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Abstract. This paper could be called "pieces on recent trends ...". It .is a set of remarks 
and thoughts about the actual and the potential development of discrete geometry. 
especially in computer imagery, and its interaction with geometrical modelling. My 
personnal view on some recent trends are exposed. It is rather a critical tutorial that 
emphasizes what I believe to be significative and promizing trends, among the enormous 
blossoming of researches and results. Thus, this paper is not a survey. Included remarks 
are particularly illustrated with papers taken from the DGCI conferences, from 1991 m 
1996. General remarks are classified into three groups: On growing 3D discrete geometry: 
On the convergence of problems and their solutions in the subfields of image analysis and 
of computer graphics; On the trend toward more discrete geometry. These remarks end with 
some conclusions for future work. In a second part, the actual and the potential importance 
of combinatorial topology, arithmetic geometry, discrete linearity and piecewise linearity 
is studied and discussed. Conclusions, directions, and problems for future work are stated. 

1. I n t r o d u c t i o n  
Since 35 years a tremendous development of  the fields of computer imagery (CI), 
picture processing and analysis, picture understanding, pattern recognition, computer 
vision, computer  graphics, image synthesis, computational geometry, takes place 
[Ros96]. These fields led to the development of  discrete (or digital) geometry (DG). 
The advancement of  DG is, nowadays, very varied, even profusing. It recalls the 
richness o f  geometry and topology in the mathematics. By DG I mean the set of 
theories developped in computer science for topological and geometrical questions 
over a finite or denumerable set of points, without analytical tools; these theories 
search for strong analogies with euclidean geometry. In order to simplify the reading, 

I only consider set of  points of Z n, n = 2 or 3. A clear trend exists for extending the 
results for any n. Other spaces are considered in some works; see [Chas91], [Kong89], 
[Kong92]. 
Since the sixties, completely new problems were set down by CI. The following two 
are archetypal : the existence of  a discrete Jordan theorem in the discrete plane for 
discrete curves, and the recognition of a discrete straight line. These problems are still 
studied. A superficial historical view could conclude that nil nm, i sub sole. But my 



point of view is quite opposite: Nowadays our two archetypal problems, as well as all 
fundamental problems of discrete geometry in CI, first are posed in new ways. in 
more adequate mathematical known theories, then are solved with more powerful 
insight~ and last lead to more robust and efficient methods, algorithms, softwares. 
It is now known that euclidean topology and geometry cannot be carried into discrete 
spaces without important distorsions and without a multiplication phenomenon of 
concepts and theories. Thus, we must carefully distinguish DG and euclidean 
geometry. The first asserts the foundations of CI. The second is the basis of 
computer geometry, i.e. geometric modelling and computational geometry. I use the 
term "computer geometry and imaging" (CG&I) to talk about all these fields together. 
Note that DG also appeared in theoretical computer science (see [Beau91], [Bers90]). 
in computer architecture (see [Roz92] and below), and in physics [Riv94]. 
This paper is an attempt to be pieces of a tutorial that underscores some recent trends 
that seem to me important and significative for the advancement of DG. Thus. this is 
not a survey. It is primarily intended tbr computer scientists working in tile area of 
CI. This paper explains my personnal point of view; this is why it is written in the 
first person. My remarks want to lead the reader to a more organized, more critical. 
more coherent insight of a part of DG. particularly of topology. And also to lead to 
conclusions and directions for future work and to open problems. 
Section 2 is devoted to general remaks, concerning global trends, trends transversal to 
all subfields. Their are threefold: On growing 3D discrete geometry; On the 
convergence of problems and their solutions in the subfields of image analysis and of 
computer graphics: On the trend toward more discrete geometry. These remarks are 
followed by conclusions. They are more precisely illustrated in the sections 3 and 4. 
In section 3, the actual and the potential importance of combinatorial topology is 
studied and discussed. Problems and conclusions for future work are stated. Section 4 
is devoted to the importance of the discrete linearity and piecewise linearity. General 
conclusions tbr future work are stated in section 5. 
In the examples and references, [ largely flavour the papers of the DGCI conferences. 
since its beginning in 1991. This conference always wanted to reflect new ideas and 
trends in DG. This flavour tends to recognize the role played by this conference. In 
order to avoid a too long list of references, I will give only recent or very significative 
references; the reader is invited to recurse. 

