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Abstract

The present work employs a model of noise introduced earlier by the third author.
In this model noisy data nonetheless uniquely determines the true data: correct
information occurs infinitely often while incorrect information occurs only finitely
often. The present paper considers the effects of this form of noise on vacillatory and
behaviorally correct learning of grammars — both from positive data alone and from
informant (positive and negative data). For learning from informant, the noise, in
effect, destroys negative data. Various noisy-data hierarchies are exhibited, which, in
some cases, are known to collapse when there is no noise. Noisy behaviorally correct
learning is shown to obey a very strong “subset principle”. It is shown, in many
cases, how much power is needed to overcome the effects of noise. For example,
the best we can do to simulate, in the presence of noise, the noise-free, no mind
change cases takes infinitely many mind changes. One technical result is proved by
a priority argument.

1 Introduction

Gold [22] introduced the notion of learning in the limit. In particular he con-
sidered a machine, which reads more and more positive information on an r.e.
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set and produces in the limit a grammar to generate this set. This is called
Ex style identification. From then on many variants of this concept have been
considered [2,9,17,29].

Barzdin [6] and Case and Smith [18] considered the notion of behaviorally
correct inference which is motivated by the fact that no algorithm can check
the equivalence of grammars. So, it turns out, the learner can learn more lan-
guages if infinitely many guesses are allowed under the condition that almost
all of these guessed grammars generate the same correct set. Barzdin and Pod-
nieks [7] introduced the notion of vacillatory inference which is a restriction
of behaviorally correct inference in the sense that the learner may change its
mind infinitely often, but only between finitely many grammars. They showed
that, for learning recursive functions, vacillatory inference is not more power-
ful than Ex style learning in the limit. On the other hand, if one is missing
negative information [11–14] or has suitable complexity constraints [15], then
vacillatory inference increases learning power.

Many real-world applications of learning or inductive inference have to deal
with faulty data, so it is natural to study this phenomenon [5,19,29]. Many of
these notions of noise have the disadvantage that noisy data does not specify
uniquely the object to be learned. Stephan [33] introduced a notion of noise
in order to overcome this difficulty: correct information occurs infinitely often
while incorrect information occurs only finitely often.

Many theorems are presented below comparing the learning power for vacil-
latory and behaviorally correct criteria with or without Stephan’s version of
noise in the input data.

Stephan [33] showed that the learning power of Ex style learning of grammars
from noisy positive and negative data (noisy informant) is exactly charac-
terized by noise free, one-shot (no mind change) learning (from informant)
provided the latter learning machines have access to an oracle for K, the halt-
ing problem (see Theorem 12 below). This sort of result provides some insight
into the difficulty (as measured by the oracle) of learning with noise. In vac-
illatory learning, one converges to vacillating between finitely many correct
grammars. In Fexb style learning, one places a bound of b on the number
of different correct grammars one converges to. Theorem 13 implies that, for
learning from informant, one can simulate (but not characterize exactly) noisy
Fexb+1 style learning with Ex style, ≤ b mind change learning provided one
has access to the oracle K. Theorem 13 shows that one can bring the simula-
tion down from unrestricted vacillatory learning to one-shot Ex style learning
using the more complex oracle K ′.

Theorem 14 implies a very strong subset principle on noisy behaviorally correct
learning from positive information only. It is stronger than that from Angluin’s
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characterization [1] of (uniformly decidable classes) learnable Ex style, with
no noise, and positive information only. More specifically, Theorem 14 entails
that, if L1 ⊂ L2, then the class {L1, L2} cannot be learned behaviorally cor-
rectly from noisy positive data! Even for behaviorally correct learning (from
positive data), noise is quite problematic.

It is shown in Theorems 15 and 16 that noise free two-shot (one mind change
allowed) learning from positive data cannot be simulated from noisy informant
even behaviorally correctly; however, noise free one-shot learning from positive
data can be simulated (behaviorally correctly) from noisy positive data and
from noisy informant!

Theorem 17 while not hard to prove, nicely implies that, in a sense, noise
destroys negative information. We indicate how this result may provide
the beginnings of a mathematical explanation for some phenomena seen in
schizophrenics.

Theorem 27 says that behaviorally correct learning from noisy informant can
be simulated by Ex style learning from a noise free informant. Hence, for infor-
mant data, noise destroys the advantage of behaviorally correct over Ex style
learning!

If one is missing negative information [11–14] or has suitable complexity con-
straints [15], then Fexb+1 style learning is more powerful than Fexb. The-
orem 24 implies that, one also gets such a hierarchy result for Fexb style
learning from noisy informant.

Suppose

a is a natural number or a ∗. Let Vara(L)
def
= {L′ : L′ is an a variant of L},

where a ∗ variant is (by definition) a finite variant. In Theorem 32 we show
that the classes (n+1)-shot Ex style learnable from noisy positive data (with
final program correct except at up to a arguments) and the classes (n+1)-shot
Ex style learnable from noisy informant (with final program correct except at
up to a arguments) are essentially just those of the form Vara(L) for some r.e.
set L. One can show that Var∗(K) can be learned Ex style from a noise free
informant; however, Theorem 35 interestingly proved by a priority argument,
says that, for any n, for some r.e. set L, Varn+1(L) cannot be learned Ex style
from a noise free informant and with final program correct except at up to n
arguments.
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2 Notations and Identification Criteria

The recursion theoretic notions are from the books of Odifreddi [28]
and Soare [32]. N = {0, 1, 2, . . .} is the set of all natural numbers,
and this paper considers r.e. subsets L of N . All conventions regarding
range of variables apply, with or without decorations (decorations are sub-
scripts, superscripts, primes and the like), unless otherwise specified. We let
c, e, i, j, k, l,m, n, p, s, t, u, v, w, x, y, z, range over N . ∅,∈,⊆,⊇,⊂,⊃ denote
empty set, member of, subset, superset, proper subset, and proper superset
respectively. max(), min(), card() denote the maximum, minimum and cardi-
nality of a set respectively, where by convention max(∅) = 0 and min(∅) = ∞.
card(S) ≤ ∗ means cardinality of set S is finite. 〈·, ·〉 stands for an arbi-
trary, one to one, computable encoding of all pairs of natural numbers onto
N . L denotes the complement of set L. χL denotes the characteristic func-
tion of set L. L1∆L2 denotes the symmetric difference of L1 and L2, i.e.,
L1∆L2 = (L1 − L2) ∪ (L2 − L1). L1 =a L2 means that card(L1∆L2) ≤ a.
Quantifiers ∀∞,∃∞, and ∃! denote for all but finitely many, there exist in-
finitely many, and there exists a unique respectively.

R denotes the set of total recursive functions from N to N . f, g, range over
total recursive functions. E denotes the set of all recursively enumerable sets.
L, ranges over E . L, ranges over subsets of E . ϕ denotes a standard acceptable
programming system (acceptable numbering). ϕi denotes the function com-
puted by the i-th program in the programming system ϕ. We also call i a
program or index for ϕi. For a (partial) function η, domain(η) and range(η)
respectively denote the domain and range of partial function η. We often
write η(x)↓ (η(x)↑) to denote that η(x) is defined (undefined). Wi denotes
the domain of ϕi. Wi is considered as the language enumerated by the i-th
program in ϕ system, and we say that i is a grammar or index for Wi. Φ de-
notes a standard Blum complexity measure [10] for the programming system
ϕ. Wi,s = {x < s : Φi(x) < s}.

L is called a single valued total language iff (∀x)(∃!y)[〈x, y〉 ∈ L]. SVT =
{L : L is a single valued total language }. If L ∈ SVT , then we say that L
represents the total function f such that L = {〈x, f(x)〉 : x ∈ N}. K denotes
the set {x : ϕx(x)↓}.

A text is a mapping from N to N∪{#}. We let T , range over texts. content(T )
is defined to be the set of natural numbers in the range of T (i.e. content(T ) =
range(T ) − {#}). T is a text for L iff content(T ) = L. That means a text for
L is an infinite sequence whose range, except for a possible #, is just L.

An information sequence or informant is a mapping from N to (N×N)∪{#}.
We let I, range over informants. content(I) is defined to be the set of pairs
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in the range of I (i.e. content(I) = range(I) − {#}). An informant for L is
an infinite sequence I such that content(I) = {(x, b) : χL(x) = b}. It is useful
to consider canonical information sequence for L. I is a canonical information
sequence for L iff I(x) = (x, χL(x)). We sometimes abuse notation and refer
to the canonical information sequence for L by χL.

σ and τ , range over finite initial segments of texts or information sequences,
where the context determines which is meant. We denote the set of finite ini-
tial segments of texts by SEG and set of finite initial segments of information
sequences by SEQ. We use σ � T (respectively, σ � I, σ � τ) to denote that
σ is an initial segment of T (respectively, I, τ). |σ| denotes the length of σ.
T [n] denotes the initial segment of T of length n. Similarly, I[n] denotes the
initial segment of I of length n. σ � τ (respectively, σ � T , σ � I) denotes the
concatenation of σ and τ (respectively, concatenation of σ and T , concatena-
tion of σ and I). We sometimes abuse notation and say σ � w to denote the
concatenation of σ with the sequence of one element w.

A learning machine M is a mapping from initial segments of texts (information
sequences) to (N ∪ {?}). The point of using ?’s is to avoid biasing the count
of mind changes by requiring a learning machine on the empty sequence to
output a program as its conjecture. For criteria of inference discussed in this
paper, we assume, without loss of generality, that M(σ) 6= ? ⇒ (∀τ)[M(σ �
τ) 6= ?].

