes 
in Alf a part of the type theory on which All itself is based. Gim~nez reports 
on an industrial application: a formal correctness proof for the alternating bit 
protocol developed in Coq. Honsell and Miculan encode dynamic logic in Coq. 
Finally, Paulin-Mohring develops a correctness proof for a multiplier circuit in 
Coq using streams. 