2. General remarks 
General, global trends can be organized in three highly interacting groups. 

2.1. Discrete 3D and nD discrete geometry 
The development of 3D DG is obvious. Its motors are, first medical imaging, 
second, computer graphics. Medical imaging, and the same 3D imaging in other 
application domains, cannot be contented by slice by slice processing. New space and 
time computer ressources allow really 3D methods. In the field of computer graphics. 
clearly 3D discrete methods are growing: See several DGCI papers on discrete ray 
tracing and works of Arie Kaufman and others on "voxel machines" (DGCI'96, 
[Kauf93]). 
3D DG is more difficult than 2D, because it is no longer possible to be satisfied by 
intuitive and approximative reasonnings, as too often in 2D. Thus, 3D DG requires 
more rigour and mathematical foundations. 3D DG will undoubtly be developped. 4D 



DG also, for natural extensions of 3D results to space-time problems, nD also, for 
the fundamental reason that mathematical extensions from 2D or 3D DG must lead to 
algorithmic generality, simplicity, robustness, and efficiency; thus. it must lead to 
better software as well. 

2.2. The same DG works in all the computer imagery 
Already in 2D, the developments of DG in separated communities of image analysis 
and image synthesis led to the same concepts and results. 
I claim more: I claim a big class of topological problems is essentially the same in 
CI and in computer geometry; to decribe the topology of a continuous or discrete 
scene, its construction, modifications, or manipulations, are essentially the same. 

Figure 1. Plane subdivision: cartoon or regions of a picture 

The following example, a fundamental one in all CG&I, is used in this paper. A 
classical problem in image analysis is to compute the adjacency graph of a region 
segmented picture. A more complicated problem is to take into account multiple 
adjacencies and possible inclusion of a region in another (enclave). This leads to a 
structure I call inclusion tree of tile map of the regions ([Krop95] [Fior95], and 
DGCI'96 conference). This structure contains more information than a multigraph, 
because it contains a cyclic ordering of all the edges incident to any vertex. In other 
terms, it contains all possible adjacence, incidence, and inclusion informations, that 
are the topological informations of the image considered as a subdivision of the 
discrete plane. 



The same problem is encountered for a while in euclidean geometric modelling (see 
[Duf89], [Baud89], [Braq91]), e.g. under the name of representation of a c a r t o o n .  In 
the field of political cartography, the regions are defined by their boundaries. The 
problem of describing the topological relations of the regions of a political map is 
that of describing the topolocal relations of a subdivision of an euclidean plane (or 
sphere!). It is thus the same problem, details apart. 
Let us consider the example of figure I. Regions are labeled A, B . . . . .  T; multiple 
adjacences are visible between C and B (resp. E and G): the sons of lhe root of tile 
inclusion tree are A, B, C, D, H, L, M, N. T; K is the only son of J: I is the only 
son of H; C has three sons: J, another with sons E, F, G. and a third with sons P. Q. 
R, S. A detail is: The common vertex of L and M cannot exist in an image. Another 
detail is: An isthmus, like the edge linking the boundary of N to that of T, cannot 
exist in a picture, but can exist in some problems of geometric modelling. 
Now, the 3D extension of this problem and of this structure is an open problem: it is 
difficult and inescapable. In section 3, I will precise the topological concepts used in 
computer geometry for solving this problem in 2D and 3D. 
Conclusion: The convergence of concepts, methods and results comming fi'om works 
in different fields is a fact. It is to be carried at a higher level, especially for 
modelling, that can go from discrete to continuous, or continuous to discrete, with 
very few modification, if any. This point will be developped in section 3. 

2.3. From "More Discrete Geometry" to "A Full Discrete Computer 
Imagery" 

2.3.1. In C o m p u t e r  Imagery  
Historically, the main DG development comes from image analysis since 1960. 
Image synthesis seriously contributed to DG only since the late seventies, with the 
raster graphics capabilities (but note the important exception of curve plotting). In the 
following I assume computer graphics that use the raster technology. The use of DG 
in computer graphics can be reduced to rather nothing. Let us take the basic and 
elementary example of a polygon display, say a triangle. This triangle is given by tlle 
coordinates of its vertices in an euclidean plane. Assume tile pixels of the display 
device are the integer points in this coordinates system. The algorithmic problem of 
the display is then to compute all the integer points inside the triangle (and to set 
them a color in the image memory). The computation is generally a cartesian 
geometry computation with real numbers (see any "scan line algorithm" in a 
computer graphics manual). In this method there is no part of DG; it can be said that 
the change to the discrete world is performed the latest possible. Other methods 
discretize earlier, even the earlier possible, beginning by a discretization of the 
triangle's edges, then by computing the pixels to be displayed by a purely DG 
algorithm, The general conclusion I want to reach is this one: In computer graphics 
using the raster technology for display, there is a change to the DG to be made 
somewhere. This "somewhere" is "adjustable"; thus algorithms can be based on very 
few DG to DG only. 
A general, but diffuse, trend in computer graphics is toward more DG, in the subfields 
of visualization and modelization. In image analysis, the same trend is obvious. 
Ex 1. Voxel machines require DG based algorithms because geometric objects are 
discrete and stored in the 3D memory. 