We say that M converges on T to i, (written: M(T )↓ = i) iff, for all but
finitely many n, M(T [n]) = i. Convergence on information sequences is defined
similarly.

Definition 1

(a) Suppose a, b ∈ N ∪ {∗}. Below, for each of several learning criteria J , we
define what it means for a machine M to J -identify a language L from a text
T or informant I.

• [22,18,9] M TxtExa
b -identifies L from text T iff (∃i : Wi =a L)[M(T )↓ = i]

and card({n : ? 6= M(T [n]) 6= M(T [n + 1])}) ≤ b.
We call each instance of ? 6= M(T [n]) 6= M(T [n + 1]) as a mind change

by M on T .
• [22,18,9] M InfExa

b -identifies L from informant I iff (∃i : Wi =a

L)[M(I)↓ = i] and card({n : ? 6= M(I[n]) 6= M(I[n + 1])}) ≤ b.
We call each instance of ? 6= M(I[n]) 6= M(I[n+1]) as a mind change by

M on I.
• [6,18]. M TxtBca-identifies L from text T iff (∀∞n)[WM(T [n]) =a L].

InfBca-identification is defined similarly.
• [11–13,7]. M TxtFexa

b -identifies L from text T iff (∃S : card(S) ≤ b ∧ (∀i ∈
S)[Wi =a L])(∀∞n)[M(T [n]) ∈ S].
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InfFexa
b is defined similarly.

Based on the definition of TxtFexa
b and InfFexa

b identification criteria,
we sometimes also say that M on T converges to a set of b grammars iff
there exists a set S of cardinality at most b such that (∀∞n) [M(T [n]) ∈ S].
If no such S exists, then we say that M on T does not converge to a set of b
grammars. Similarly we define convergence and divergence on information
sequences.

Lastb(M, σ) denotes the set of last b grammars output by M on σ.
Formally, Lastb(M, σ) is defined as follows. Let τ be the smallest initial
segment of σ such that card({M(τ ′) : τ � τ ′ � σ} − {?}) ≤ b. Then
Lastb(M, σ) = {M(τ ′) : τ � τ ′ � σ} − {?}. Note that Last∗(σ) is just
the set of all grammars M outputs while reading initial segments of σ.

If limn→∞ Lastb(M, T [n])↓, then
we say that Lastb(M, T ) = limn→∞ Lastb(M, T [n]). Otherwise Lastb(M, T )
is undefined. Lastb(M, I) is defined similarly.

• [18]. M TxtOexa
b -identifies L from text T iff Lastb(M, T ) is defined and

(∃i ∈ Lastb(M, T ))[Wi =a L].
InfOexa

b is defined similarly.

(b) Suppose J ∈ {TxtExa
b ,TxtFexa

b ,TxtOexa
b ,TxtBca

b}.

M J -identifies L iff, for all texts T for L, M J -identifies L from T . In this
case we also write L ∈ J (M).

We say that M J -identifies L iff M J -identifies each L ∈ L.

J = {L : (∃M)[L ⊆ J (M)]}.
(c) Suppose J ∈ {InfExa

b , InfFexa
b , InfOexa

b , InfBca
b}.

M J -identifies L iff, for all information sequences I for L, M J -identifies L
from I. In this case we also write L ∈ J (M).

We say that M J -identifies L iff M J -identifies each L ∈ L.

J = {L : (∃M)[L ⊆ J (M)]}.

We often write TxtEx0
b as TxtExb, TxtExa

∗ as TxtExa, and TxtEx0
∗ as

TxtEx. Similar convention applies to TxtFex, TxtOex, TxtBc, InfEx,
InfFex, InfOex, InfBc criteria. Also, for criteria of inference which do not
count mind changes (that is all criteria of inference discussed in this paper
except for TxtExa

b , InfExa
b , for b ∈ N , and corresponding criteria involving

noise discussed below), we assume, without loss of generality, that machine
never outputs ?.

For the sake of measuring the difficulty of some learning situations, we some-
times consider learning machines with access to (possibly non-computable
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oracle). Suppose I is an identification criterion considered in this paper. Then
I[A] denotes the identification criteria formed from I by allowing the learning
machines access to oracle A. Gasarch and Pleszkoch [21], building on earlier
work of L. Adleman and M. Blum, were first in print to consider the notion
of learning with oracle.

Several proofs in this paper depend on the concept of locking sequence.

Definition 2 (a) σ is said to be a TxtExa-locking sequence for M on L iff,
content(σ) ⊆ L, WM(σ) =a L, and (∀τ : content(τ) ⊆ L)[M(σ � τ) = M(σ)].

(b) σ is said to be a TxtFexa
b -locking sequence for M on L iff, content(σ) ⊆ L,

and there exists a set S such that

(b.1) card(S) ≤ b,
(b.2) S ⊆ Lastb(M, σ),
(b.3) (∀i ∈ S)[Wi =a L], and
(b.4) (∀τ : content(τ) ⊆ L)[M(σ � τ) ∈ S].

(c) σ is said to be a TxtOexa
b -locking sequence for M on L iff, content(σ) ⊆ L,

and there exists a set S such that

(c.1) card(S) ≤ b,
(c.2) S ⊆ Lastb(M, σ),
(c.3) (∃i ∈ S)[Wi =a L], and
(c.4) (∀τ : content(τ) ⊆ L)[M(σ � τ) ∈ S].

(d) σ is said to be a TxtBca-locking sequence for M on L iff, content(σ) ⊆ L,
and (∀τ : content(τ) ⊆ L)[M(σ � τ) =a L].

Lemma 3

(Based on [9]) Suppose J ∈ {TxtExa,TxtFexa
b ,TxtOexa

b ,TxtBca}. If M

J -identifies L then there exists a J -locking sequence for M on L.

Next we prepare to introduce our noisy inference criteria, and, in that interest,
we define some ways to calculate the number of occurrences of words in (initial
segments of) a text or informant.

For σ ∈ SEG, and text T , let

occur(σ,w)
def
= card({j : j < |σ| ∧ σ(j) = w}).

and
occur(T,w)

def
= card({j : j ∈ N ∧ T (j) = w}).

For σ ∈ SEQ and information sequence I, occur(·, ·) is defined similarly except
that w is replaced by (v, b).
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For any language L,

occur(T, L)
def
= Σx∈L occur(T, x).

It is useful to introduce the set of positive and negative occurrences in (initial
segment of) an informant. Suppose σ ∈ SEQ

Pos(σ)
def
= {v : occur(σ, (v, 1)) ≥ occur(σ, (v, 0)) ∧ occur(σ, (v, 1)) ≥ 1}

Neg(σ)
def
= {v : occur(σ, (v, 1)) < occur(σ, (v, 0)) ∧ occur(σ, (v, 0)) ≥ 1}

That means, that Pos(σ)∪Neg(σ) is just the set of all v such that either (v, 0)
or (v, 1) occurs in σ. Then v ∈ Pos(σ) if (v, 1) occurs at least as often as (v, 0)
and v ∈ Neg(σ) otherwise.

Similarly,

Pos(I) = {v : occur(I, (v, 1)) ≥ occur(I, (v, 0)) ∧ occur(I, (v, 1)) ≥ 1}

Neg(I) = {v : occur(I, (v, 1)) < occur(I, (v, 0)) ∧ occur(I, (v, 0)) ≥ 1}

where, if occur(I, (v, 0)) = occur(I, (v, 1)) = ∞, then we place v in Pos(I)
(this is just to make definition precise; we will not need this for criteria of
inference discussed in this paper).

Definition 4 [33] An information sequence I is a noisy information se-
quence (or noisy informant) for L iff (∀x) [occur(I, (x, χL(x))) = ∞ ∧
occur(I, (x, χL(x))) < ∞]. A text T is a noisy text for L iff (∀x ∈
L)[occur(T, x) = ∞] and occur(T, L) < ∞.

On one hand, both concepts are similar since L = {x : occur(I, (x, 1)) = ∞} =
{x : occur(T, x) = ∞}. On the other hand, the concepts differ in the way they
treat errors. In the case of informant every false item (x, χL(x)) may occur a
finite number of times. In the case of text, it is mathematically more interesting
to require, as we do, that the total amount of false information has to be finite.
The alternative of allowing each false item in a text to occur finitely often is
too restrictive. It would, then, be impossible to learn even the class of all
singleton sets.

Definition 5 Suppose a, b ∈ N ∪ {∗}.
Suppose J ∈ {TxtExa

b ,TxtFexa
b ,TxtOexa

b ,TxtBca}. Then M NoisyJ -
identifies L iff, for all noisy texts T for L, M J -identifies L from T . In this
case we write L ∈ NoisyJ (M).

M NoisyJ -identifies a class L iff M NoisyJ -identifies each L ∈ L.

NoisyJ = {L : (∃M)[L ⊆ NoisyJ (M)]}.
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Inference criteria for learning from noisy informants are defined similarly.

Several proofs use the existence of locking sequences. Definition of locking se-
quences for learning from noisy texts is similar to that of learning from noise
free texts (we just drop the requirement that content(σ) ⊆ L). However, defi-
nition of locking sequence for learning from noisy informant is more involved.

Definition 6 (a) σ is said to be a NoisyTxtExa-locking sequence for M on
L iff, WM(σ) =a L, and (∀τ : content(τ) ⊆ L)[M(σ � τ) = M(σ)].

(b) σ is said to be a NoisyTxtFexa
b -locking sequence for M on L iff there

exists a set S such that

(b.1) card(S) ≤ b,
(b.2) S ⊆ Lastb(M, σ),
(b.3) (∀i ∈ S)[Wi =a L], and
(b.4) (∀τ : content(τ) ⊆ L)[M(σ � τ) ∈ S].

(c) σ is said to be a NoisyTxtOexa
b -locking sequence for M on L iff there

exists a set S such that

(c.1) card(S) ≤ b,
(c.2) S ⊆ Lastb(M, σ),
(c.3) (∃i ∈ S)[Wi =a L], and
(c.4) (∀τ : content(τ) ⊆ L)[M(σ � τ) ∈ S].

(d) σ is said to be a NoisyTxtBca-locking sequence for M on L iff
(∀τ : content(τ) ⊆ L)[M(σ � τ) =a L].

For defining locking sequences for learning from noisy informant, we need the
following.

Definition 7 Inf[S, L]
def
= {τ : (∀x ∈ S) [occur(τ, (x, χL(x))) = 0]}.

Definition 8 (a) σ is said to be a NoisyInfExa-locking sequence for M

on L iff, Pos(σ) ⊆ L, Neg(σ) ⊆ L, WM(σ) =a L, and (∀τ ∈ Inf[Pos(σ) ∪
Neg(σ), L])[M(σ � τ) = M(σ)].

(b) σ is said to be a NoisyInfFexa
b -locking sequence for M on L iff, Pos(σ) ⊆

L, Neg(σ) ⊆ L, and there exists a set S such that,

(b.1) card(S) ≤ b,
(b.2) S ⊆ Lastb(M, σ),
(b.3) (∀i ∈ S)[Wi =a L], and
(b.4) (∀τ ∈ Inf[Pos(σ) ∪ Neg(σ), L])[M(σ � τ) ∈ S].

(c) σ is said to be a NoisyInfOexa
b -locking sequence for M on L iff, Pos(σ) ⊆
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L, Neg(σ) ⊆ L, and there exists a set S such that,

(c.1) card(S) ≤ b,
(c.2) S ⊆ Lastb(M, σ),
(c.3) (∃i ∈ S)[Wi =a L], and
(c.4) (∀τ ∈ Inf[Pos(σ) ∪ Neg(σ), L])[M(σ � τ) ∈ S].

(d) σ is said to be a NoisyInfBca-locking sequence for M on L iff, Pos(σ) ⊆ L,
Neg(σ) ⊆ L, and (∀τ ∈ Inf[Pos(σ) ∪ Neg(σ), L])[WM(σ�τ) =a L].

For the criteria of noisy inference discussed in this paper one can prove the
existence of a locking sequence as was done in [33, Theorem 2, proof for
NoisyEx ⊆ Ex0[K] ].

Proposition 9 If M learns L from noisy text or informant according
to one of the criteria NoisyTxtExa, NoisyTxtFexa, NoisyTxtOexa

b

and NoisyTxtBca, NoisyInfExa, NoisyInfFexa, NoisyInfOexa
b and

NoisyInfBca, then there exists a corresponding locking sequence for M on
L.

The following theorem gives some of the results from the literature when there
is no noise in the input data.

Theorem 10 Let a ∈ N ∪ {∗} and n ∈ N .
(a) [18] TxtExn+1

0 − InfFexn
∗ 6= ∅. TxtEx∗

0 −
⋃

n∈N InfFexn
∗ 6= ∅.

(b) [18] TxtExn+1 − InfEx∗
n 6= ∅. TxtEx −

⋃

n∈N InfEx∗
n 6= ∅.

(c) [7,18] InfFexa
∗ = InfExa.

(d) [11–13] TxtFexn+1 − TxtFex∗
n 6= ∅. TxtFex∗ −

⋃

n∈N TxtFex∗
n 6= ∅.

(e) [18] InfFex∗
∗ ⊂ InfBc.

(f) [18] TxtBcn+1 − InfBcn 6= ∅. TxtBc∗ −
⋃

n∈N InfBcn 6= ∅.
(g) [17,12,13] TxtFex2n

∗ ⊆ TxtBcn.
(h) [17,12,13] TxtEx2n+1

0 − TxtBcn 6= ∅. TxtEx∗
0 −

⋃

n∈N TxtBcn 6= ∅.
(i) InfEx1 − TxtBc∗ 6= ∅.
(j) [31] InfExa

0 ⊆ TxtExa.
(k) [18] InfOexn

∗ = InfExn
∗ .

(l) [18,17,22] TxtOex∗
2 −

⋃

n∈N InfBcn 6= ∅. TxtOex∗
2 − TxtBc∗ 6= ∅.

Moreover parts (a) and (b) can be shown using subsets of SVT as a di-
agonalizing class. We do not know if part (i) has been explicitly proved
in any paper, but it can be proven using the class defined as follows: Let
Ln = {〈i, x〉 : x 6= n}. Let L = {N} ∪ {Ln : n ∈ N}. It is easy to verify that
L ∈ InfEx1. However, using a locking sequence argument, one can show that
L 6∈ TxtBc∗.

Theorem 11 Suppose n ∈ N and b ∈ N ∪ {∗}. TxtFexn
b = TxtOexn

b .
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Proof. Fix n ∈ N and b ∈ N ∪ {∗}. TxtFexn
b ⊆ TxtOexn

b by definition.
We now show that TxtOexn

b ⊆ TxtFexn
b . Suppose L ⊆ TxtOexn

b (M). We
give a machine M′ such that L ⊆ TxtFexn

b (M′). Let

Q(σ, e) = max({m : m ≤ |σ| ∧ content(σ) ∩ {0, 1, . . . ,m} =n We,|σ| ∩
{0, 1, . . . ,m} }).

For each σ, M′(σ) outputs e ∈ Lastb(M, σ) such that Q(σ, e) is maximized.

Suppose T is a text for L ∈ TxtOexn
b (M).

If, We 6=n L, then there exists a c such that We ∩ {0, 1, . . . , c} 6=n L ∩
{0, 1, . . . , c}. Thus, for all but finitely many σ � T , Q(σ, e) ≤ c.

On the other hand, if We =n L, then, for all c, for all but finitely many σ � T ,
Q(σ, e) ≥ c.

Therefore, if We =n L and We′ 6=
n L, then, for all but finitely many σ � T ,

Q(σ, e) > Q(σ, e′).

Thus, for all but finitely many σ � T , M′(σ) ∈ Lastb(M, T ), and WM′(σ) =n L.
Thus M′ TxtFexn

b -identifies L. 2

3 Simulating Identification from Noisy Data Using Oracles

Stephan [33] showed that NoisyInfEx = InfEx0[K]. His proof also shows,

Theorem 12 Suppose a ∈ N ∪ {∗}. NoisyInfExa = InfExa
0[K].

One direction of Theorem 12 can be generalized: learning from noisy informant
can be simulated by one-shot (finite) learning with suitable oracle. However,
the criterion NoisyInfFexn+1 is too strong to get an exact characterization.
Nonetheless, we get some insight into the cost of noise from the following
theorem.

Theorem 13 Suppose m,n ∈ N .
(a) NoisyInfFexm

n+1 ⊆ InfExm
n [K].

(b) NoisyInfFex∗ ⊆ InfEx0[K
′].

Proof. (a) Note that if M NoisyInfFexm
n+1-identifies L, then there exists

a NoisyInfFexm
n+1 locking sequence for M on L. This is what our simulation

below utilizes.

It is easy to construct FK , an algorithmic mapping (with oracle K) from finite
information sequences to finite sets, such that the following is satisfied.

11



Suppose I is an information sequence for L ∈ NoisyInfFexm
n+1(M). Then

there exists a NoisyInfFexm
n+1-locking sequence σ for M on L and t ∈ N

such that

(∀t′ < t)[FK(I[t′]) = ∅] ∧ (∀t′ ≥ t)[FK(I[t′]) = Lastn+1(M, σ)].

Essentially the trick used by Stephan to prove Theorem 12 can be used to
construct such an FK .

Suppose I is an information sequence for L. Let MK
1 (I[n]) be defined as fol-

lows.

MK
1 (I[n]) =



















e, if FK(I[n]) = S 6= ∅, and
e = min({e′ ∈ S :
card({x : (x, 1 − χWe′

(x)) ∈ content(I[n])}) ≤ m});
?, otherwise.

Suppose I is an information sequence for L ∈ NoisyTxtFexm
n+1(M). Let

σ be a NoisyInfFexm
n+1-locking sequence for M on L such that, for S =

Lastn+1(M, σ), (∃t)[(∀t′ < t)[FK(I[n]) = ∅] ∧ (∀t′ ≥ t)[FK(I[t′]) = S]].
Then it is easy to verify that the conjectures of MK

1 on I are from S and
monotonically increasing. Moreover, MK

1 (I) converges to the least gram-
mar e in S such that We =m L. Thus L ∈ InfExm

n (MK
1 ). It follows that

NoisyInfFexm
n+1 ⊆ InfExm

n [K].

(b) As in the proof for part (a) one can construct a machine FK with the
following property.

Suppose I is an information sequence for L ∈ NoisyTxtFex∗(M). Then there
exists a NoisyInfFex∗-locking sequence σ for M on L and t ∈ N such that

(∀t′ < t)[FK(I[t′]) = ∅] ∧ (∀t′ ≥ t)[FK(I[t′]) = Last∗(M, σ)].

Let MK′

1 (I[n]) be defined as follows.

MK′

1 (I[n]) =







































e, if FK(I[n]) = S 6= ∅,
and there is a nonempty S ′ ⊆ S such that
e = min(S ′), (∀e′ ∈ S ′)[We = We′ ] and
(∀e′ ∈ S − S ′)(∃(x, d) ∈ content(I[n]))

[χWe′
(x) 6= d];

?, otherwise.
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Suppose I is an information sequence for L ∈ NoisyTxtFex∗(M). Let σ be a
NoisyInfFex∗-locking sequence for M on L such that, for S = Last∗(M, σ),
(∃t)[(∀t′ < t)[FK(I[n]) = ∅] ∧ (∀t′ ≥ t)[FK(I[t′]) = S]]. Then it is easy to
verify that, MK′

1 on I outputs min({e ∈ S : We = L}), as its only grammar.