Ex 2. A font of computer typography is a geometric object represented by its 
boundary, that is one or several curves, e.g. polygons or sptines. In [Po188] a chip is 
designed, for a quick display of fonts, that processes discrete curves only, like the 
discrete triangle above. 
Ex 3. Discrete ray tracing is now well known, see DGCt'91 to DGCI'95 and the 
work of Dany Cohen. 
Ex 4. The production of fi'actal images by the well known Iterated Function System 
(IFS) method is transformed into a purely discrete method [Krop93]. Other discrete 
methods for producing fractal images, and more, for defining discrete fractals directly. 
have been published; see arithmetic geometry below and [Duv95]. 
Ex.5 In the field of algorithmic geometry, [Chas93] is a very significative example 
of a directly discrete approach of a difficult problem. 
Nevertheless, I do not forget that a lot of discrete problems are solved by 
conthzuation, i.e. transformation into an euclidean problem, see e.g. DGCI'9I to 
DGCI'96, [Lore87]. 
The trend to more DG is also visible in the field of software development, because it 
is very difficult to make live together distinct methodologies in a software, e.g. 
morphomath processing and DG processing. 

The often searched and finded benefits of the trend to more DG are usually: 
1) Time efficiency: basic operations in DG basic algorithms are often more atomic, 
faster and more repetitive; 
2) Algorithms are more simple lo design and are more robust; 
3) They avoid the frequent dramatic effects (see [Hopc92]) of rounding errors in 
floating point geometrical computations; 
4) The extension representation of an object, also called representatimz by 
enumeration, i.e. by an explicit set of pixels or voxels in a memory, allows to 
replace intersection computations by detection of an object presence in a given voxel 
or pixel of the memory. Ex: Euclidean ray tracing requires a huge computation of 
intersections of rays (euclidean straight lines) and objects (euclidean polygons. 
spheres,...); discrete ray tracing requires the simulation of a particle movement along 
a discrete line, and, for each voxel of this trajectory, it requires the detection of an 
object presence in this voxel. The benefts of this detection algorithmics are the three 
above and others. 
One can consider that ex.5 is one of a great class of algorithmic problems, that are 
particularly difficult in the euclidean geometry but easy in DG. The two following 
classes are well identified : 
1) Squetettization problems; 
2) Set (boolean) operations, like union, intersection, difference; their are trivial lbr 
extension represented sets. 
Thus a wide problem is raised: Is it possible to find a discretization and a continuation 
such that it could be possible to compose a discretization, a squetettization or a set 
operation, and a continuation, at least for some application'? 

2.3.2. The case of  arithmetic geometry 
The more important and original recent trend in DG is the introduction of the 
arithmetic geometr), by Jean-Pierre Reveilles (see the papers by Reveilles and his 
students in DGCI'91 to DGCI'96). Present arithmetic geometry contains a theory of 



straight lines and planes (see also section 4), circles, bijective rotations, and discrete 
affine mappings. The most powerful and promizing theory of discrete linearity is 
undoubtly that of arithmetic geometry. A surprising aspect of its theory of straight 
lines and planes is the introduction of a family of these objects parametrized by an 
integer called the (arithmetic) width. We then have practically a possible choice of a 
working family. Two particular cases play an important role. One is that of naive 
lines, that are 8-connected Jordan curves, and naive planes, that are 18-c and 2- 
manifolds. The other important case is that of standard lines, that are 4-c Jordan 
curves, and standard planes, that are 6-c and 2-manifolds (see definition in section 3). 
More generally, arithmetic geometry, as well as discrete topology, shows a 
multiplication effect: one euclidean concept has several discrete analogs, and there is 
no reason to favour one; e.g. several bijective rotations have been defined, and all 
seem to be equally interesting. 