It follows that NoisyInfFex∗(M) ⊆ InfEx0(M
K′

1 ). Hence NoisyInfFex∗ ⊆
InfEx0[K

′]. 2

4 Disadvantages of Having Noise in the Input

We now prove some results that, in some cases, show that noise in the input
is quite restrictive.

The following theorem (Theorem 14) provides a very strong subset princi-
ple on NoisyTxtBca, stronger than that from Angluin’s characterization
[1] of (uniformly decidable classes in) TxtEx. (This latter subset princi-
ple, for preventing overgeneralization, is further discussed, for example, in
[8,12,13,24,34,3,35,23]. Mukouchi [27] and Lange and Zeugmann [25] present
a subset principle for one-shot learning. ) Even at the TxtBc levels, noise is
problematic. A similar theorem for NoisyTxtEx was proven by [33].

Theorem 14 Suppose L1 ⊆ L2.
(a) If L1 6=

2n L2 then {L1, L2} /∈ NoisyTxtBcn.
(b) If L1 6=

∗ L2 then {L1, L2} /∈ NoisyTxtBc∗.

Proof. Suppose that M NoisyTxtBca-identifies {L1, L2}. Then there ex-
ists a NoisyTxtBca-locking sequence σ for M on L2. Thus,

(∀τ : content(τ) ⊆ L2)[WM(σ�τ) =a L2].

On the other hand, since M NoisyTxtBca-identifies L1,

(∃τ : content(τ) ⊆ L1 ⊆ L2)[WM(σ�τ) =a L1].

For such τ , L1 =a WM(σ�τ) =a L2. If a ∈ N , it follows that L1 =2a L2; if a = ∗,
it follows that L1 =∗ L2. 2

The following theorem shows the disadvantages of noisy text.

Theorem 15 Suppose a ∈ N ∪ {∗} and n ∈ N .
(a) TxtEx1 − NoisyTxtBc∗ 6= ∅.
(b) InfEx0 − NoisyTxtBc∗ 6= ∅.
(c) TxtExn+1

0 − NoisyTxtBcn 6= ∅. TxtEx∗
0 −

⋃

n∈N NoisyTxtBcn 6= ∅.
(d) TxtExa

0 ⊆ NoisyTxtBca.
(e) TxtEx0 − NoisyTxtOex∗

∗ 6= ∅.
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Proof. (a), (b) Let L1 and L2 be two r.e. languages such that L1 ⊆ L2

and L1 6=∗ L2. Clearly, {L1, L2} ∈ TxtEx1 and {L1, L2} ∈ InfEx0. However,
{L1, L2} /∈ NoisyTxtBc∗ by Theorem 14.

(c) Let L1 ⊆ L ⊆ L2 be three r.e. languages such that card(L2 − L) =
card(L − L1) = n + 1. Clearly, {L1, L2} ∈ TxtExn+1

0 via guessing a gram-
mar for L independently of the input. However {L1, L2} 6∈ NoisyTxtBcn by
Theorem 14.

Let L = {L : card(L) < ∞}. Clearly, L ∈ TxtEx∗
0. However, for all n,

L 6∈ NoisyTxtBcn by Theorem 14.

(d) The proof of TxtExa
0 ⊆ NoisyTxtBca is identical to that of Theorem 23

in [33].

(e) Let LK = {〈x, y〉 : x ∈ K, y ∈ N} and Lx = {〈x, y〉 : y ∈ N}. Let
L = {LK} ∪ {Lx : x 6∈ K}. It is easy to verify that L ∈ TxtEx0.

Suppose by way of contradiction that L ⊆ NoisyTxtOex∗
∗(M). Then there

exists a NoisyTxtOex∗
∗-locking sequence σ for M on LK . Thus, for all τ such

that content(τ) ⊆ LK , M(σ � τ) ∈ Last∗(M, σ). Intuitively, after reading σ,
M does not make any new guess on inputs from LK . In particular,

(∀x ∈ K)(∀τ : content(τ) ⊆ Lx)[M(σ � τ) ∈ Last∗(M, σ)].

On the other hand, for all but finitely many x 6∈ K, Last∗(M, σ) does
not contain a grammar for a finite variant of Lx. Thus, since Lx ∈
NoisyTxtOex∗

∗(M),

(∀∞x 6∈ K)(∃τ : content(τ) ⊆ Lx)[M(σ � τ) 6∈ Last∗(M, σ)].

It follows that

(∀∞x)[x /∈ K ⇔ (∃τ : content(τ) ⊆ Lx) [M(σ � τ) /∈ Last∗(M, σ)]].

But then K is co-r.e., a contradiction. Thus no such machine M can exist. 2

The following theorem shows the disadvantages of noisy informant.

Theorem 16 Suppose a ∈ N ∪ {∗} and n ∈ N .
(a) TxtEx1 − (NoisyInfBc∗ ∪ NoisyInfOex∗

∗) 6= ∅.
(b) InfExa

0 ⊆ NoisyInfExa.
(c) InfEx2n

0 ⊆ NoisyInfBcn.
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(d) TxtExn+1
0 − NoisyInfOexn

∗ 6= ∅. TxtEx∗
0 −

⋃

n∈N NoisyInfOexn
∗ 6= ∅.

(e) TxtEx2n+1
0 − NoisyInfBcn 6= ∅. TxtEx∗

0 −
⋃

n∈N NoisyInfBcn 6= ∅.

Proof. (a) Let Lx = {〈x, y〉 : y ∈ N}. Consider L = {Lx : x ∈ N} ∪ {∅}.
Clearly L ∈ TxtEx1.

We first show that L 6∈ NoisyInfBc∗. Suppose by way of contradiction L ⊆
NoisyInfBc∗(M). Then there exists a NoisyInfBc∗-locking sequence σ for
M on ∅. But then M does not NoisyInfBc∗-identify any Lx such that Lx ∩
(Pos(σ) ∪ Neg(σ)) = ∅. It follows that L 6⊆ NoisyInfBc∗(M).

We now show that L 6∈ NoisyInfOex∗
∗. Suppose by way of contradiction

L ⊆ NoisyInfOex∗
∗(M). Then there exists a NoisyInfOex∗

∗-locking se-
quence σ for M on ∅. But then M does not NoisyInfOex∗

∗-identify all
but finitely many Lx such that Lx ∩ (Pos(σ) ∪ Neg(σ)) = ∅. It follows that
L 6⊆ NoisyTxtOex∗

∗(M).

(b) Follows from Theorem 12.

(c) Follows from part (b) and Theorem 23.

(d) Follows from Theorem 10.

(e) Follows from Theorem 10 and NoisyInfBcn ⊆ TxtBcn (see Theo-
rem 17). 2

From the above theorems, we see that TxtEx1-inference cannot be simulated
from noisy data (even for Bc∗-identification criteria). This contrasts nicely
with the fact that finite learning can be simulated by behaviorally correct
learning from noisy data.

5 Advantages of Weaker Inference Criterion Despite the Presence

of Noise

The next theorem (Theorem 17), while not hard to prove, is quite interesting
since, in part, it means that noise destroys negative information.

We told the mathematician and psychiatrist Tom Nordahl about Theorem 17
after he had contacted us inquiring about [19]. He was interested in the pos-
sible relevance to schizophrenia. Tom told us that schizophrenics, compared
to normals and in contexts requiring some conscious processing, have trouble
ignoring irrelevant data and also do not exhibit a kind of normal inhibitory
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use of negative information (i.e., they do not exhibit negative priming) [30].
Furthermore, schizophrenics’ deficit in inhibitory processes may occur at a
later stage of processing than their difficulties with filtering out “noise” [30].
Theorem 17, then, provides the beginnings of a possible mathematical, causal
explanation: schizophrenia, in effect, gives people noisy input and, then, their
deficient, net behavior is subsumable by that of a noise-free(r) normal who
just ignores negative information. It would be interesting to get some learning
theory characterizations extending Theorem 17 and which show a necessity
for some negative information blindness in the face of noise.

Theorem 17 Suppose a, b ∈ N ∪ {∗}.
(a) NoisyInfFexa

b ⊆ TxtFexa
b .

(b) NoisyInfOexa
b ⊆ TxtOexa

b .
(c) NoisyInfBca ⊆ TxtBca.

Proof. An idea similar to that used in this proof was also used by Lange
and Zeugmann [26]. The proof is based on the fact that any text T for L can
be translated into a noisy informant IT for L via

IT (〈i, j〉) =
{

(i, 1), if i ∈ content(T [〈i, j〉]);
(i, 0), if i /∈ content(T [〈i, j〉]).

Note that, IT [n] can be obtained effectively from T [n].

For a given M, let M′ be defined as follows:

M′(T [n]) = M(IT [n]).

Since T is a text for L iff IT is a noisy informant for L, we have,
NoisyInfFexa

b (M) ⊆ TxtFexa
b (M

′), NoisyInfOexa
b (M) ⊆ TxtOexa

b (M
′),

and NoisyInfBca(M) ⊆ TxtBca(M′). 2

We next show that learning from noisy texts and noisy informants are incom-
parable.

Theorem 18 (a) NoisyInfEx − (NoisyTxtOex∗
∗ ∪ NoisyTxtBc∗) 6= ∅.

(b) NoisyTxtEx − (NoisyInfOex∗
∗ ∪ NoisyInfBc∗) 6= ∅.

Proof. (a) For x ∈ N , let Lx = {〈y, z〉 : z ∈ N ∧ y ≥ x}. Let L = {Lx : x ∈
N}. Clearly, L ∈ InfEx0

0 ⊆ NoisyInfEx.

Note that L1 ⊆ L0 and L1 6=
∗ L0. Thus by Theorem 14, L 6∈ NoisyTxtBc∗.

We now show that L 6∈ NoisyTxtOex∗
∗. Suppose by way of contradiction

that L ⊆ NoisyTxtOex∗
∗(M) via M. Then there exists a NoisyTxtOex∗

∗-
locking sequence σ for M on L0. Let n be large enough so that Last∗(M, σ)
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does not contain a grammar for a finite variant of Ln (note that there exists
such an n). Now, for any text T for Ln, Last∗(M, σ � T ) (= Last∗(M, σ))
does not contain a grammar for a finite variant of Ln. A contradiction. Thus
L 6∈ NoisyTxtOex∗

∗.

(b) Let L0 = {〈x, 0〉 : x ∈ N}. For i ≥ 0, let Li = {〈x, 0〉 : x ≤ i}∪{〈x, i〉 : x >
i}.

Let L = {Li : i ∈ N}.

It is easy to verify that L ∈ NoisyTxtEx.

We first show that L 6∈ NoisyInfOex∗
∗. Suppose by way of contradiction that

L ⊆ NoisyInfOex∗
∗(M). Then there exists a NoisyInfOex∗

∗-locking sequence
σ for M on L0. Thus,

(∀τ ∈ Inf[Pos(σ) ∪ Neg(σ), L0])[WM(σ�τ) ∈ Last∗(M, σ)].

Let n be such that, n > max({x : (∃y)[〈x, y〉 ∈ Pos(σ) ∪ Neg(σ)]}), and
Last∗(M, σ) does not contain a grammar for a finite variant of Ln (note that
since Li’s are pairwise infinitely different, there exists such an n). Now, for
any informant I for Ln, Last∗(M, σ � I) (= Last∗(M, σ)) does not contain a
grammar for a finite variant of Ln. A contradiction. Thus L /∈ NoisyInfOex∗

∗.

We now show that L 6∈ NoisyInfBc∗. Suppose by way of contradiction that
L ⊆ NoisyInfBc∗(M). Then there exists a NoisyInfBc∗-locking sequence σ
for M on L0. Thus,

(∀τ ∈ Inf[Pos(σ) ∪ Neg(σ), L0])[WM(σ�τ) =∗ L0].

Let n > max({x : (∃y)[〈x, y〉 ∈ Pos(σ) ∪ Neg(σ)]}). Now, for any informant
I for Ln, for all τ � I, [WM(σ�τ) =∗ L0]. Thus, since L0 6=∗ Ln, M does not
NoisyInfBc∗-identify Ln. A contradiction. Thus L /∈ NoisyInfBc∗. 2

The following theorem shows that InfFexn
∗ and InfOexn

∗ are same even in the
presence of noise. However this equality breaks down for noisy texts.

Theorem 19 Suppose n ∈ N and b ∈ N ∪ {∗}.
(a) NoisyInfFexn

b = NoisyInfOexn
b .

(b) NoisyTxtOex2 − NoisyTxtBc∗ 6= ∅.
(c) (NoisyTxtOex∗

2 ∩ NoisyInfOex∗
2) − TxtBc∗ 6= ∅.

Proof. (a) By replacing content(σ) by Pos(σ), in the definition of Q(σ, e)
in the proof for TxtFexn

b = TxtOexn
b (Theorem 11), we can show that

NoisyInfFexn
b = NoisyInfOexn

b .
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(b) Let L = {∅, N}. Clearly, L ∈ NoisyTxtOex2. It follows from Theo-
rem 14 that L /∈ NoisyTxtBc∗.

(c) Let L = {L : L is finite } ∪ {N}. Clearly, L ∈ NoisyTxtOex∗
2 ∩

NoisyInfOex∗
2 (by using the grammars for ∅ and N). However L 6∈ TxtBc∗

[22,17]. 2

Corollary 20 NoisyInfFex∗ = NoisyInfOex∗.
NoisyTxtFex∗ ⊂ NoisyTxtOex∗.

In the remainder of this section we prove results which show that if J 1−J 2 6=
∅, (where J 1,J 2 are inference criteria without noise, J 1 being a criteria not
involving mind changes), then, in most cases, NoisyJ 1 − J 2 6= ∅. We also
note the exceptions. (The noisy inference criteria involving mind changes, are
considered in the next section). Reader should compare the theorems with the
corresponding diagonalization results mentioned in Theorem 10.

Theorem 21 Suppose a ∈ N ∪ {∗} and n ∈ N . Suppose L ⊆ SVT . Then
(a) L ∈ TxtExa ⇔ L ∈ InfExa ⇔ L ∈ NoisyTxtExa ⇔
L ∈ TxtFexa

∗ ⇔ L ∈ InfFexa
∗ ⇔ L ∈ NoisyTxtFexa

∗.
(b) L ∈ TxtOexa

b ⇔ L ∈ InfOexa
b ⇔ L ∈ NoisyTxtOexa

b .
(c) L ∈ TxtBca ⇔ L ∈ InfBca ⇔ L ∈ NoisyTxtBca.
(d) L ∈ TxtExa

n ⇔ L ∈ InfExa
n.

Proof. For L ⊆ SVT , the equivalences,

(i) L ∈ TxtExa ⇔ L ∈ InfExa,

(ii) L ∈ TxtFexa
∗ ⇔ L ∈ InfFexa

∗,

(iii) L ∈ TxtOexa
b ,⇔ L ∈ InfOexa

b ,

(iv) L ∈ TxtBca ⇔ L ∈ InfBca, and

(v) L ∈ TxtExa
n ⇔ L ∈ InfExa

n,

hold since a text for L ∈ SVT can be effectively converted to an informant
for L. Thus, it is sufficient to show

(i) L ∈ TxtExa ⇒ L ∈ NoisyTxtExa,

(ii) L ∈ TxtFexa
∗ ⇒ L ∈ NoisyTxtFexa

∗,

(iii) L ∈ TxtOexa
∗ ⇒ L ∈ NoisyTxtOexa

∗,

(iv) L ∈ TxtBca ⇒ L ∈ NoisyTxtBca.

18



The idea of the proof is to convert a noisy text for L ∈ SVT , limit effectively,
into a text for L (similar technique was also used in [19,20]). This is done as
follows.

For a text T , let FT be defined as follows:

FT (i) =











〈x, y〉, if T (i) = 〈x, y〉, and
(∀j ≥ i)[T (j) = 〈x, z〉 ⇒ y = z];

#, otherwise.

Let, GT [n] be a sequence of length n defined as follows. For i < n,

GT [n](i) =











〈x, y〉, if T (i) = 〈x, y〉, and
(∀j : i ≤ j < n)[T (j) = 〈x, z〉 ⇒ y = z];

#, otherwise.

Suppose L ∈ SVT , and T is noisy text for L. Then it is easy to verify that,

(i) FT is a text for L, and

(ii) for all but finitely many n, GT [n] = FT [n].

For a given M, let M′ be defined as follows:

M′(T [n]) = M(GT [n]).

Since, for L ∈ SVT , T is a noisy text for L iff FT is a text for L, it follows
that

(i) L ⊆ TxtExa(M) ⇒ L ∈ NoisyTxtExa(M′),

(ii) L ⊆ TxtFexa
∗(M) ⇒ L ∈ NoisyTxtFexa

∗(M
′),

(iii) L ⊆ TxtOexa
∗(M) ⇒ L ∈ NoisyTxtOexa

∗(M
′), and

(iv) L ⊆ TxtBca(M) ⇒ L ∈ NoisyTxtBca(M′).

The theorem follows. 2

Theorem 22 Suppose n ∈ N .
(a) NoisyTxtExn+1 − InfOexn

∗ 6= ∅. NoisyTxtEx∗ −
⋃

n∈N InfOexn
∗ 6= ∅.

(b) NoisyTxtEx −
⋃

n∈N InfEx∗
n 6= ∅.

(c) NoisyTxtFex∗
∗ ⊆ InfBc.

(d) NoisyTxtFex2n
∗ ⊆ TxtBcn.

(e) NoisyTxtEx2n+1
0 − TxtBcn 6= ∅. NoisyTxtEx∗

0 −
⋃

n∈N TxtBcn 6= ∅.

19



(f) NoisyTxtExn+1
0 − NoisyTxtBcn 6= ∅.

Proof. (a), (b) Case and Smith [18] showed that there exist L,L′,L′′ ⊆ SVT
such that L ∈ TxtExn+1 − InfOexn

∗ , L
′ ∈ TxtEx∗ −

⋃

n∈N InfOexn
∗ , and

L′′ ∈ TxtEx −
⋃

n∈N TxtEx∗
n. (a), (b), now follows from Theorem 21.

(c) Follows from the fact that InfFex∗
∗ ⊆ InfBc (Theorem 10).

(d) Follows from the fact that TxtFex2n
∗ ⊆ TxtBcn (Theorem 10).

(e) For a ∈ N ∪ {∗}, let La = {L : L =a N}. Clearly, La ∈ NoisyTxtExa
0. It

was shown in [17] that L2n+1 6∈ TxtBcn and L∗ 6∈
⋃

n∈N TxtBcn.