Previously, the study of straight lines, circles, planes .... was done by discretization 
of the euclidean objects (recurse also from [Kov90], [Kro89])..By this method, 
results are technically very difficult to obtain, true tours de force (see e.g. the result 
on the structure of discrete straight lines in [Kro89]). In the arithmetic geometry, 
objects are only defined through integer numbers and integer arithmetic. Real numbers 
are ignored. Then, reasonnings are purely arithmetical, and often they are elementary. 
Numerous results of arithmetic geometry are very original, and are unexpected in the 
discretization approach (see e.g. the non vacuity test tot the intersection of two 
discrete straight lines in [Rev93]). Algorithms are generally simple; they are robust 
by nature. More, the effect of numerical errors in some floating point computations 
(e.g. non terminating algorithms by cycling) can be studied and explained through 
arithmetical geometry (this point deserves more research). Discrete fractals appear 
naturally. Well identified links exist with theories in physics (see the inflation 
symetry in quasicristallography, the beautiful paper by Nicolas Rivier [Riv94], and 
visible discrete straight lines in a daisy). 

2.3.3. Conclusion 
Arithmetic geometry point out the way for future work. Let me step forward. Why 
not a full discrete methodology, and a full discrete CI? Why not to avoid the euclidean 
geometry and the real numbers? Why not working with discrete geometrical objects 
and discrete operations only. That is, to develop a purely discrete modelling 
methodology? To develop a discrete geometry intuition and culture'? This work 
requires a sufficiently developped DG with objects and operations analogous to those 
of the elementary euclidean geometry. This work is, nowadays, not done: but I 
consider it can be done. In the same spirit, others are developping a computational 
mechanics which is discrete in time and in mass (but not in space), see [Cad91]. 
Thus, I consider as a fundamental trend of DG to produce the concept of a full discrete 
CI. 

3. On discrete topology 
The two fundamental topological key questions are: 
- The study of various concepts of discrete surfaces verifying a Jordan theorem (that is 
with a connected interior and a connected exterior, such that the interior volume can 
be defined by its boundary, the surface, for modelling); 



- The study of discrete topology equivalence : homeomorphism, homotopy .. . .  (e.g. 
for squelettization). 

3.1. The two approaches 
Two trends are very active. I call the oldest connectivity, based topology (CBT), 
because it is based on the classical 2D 4- and 8-connectivity, and 3D 6-, 18-, 26-c. 
without using concepts of combinatorial topology. 
In the 2D CBT, 4-c and 8-c Jordan (also called simple) curves satisfy a Jordan 
theorem. In the 3D CBT, several notions of a surface have been introduced: [Morg81]. 
[Mala93], [Malg93], discrete polygons in this DGCr96 conference, and others. In this 
paper I will use the (26,6)-surfaces of Morgenthaler. A Jordan theorem is proved for 
the surfaces of Morgenthaler and those of Malgouyres. 
In 2D and 3D, a working homotopy theory gives important results for the problem of 
topology preservation under suppression of one or several points (see the papers by 
Gilles Bertrand [BerG95] and this DGCr96 conference). 
I call the second trend discrete combinatorial topology (DCT), becduse it is based on 
the mathematical theory of combinatorial topology [Alex56], with or without the 
connectivity concepts. In this theory, the combinatorial concept of a surface is that of 
a 2-dimensional combinatorial manifold, or 2-manifold for short, with or witholtt 
boundar3,, orientable or not. It will be developped below. 
My general remark is: It is time to try to bring closer these two approaches. A first 
step in this direction is in [Aya95] and is developped below. 

3.2. R e t u r n  to 2D topology 
A return to 2D topology is needed because: 
- We need to define analogous constructions in a discrete plane and locally on discrete 
surfaces, e.g. to define the interior of a closed curve on any surface; 
- A theory of a discrete plane cannot be only a graph theory because planarity must lie 
somewhere; more, any theory of a discrete surface must contain a local property of 
planarity. In my opinion, it must also be a theory of planar graphs or of 2-manifolds 
(Problem 0 : Are Morgenthaler surfaces, and other surfaces of the CBT, locally planar 
graphs in some sense?); 8-connectivity cannot lead to a discrete plane theory because 
it is not a planar graph. 
To make things clear, I take the example of a massively parallel machine, which is a 
network of processors, each processor being equipped with 4 links [Roz92]; each 
processor is linked to one to four neighbours, such that the machine is thought of as 