(f) Let L,L1, L2 be r.e. sets such that L1 ⊆ L ⊆ L2 and card(L2 − L) =
card(L − L1) = n + 1. It is easy to verify that {L1, L2} ∈ NoisyTxtExn+1

0 .
{L1, L2} 6∈ NoisyTxtBcn follows by Theorem 14. 2

Theorem 23 Suppose n ∈ N .
(a) NoisyInfExn+1 − InfFexn

∗ 6= ∅. NoisyInfEx∗ −
⋃

n∈N InfFexn
∗ 6= ∅.

(b) NoisyInfEx −
⋃

n∈N InfEx∗
n 6= ∅.

(c) NoisyInfFex∗
∗ ⊆ InfBc.

(d) NoisyInfFex2n
∗ ⊆ NoisyInfBcn ⊆ TxtBcn.

(e) NoisyInfEx2n+1
0 − TxtBcn 6= ∅. NoisyInfEx∗

0 −
⋃

n∈N TxtBcn 6= ∅.

Proof. (a), (b) Follow using Theorem 12 and the facts that InfExn+1
0 6⊆

InfExn = InfFexn
∗ , InfEx∗

0 6⊆
⋃

n∈N InfExn =
⋃

n∈N InfFexn
∗ [18] and

InfEx0[K] 6⊆
⋃

n∈N InfEx∗
n. (Gasarch and Pleszkoch [21] showed that

InfEx0[K] 6⊆
⋃

n∈N InfExn. Cylindrification of their result gives InfEx0[K]−
⋃

n∈N InfEx∗
n 6= ∅. Also one can prove InfEx0[K] − InfEx∗

n by considering
the following L: let, C = {f : Wf(0) 6= N ∧ card({x : f(x) 6= f(x + 1)}) =
min(Wf(0))}; let L = {L : L represents some f ∈ C}.)

(c) Follows from the fact that InfFex∗
∗ ⊆ InfBc.

(d) The idea is essentially the same as used to prove TxtFex2n
∗ ⊆ TxtBcn

from [17,12,13]. Suppose M is given. M′(σ) is defined as follows.

Let Sσ be the least n elements in Pos(σ)∆WM(σ),|σ| (if Pos(σ)∆WM(σ),|σ| con-
tains less than n elements, then Sσ = Pos(σ)∆WM(σ),|σ|).

Now M′(σ) is a grammar for [WM(σ),|σ| − Sσ] ∪ [Sσ ∩ Pos(σ)] (i.e. we obtain
M′(σ) by patching the grammar M(σ), based on the elements in Sσ).

The argument to prove that M′ NoisyInfBcn-identifies every language

20



NoisyInfFex2n
∗ -identified by M is essentially the same as used by [17,12,13].

We omit the details.

(e) For a ∈ N ∪ {∗}, let La = {L : L =a N}. Clearly, La ∈ NoisyInfExa
0. It

was shown in [17] that L2n+1 6∈ TxtBcn and L∗ 6∈
⋃

n∈N TxtBcn. 2

Interestingly, as we see by Corollary 25 to the following theorem (Theorem 24),
the hierarchy NoisyInfFex1 ⊂ NoisyInfFex2 ⊂ . . . ⊂ NoisyInfFex∗ is
proper. This contrasts sharply with the non-noisy case. Fex style criteria,
in situations taking into account noise (as here), missing information (as in
[11–14]), or complexity constraints (as in [15]), provide a hierarchy; but, un-
constrained, do not (as in [7,18]).

Theorem 24 Suppose n ≥ 1.
(a) (NoisyInfFexn+1 ∩ NoisyTxtFexn+1) − TxtOex∗

n 6= ∅.
(b) (NoisyInfFex∗ ∩ NoisyTxtFex∗) −

⋃

n∈N TxtOex∗
n 6= ∅.

Proof. (a) Let NullL = {y : 〈0, y〉 ∈ L}. Let

Ln = {L : card(L) = ∞ ∧ (∃S : card(S) = n + 1)[
S = NullL ∧
(∀〈x, y〉 ∈ L)[y ∈ S] ∧
(∀∞〈x, y〉 ∈ L)[Wy = L]

]}.

We will show that Ln ∈ (NoisyInfFexn+1 ∩NoisyTxtFexn+1)−TxtOex∗
n.

Clearly, Ln ∈ NoisyTxtFexn+1. We next show that Ln ∈ NoisyInfOexn+1

(which by Theorem 19 implies that Ln ∈ NoisyInfFexn+1). Let Sσ =
{e : 〈0, e〉 ∈ Pos(σ)}. Let S ′

σ denote the least n + 1 elements in Sσ (if car-
dinality of Sσ is smaller than n+1, then S ′

σ = Sσ). It is easy to verify that, for
any noisy information sequence I for L ∈ Ln, for all but finitely many σ � I,
S ′

σ = NullL. Thus, using S ′
σ, one can easily construct a machine M such that,

for any noisy information sequence I for L ∈ Ln, Lastn+1(M, I) = NullL. It
follows that Ln ⊆ NoisyInfOexn+1(M).

Now, suppose by way of contradiction that M TxtOex∗
n-identifies Ln. By

implicit use of n+1-ary recursion theorem, there exist e1 < e2 < · · · < en+1

such that, for i = 1, 2, . . . , n + 1, Wei
may be defined as follows. Enumer-

ate 〈0, e1〉, 〈0, e2〉, . . . , 〈0, en+1〉 into We1 ,We2 , . . . ,Wen+1 . Let σ0 be such that
content(σ0) = {〈0, e1〉, 〈0, e2〉, . . . , 〈0, en+1〉}. Go to stage 0.

Stage s
1. Dovetail steps 2 and 3, until step 2 succeeds. If and when step 2 succeeds,

go to step 4.
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2. Search for a τ extending σs such that content(τ) ⊆ {〈x, y〉 : x ∈ N ∧ y ∈
{e1, e2, . . . , en+1}} and Lastn(M, τ) 6= Lastn(M, σs).

3. Let x = 0
loop

For i = 1, 2, . . . , n + 1, enumerate 〈x, ei〉 in Wei

Let x = x + 1.
forever

4. Let τ be as found in step 2.
Let S = content(τ) ∪

⋃

1≤i≤n+1[Wei
enumerated until now ] ∪ {〈s, y〉 : y ∈

{e1, e2, . . . , en+1}}.
For i = 1, 2, . . . , n + 1, enumerate S into Wei

.
Let σs+1 be an extension of τ such that content(σs+1) = S.
Go to stage s + 1.

End stage s

We now consider two cases.

Case 1: All stages finish.

In this case let L = We1 (= We2 = · · · = Wen+1). Clearly L ∈ Ln

and T =
⋃

s∈N σs is a text for L. However Lastn(M, T ) is undefined
(due to success of step 2 infinitely often, we have that M does not
converge on T to a set of n grammars).

Case 2: Some stage s starts but does not finish.

In this case, for i ∈ {1, 2, . . . , n + 1}, let Li = Wei
. Note that these

Li’s are pairwise infinitely different (due to step 3 in stage s). Let i
be such that no grammar in Lastn(σs) is a grammar for ∗-variant of
Li (by pigeonhole principle, there exists such a i). Let Ti be a text for
Li such that σs � Ti. It follows that Lastn(M, Ti) = Lastn(M, σs)
does not contain a grammar for ∗-variant of Li. Thus M does not
TxtOex∗

n identify Li.

From the above cases it follows that M does not TxtOex∗
n identify Ln.

(b) For any L, n let Xn
L = {〈0, n〉}∪{〈1, x〉 : x ∈ L}. Let Ln be as in part (a).

Let L′
n = {XL

n : L ∈ Ln} and let L =
⋃

n∈N L′
n.

An easy modification of the proof of part (a) shows L′
n 6∈ TxtOex∗

n. Thus,
L 6∈ TxtOex∗

n.

In a way similar to that of part (a) one can show that L ∈ (NoisyInfFex∗ ∩
NoisyTxtFex∗). 2
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Corollary 25 Suppose a ∈ (N ∪ {∗}).
NoisyInfOexa

1 ⊂ NoisyInfOexa
2 ⊂ . . . ⊂ NoisyInfOexa

∗.
NoisyInfFexa

1 ⊂ NoisyInfFexa
2 ⊂ . . . ⊂ NoisyInfFexa

∗.
NoisyTxtOexa

1 ⊂ NoisyTxtOexa
2 ⊂ . . . ⊂ NoisyTxtOexa

∗.
NoisyTxtFexa

1 ⊂ NoisyTxtFexa
2 ⊂ . . . ⊂ NoisyTxtFexa

∗.

The next theorem establishes the hierarchy

NoisyTxtBc ⊂ NoisyTxtBc1 ⊂ . . . ⊂ NoisyTxtBc∗.

Theorem 26 Suppose n ∈ N .
(a) NoisyTxtBc − InfOex∗

∗ 6= ∅.
(b) NoisyTxtBcn+1 − InfBcn 6= ∅. NoisyTxtBc∗ −

⋃

n∈N InfBcn 6= ∅.

Proof. For a ∈ N ∪ {∗}, let La = {L : card(L) = ∞ ∧ (∀∞x ∈ L) [Wx =a

L]}. It is easy to verify that La ∈ NoisyTxtBca.

Adopting the techniques used by Case and Smith [18] to show Bcn+1 6⊆ Bcn

and Bc 6⊆ Ex∗, one can show that L0 6∈ InfOex∗
∗, Ln+1 6∈ InfBcn and L∗ 6∈

⋃

n∈N InfBcn. We omit the details. 2

Theorem 27 Suppose n ∈ N .
(a) NoisyInfBcn+1 − InfBcn 6= ∅. NoisyInfBc∗ −

⋃

n∈N InfBcn 6= ∅.
(b) NoisyInfBc1 − InfOex∗

∗ 6= ∅.
(c) NoisyInfBc − TxtOex∗

∗ 6= ∅.
(d) NoisyInfBc ⊆ InfEx.

Proof. (a), (b) Let La = {L : (∀x ∈ Wmin(L)) [Wx =a L] ∨ (card(Wmin(L)) <
∞ ∧ Wmax(Wmin(L)) =a L)}.

It is easy to verify that Ln+1 ∈ NoisyInfBcn+1.

The proof of Bcn+1 −Bcn 6= ∅ and Bc− InfOex∗
∗ 6= ∅ from [18] can be easily

adopted to show that Ln+1 6∈ InfBcn, L∗ 6∈
⋃

n∈N InfBcn, and L1 /∈ InfOex∗
∗.

We omit the details.

(c) Let L1
x = {〈w, z〉 : w ∈ N ∧ z ≥ x}. Let L2

x,y = {〈w, z〉 : w ∈ N ∧ x ≤
z ≤ y}. Let L = {L1

x : card(Wx) = ∞} ∪ {L2
x,y : card(Wx) < ∞ ∧ y > x}.

We show that L ∈ NoisyInfBc − TxtOex∗
∗.

Let M(σ) be defined as follows. Let g be a recursive function such that

Wg(x,y,n) =
{

Lx,y, if card(Wx) ≤ n;
Lx, if card(Wx) > n.
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M(σ) =



















?, if Pos(σ) = ∅;
g(x, y, |σ|), if Pos(σ) 6= ∅,

where x = min({x′ : 〈0, x′〉 ∈ Pos(σ)}) and
y = min({z : z > x ∧ 〈0, z〉 /∈ Pos(σ)}).

We claim that L ⊆ NoisyInfBc(M).

If card(Wx) = ∞ and I is a noisy informant for L1
x, then, for all but finitely

many σ � I, x = min({x′ : 〈0, x′〉 ∈ Pos(σ)}). For such σ, since card(Wx) =
∞, M(σ) = g(x, y, |σ|) is a grammar for L1

x. Thus L1
x ∈ NoisyInfBc(M).

If card(Wx) < ∞, y > x, and I is a noisy informant for L2
x,y, then, for all but

finitely many σ � I, x = min({x′ : 〈0, x′〉 ∈ Pos(σ)}), y = min({z : z > x ∧
〈0, z〉 /∈ Pos(σ)}), and |σ| > card(Wx). Thus, for all but finitely many σ � I,
M(σ) = g(x, y, |σ|) is a grammar for L2

x,y. Thus L2
x,y ∈ NoisyInfBc(M).

It follows that L ∈ NoisyInfBc.

Now suppose by way of contradiction, that M TxtOex∗
∗-identifies L.

If card(Wx) = ∞, then there exists a TxtOex∗
∗-locking sequence for M on

L1
x. Thus,

(∃σ : content(σ) ⊆ L1
x)(∀τ : content(τ) ⊆ L1

x)[M(σ � τ) ∈ Last∗(M, σ)].

If card(Wx) < ∞, then there is no such sequence:

(∀σ : content(σ) ⊆ L1
x)(∃y)(∃τ : content(τ) ⊆ L1

x,y ⊆ L1
x)

[M(σ � τ) 6∈ Last∗(M, σ)].

This is so, since L2
x,y are pairwise infinitely different, and thus Last∗(M, σ),

can contain a grammar for a finite variant of only finitely many L2
x,y.

It follows that
card(Wx) = ∞ ⇔

(∃σ : content(σ) ⊆ L1
x)(∀τ : content(τ) ⊆ L1

x)[M(σ � τ) ∈ Last∗(M, σ)].

But, this would mean that {x : card(Wx) = ∞} is r.e. in K. A contradiction.
Thus no such M can exists.

(d) Suppose M is given. We generalize the notion of a locking sequence from
Proposition 9 to that of a good pair 〈σ, l〉:

〈σ, l〉 is good for M on L iff, for all τ ∈ Inf[{0, 1, · · · , l − 1}, L],
WM(σ�τ) ⊆ L.
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Note that, for every L ∈ NoisyTxtBc(M), there exists a good pair for M on
L. Let

XL
σ,l =

⋃

τ∈Inf[{0,1,···,l−1},L]
WM(σ�τ).

Let g be a recursive function such that g(σ, l, χL[l]) is a grammar for XL
σ,l.

Note that there exists such a recursive g.

Claim 28 If L ∈ NoisyTxtBc(M), and 〈σ, l〉 is good for M on L, then
XL

σ,l = L.

Proof. Suppose L ∈ NoisyTxtBc(M), and 〈σ, l〉 is good for M on L.
Clearly, XL

σ,l ⊆ L, since otherwise 〈σ, l〉 would not be good for M on L. We
now show that L ⊆ XL

σ,l. Let I be an informant for L such that, for each x,
〈x, χL(x)〉 appears infinitely often in I. Then, σ � I is a noisy informant for L.
Thus there exists a τ � I such that WM(σ�τ) = L. Since τ ∈ Inf[{0, 1, · · · , l −
1}, L], we have L ⊆ XL

σ,l. 2

We now give a machine M′ such that NoisyInfBc(M) ⊆ InfEx(M′). Suppose
I is an information sequence for L ∈ NoisyInfBc(M).

We say that 〈σ′, l′〉 seems good with respect to I[m] iff

(∀x < l′)[(x, χL(x)) ∈ content(I[m])], and

(∀τ ′ ∈ Inf[{0, 1, · · · , l′ − 1}, L] : τ ′ ≤ m)[WM(σ′�τ ′),m ∩ Neg(I[m]) = ∅].

M′(I[m]) = g(σ, l, χL[l]), where 〈σ, l〉 = min({〈σ′, l′〉 : 〈σ′, l′〉 ≤ m ∧ 〈σ′, l′〉
seems good with respect to I[m]}).

Intuitively, M′ on I searches for the minimum pair 〈σ, l〉 such that 〈σ, l〉 is good
for M on L. It then outputs g(σ, l, χL[l]), in the limit, on I. By Claim 28,
g(σ, l, χL[l]) is a grammar for XL

σ,l = L. It is now easy to verify that L ∈
InfEx(M′).

It follows that NoisyInfBc ⊆ InfEx. 2

If one considers the definition of GenExa
b from [4] 1 , then one can show

that GenInfExa
0 ⊆ NoisyGenInfExa ⊆ NoisyInfBca. Parts (a), (b) of

Theorem 27 can then also be proved using the fact that GenInfExn+1
0 −

InfBcn 6= ∅ and GenInfEx1
0 − InfOex∗

∗ 6= ∅. Part (d) of Theorem 27 is
reminiscent of the fact that GenInfEx ⊆ InfEx.

1 We say that p is an a-generator for L iff ϕp is total and, for all but finitely many
i, ϕp(i) is a grammar for a-variant of L (that is Wϕp(i) =a L). M GenTxtEx

a
b -

identifies a language L iff, on every text T for L, M makes at most b mind changes
and converges to an a-generator for L. GenInfEx

a
b and the corresponding noisy

inference criteria can be defined similarly.
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Combining Theorem 17, which states that NoisyInfFex∗ ⊆ TxtFex∗ ⊆
TxtOex∗

∗, with NoisyInfBc 6⊆ TxtOex∗
∗, one obtains that NoisyInfBc is

more powerful than NoisyInfFex∗.

Corollary 29 NoisyInfFex∗ ⊂ NoisyInfBc.

As a corollary to Theorem 19, Theorem 22, Theorem 24, and Theorem 26 we
have

Corollary 30 Suppose a, b ∈ N ∪ {∗} and m,n ∈ N .
(a) NoisyTxtExn+1 − NoisyTxtOexn

∗ 6= ∅.
(b) NoisyTxtEx∗ −

⋃

n∈N NoisyTxtOexn
∗ 6= ∅.

(c) NoisyTxtFex0
n+1 − NoisyTxtOex∗

n 6= ∅.
(d) NoisyTxtFex0

∗ −
⋃

n∈N NoisyTxtOex∗
n 6= ∅.

(e) NoisyTxtBc0 − NoisyTxtOex∗
∗ 6= ∅.

(f) NoisyTxtBcn+1 − NoisyTxtBcn 6= ∅.
(g) NoisyTxtBc∗ −

⋃

n∈N NoisyTxtBcn 6= ∅.
(h) NoisyTxtOex2 − NoisyTxtBc∗ 6= ∅.

As a corollary to Theorem 17, Theorem 19, Theorem 23, Theorem 24, and
Theorem 27, we have

Corollary 31 Suppose a, b ∈ N ∪ {∗} and m,n ∈ N .
(a) NoisyInfExn+1 − NoisyInfOexn

∗ 6= ∅.
(b) NoisyInfEx∗ −

⋃

n∈N NoisyInfOexn
∗ 6= ∅.

(c) NoisyInfFex0
n+1 − NoisyInfOex∗

n 6= ∅.
(d) NoisyInfFex0

∗ −
⋃

n∈N NoisyInfOex∗
n 6= ∅.

(e) NoisyInfBc0 − NoisyInfOex∗
∗ 6= ∅.

(f) NoisyInfBcn+1 − NoisyInfBcn 6= ∅.
(g) NoisyInfBc∗ −

⋃

n∈N NoisyInfBcn 6= ∅.
(h) NoisyInfOex∗

2 − NoisyInfBc∗ 6= ∅.

6 Mind Changes and Finite Variants of One Fixed R. E. Language

Theorem 32 Suppose a ∈ N ∪ {∗} and n ∈ N .
(a) If L ∈ NoisyInfExa

n, then there exists a grammar i such that (∀L ∈
L)[Wi =a L].
(b) If L ∈ NoisyTxtExa

n, then there exists a grammar i such that (∀L ∈
L)[Wi =a L].

Proof. We only show part (a). Part (b) can proved similarly. Suppose L ⊆
NoisyInfExa

n(M). Without loss of generality, assume that M does not make
more than n mind changes on any input (noisy) information sequence. Let
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σ be such that, for all τ extending σ, M(σ) = M(τ). Note that there exists
such a σ, since the number of mind changes by M on any text is bounded.
We claim that WM(σ) =a L, for all L ∈ L. Consider any L ∈ L, and noisy
information sequence I for L such that σ � I (note that there exists such an
information sequence I). Now M(I) = M(σ). Thus WM(σ) =a L. 2

Corollary 33 For all n, L ⊆ E ,

L ∈ NoisyInfExa
n ⇔ L ∈ NoisyTxtExa

n ⇔ (∃L ∈ E)[L = Vara(L)].

Theorem 34 Suppose n ∈ N .

(a) (∀L ∈ E)[Var2n(L) ∈ NoisyInfBcn].

(b) (∀L ∈ E)[Var2n(L) ∈ TxtBcn].

(c) (∀L ∈ E)[Var∗(L) ∈ InfBc].

(d) (∀L : card(L) = ∞)[Var2n+1(L) /∈ TxtBcn].

(e) (∀L : card(L) = ∞)[Var2n+1(N) /∈ NoisyInfBcn].

(f) (∀L : card(L) = ∞)[Varn+1(N) /∈ TxtOexn
∗ ].

(g) (∀L : card(L) = ∞ ∧ card(L) = ∞)[Varn+1(L) 6∈ NoisyTxtBcn].

Proof. Clearly, Var2n(L) ∈ NoisyInfEx2n ⊆ NoisyInfBcn ⊆ TxtBcn.
This proves part (a) and (b). Also, Var∗(L) ∈ NoisyInfEx∗ ⊆ InfEx∗ ⊆
InfBc. This proves part (c).

Case and Lynes [17] showed that Var2n+1(N) /∈ TxtBcn ⊇ NoisyInfBcn, and
Varn+1(N) /∈ TxtFexn

∗ = TxtOexn
∗ . Their proof generalizes to any infinite

L. This proves (d), (e) and (f).

For part (g), L1, L2 be such that L1 ⊆ L ⊆ L2 and card(L2 − L) = card(L −
L1) = n + 1. It follows from Theorem 14 that {L1, L2} /∈ NoisyTxtBcn.
Thus, Varn+1(L) /∈ NoisyTxtBcn. 2

Clearly, Var∗(N) ∈ InfEx. Since, for inferring a finite variant of a cylinder
from informant, every difference from the cylinder can be detected in the limit,
we have Var∗(K) ∈ InfEx. However, as the next theorem shows, this does not
hold if K is replaced by a suitable (non-cylinder) r.e. set L.

Theorem 35 Suppose n ∈ N . L = {L′ : L′ =n+1 L} /∈ InfExn for some r.e.
L.
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Proof. For any language L′, let IL′ denote a canonical information sequence
for L′. Thus IL is the canonical information sequence for L constructed be-
low. Let Xm

i denote the set {〈i, x〉 : x ≥ m}. Let M0,M1, . . . be a recursive
enumeration of total learning machines such that, for all L ∈ InfExn, there
exists an i, such that L ⊆ InfExn(Mi). (There exists such an enumeration.
For example see [29].)

Then one of the following two properties will be satisfied for each i.

(A) Mi(IL) diverges.
(B) There is an m such that Xm

i − L is infinite and
(∀L′ : L ⊆ L′ ⊆ Xm

i ∪ L)[Mi(IL′) = M(IL)].

Note that this implies L 6⊆ InfExn(Mi). To see this, suppose M InfExn

identifies L. Then (B) must hold. Let m be as in (B). Thus, Xm
i − WMi(IL)

is infinite. Let S be a set of cardinality n + 1 such that S ⊆ Xm
i − WMi(IL).

Then Mi does not InfExn identify L ∪ S.

The aim of the construction below is to try to satisfy (A) above for each i
(which will not always be successful). For this we place requirements,

R〈i,j〉 : Mi on IL makes at least j mind changes.

Fix i. In case all R〈i,j〉 are satisfied, (A) would hold. In case we cannot satisfy
all R〈i,j〉 (i.e. only finitely many of them are satisfied), we will make sure that
(B) holds.

In the process of trying to satisfy a requirement we need to enumerate some
elements in L and constrain some elements to be out of L. Due to this, satisfy-
ing a requirement may spoil some other requirements already satisfied. To get
around such problems, we order the requirements using priority. Lower num-
bered requirements have higher priority. We assume, without loss of generality,
that, for all i, j, 〈i, j〉 < 〈i, j + 1〉. We will make sure in the construction that
satisfying any requirement does not spoil any higher priority requirement.

Furthermore, in order to satisfy requirement R〈i,j〉, we will add only elements
of the form 〈i, x〉 to L. This would allow us to argue that if (A) is not satisfied
for some i, then (B) would be satisfied.

We let Z〈i,j〉 denote the set of elements constrained to be out of L by require-
ment R〈i,j〉. Initially, for all i, j, requirements R〈i,j〉 is unsatisfied and Z〈i,j〉 is
empty. Let Ls denote the set of those elements which are enumerated into L
before stage s. In each stage we try to satisfy the least unsatisfied requirement,
which is “seen” to be satisfiable in that stage.

Definition of L
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Begin stage s
1. If there exists an 〈i, j〉 ≤ s, such that

(a) requirement R〈i,j〉 is currently unsatisfied and
(b) there are σ and S ⊆ {〈i, x〉 : x ≤ s ∧ (∀〈i′, j′〉 < 〈i, j〉)[〈i, x〉 /∈

Z〈i′,j′〉]}, such that |σ| ≤ s, σ � ILs∪S and Mi makes on σ at least
j mind changes.

Then choose the least such 〈il, jl〉 and a corresponding Sl (which satisfies
(b)), and proceed to step 2. Otherwise go to stage s + 1.

2. Enumerate Sl into L.
3. Let Z〈il,jl〉 = {x : x ≤ s} − [L enumerated until now].
4. (Spoil lower priority requirement)

For 〈i′, j′〉 > 〈il, jl〉, let requirement R〈i′,j′〉 become unsatisfied, and let
Z〈i′,j′〉 = ∅.

5. Go to stage s + 1.
End stage s

Each stage above halts (due to finiteness of search). It is easy to verify that
satisfying any requirement does not spoil a higher priority requirement. Thus
any requirement can be spoiled (and thus satisfied) only finitely many times.
Thus we claim

For all i, j, there exists a s such that exactly one of the following holds

(a) R〈i,j〉 remains satisfied for all stages beyond stage s;
(b) In all stages beyond stage s, in step 1 of the construction, (a) holds but (b)

does not hold for 〈i, j〉.

The above claim can be proved as in any standard priority argument proofs.
Note that if a requirement R〈i,j〉 remains unsatisfied in the limit, then so does
R〈i,j+1〉.

Now fix i. We will show that either (A) or (B) holds. If for all j, Ri,j eventually
remains satisfied, then clearly, (A) holds. Thus, if (A) does not hold for i, (i.e.
Mi(IL) converges), then there exists a requirement Ri,j such that Ri,j remains
unsatisfied in the limit. Thus, by the claim, beyond some stage s, in step 1
of the construction, (a) holds but (b) does not hold for 〈i, j〉. Note that this
implies that L contains only finitely many elements in X0

i (elements in X0
i are

introduced in L only when some R〈i,j〉 is satisfied).

Now since L contains only finitely much of X0
i , and for all but finitely many

stages, (a) and (b) in step 1 of the construction do not hold for 〈i, j〉, we have

There is an m such that Xm
i ∩ L = ∅ and Mi(IL) = M(IL′), for all

L′ such that L ⊆ L′ ⊆ Xm
i ∪ L.

Thus (B) holds for i. 2
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7 Concluding Remarks

If one considers the non-parameterized versions of the identification criteria
considered in this paper (Ex = Ex0,Fex = Fex0

∗,Oex = Oex0
∗,Bc = Bc0),

then as a corollary to the results in this paper we have

Corollary 36 NoisyTxtEx ⊂ NoisyTxtFex ⊂ NoisyTxtBc.

NoisyTxtEx ⊂ NoisyTxtFex ⊂ NoisyTxtOex.

NoisyTxtOex and NoisyTxtBc are incomparable by ⊆.

Corollary 37 NoisyInfEx ⊂ NoisyInfFex = NoisyInfOex ⊂
NoisyTxtBc.

The following figure summarizes the above corollaries. In the figure, an arrow
from I1 to I2 indicates that I1 ⊆ I2. (Also I1 ⊆ I2 iff it follows from the
subset relations shown in the figure.)

Noisy Text Noisy Informant

Oex BC

Fex

Ex

6

@
@@I

�
���

BC

Fex = Oex

Ex

6

6

Note that for learning without noise, we have TxtEx ⊂ TxtFex =
TxtOex ⊂ TxtBc and InfEx = InfFex = InfOex ⊂ InfBc. Thus presence
of noise changes the hierarchy structure of common identification criteria.

As we have seen in this paper, the introduction of noise (as defined in this paper
and from [33]), in many cases, increases the difficulty of learning, sometimes
in interesting ways. It would be good to assuage the difficulty of learning
from noisy data, in the future, by finding natural forms of “innate knowledge”
or additional information (as, for example, was done for noise free function
learning in [16]).
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