a graph (maybe the 4-c graph of a window of Z2). I claim that any reasoning about 
such a machine uses a reasoning about 2-manifolds. Because in each processor the 
links are ordered, if no link is free this ordering is sufficient to define an orientable 
combinatorial map without boundary. That is a representation of a 2-manifold 
without boundary (the case with free links leads to an orientabte 2-manifold with 
boundary in some cases - a non elementary exercise). Thus, the network of processors 
can be a topological disk, or an annulus, or a sphere, or a torus, but not a Moebius 
band, nor a Klein bottle. What are the consequences for programming this network is 
another question. A partial answer can be found in [Roz92]. 
In order to step forward I refer to a Jordan theorem in planar graphs given in [Tut84] 
for a stronger notion of a Jordan curve. Applied to the 4-c graph of Z 2. it gives easily 
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a Jordan theorem for these 4-c curves, with a 4-c interior and a 4-c exterior. Another 
interesting case is that of a triangulated planar graph. In this case, any Jordan curve 
satisfies a Jordan theorem, triangles excepted. In this way Jordan theorems can be 
obtained in a naive and a standard arithmetic plane (see also section 4). 

3.3. C o m b i n a t o r i a l  topology  

3 . 3 . 1 .  H i s t o r y  

A massive trend of DG is the development of combinatorial topology (CT). The 
concept of  boundary (of combinatorial topology) is in fact used in image analysis 
since 1970 for 2D imagery, and since 1980 for 3D imagery: A voxel is a cube. Let us 
call smfel a voxel face; the smfel bom~da O" of a 3D object (region) is the set of  surfels 
separating a voxel of the object from a voxel of its complementary. Generally. a 
surface is a set of surfels. The theory and use of these surfaces are very actively 
developped by Herman, Udupa, Rosenfeld, Kong, and others, see [Mig95]. More 
theoretical advances, mostly on cellular spaces, came recently fi'ol:n several groups. 
rather independently (in roughly the historical order): 
- Vladimir Kovalevsky, in Berlin [Kov90], [Kov92], [Kov931, 
- E. Khalimski, R. Kopperman and other mathematicians in New-York [Kha90a]. 
[Kha90b], [Kop91 ], 
- the group of Strasbourg and CIRAD (Montpellier), see DGCI'91 to DGCI'96. 
- the group of Montpellier [Ahro95], [Fio95J, 
- the group of Sevilla and Zaragoza [Aya95], 
- and see also [Ken96] in this DGCI'96 conference. 
In the same time, theories, data structures and algorithms, softwares, were developped 
on the basis of CT in the field of topology based geometric modelling, and more 
implicitely in the field of computational geometry. A key concept is separation of 
topology and embedding: A theory must stongly distinguish between a combinatorial 

structure, e.g. a graph, and its mapping into a space, e.g. R n or a compact surface 
like a sphere or a torus. The fundamental point is here that a discrete embedding can 
as well be used. Thus, the method works for discrete modelling. Intensive use can be 
made of combinatorial maps. These are combinatorial structure well adapted for 
orientable 2-manifolds without boundary (see 2.2 and 3.2): a combinatorial map is a 
finite set D of objects called O-cells (or half-edges, or darts), equipped with two 
permutations on D; the first one is a pairing operator, for its cycles are of length 2: 
thus, it defines a set of edges of a graph; each cycle of the second one defines a vertex 
of that graph together with a circular permutation of the edges incident to this vertex: 
For 2-manifolds with boundary or non orientable, or 3-manifolds (see below), other 
combinatorial structures are known, e.g. extensions of combinatorial maps, see 
[Lien91], [Lien94], [Elt931, [BerY931. 

3 . 3 . 2 .  S k e t c h  o f  t h e  t h e o r y  
Several ways are possible for introducing CT; Tet me take informally the one of 
[Cair68] or [Lef75], restricted to the theory of manifolds (the more general theory is 
the theory of cellular complexes). 
- Cells: Let G be a graph; a O-cell is a vertex of G; a 1-cell is an edge of G; a 2-cell 
or face is a cycle of edges of G (as in a polygon); a 3.cell or volume is a cycle of 2- 
cells (as in a polyhedron), i.e. each edge of a 3-cell is incident to exactly 2 faces, and 
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each vertex is incident to exactly one umbrella (i.e. a cyclic permutation, up to its 
sign, of 2 by 2 adjacent faces). 
- M a n i f o l d s :  A k-manifold, k= 1,2 . . . . .  is either a k-cell or is obtained by pairing (k- ! )- 
cells of k-cells: 
. By pairing some vertices of 1-cells we get a l-manifold (combinatorial notion of a 
set of subdivided Jordan curves), whose boundary is the set of non-paired 0-cells: 
�9 By pairing some edges of 2-cells we get a 2-manifold (combinatorial notion of a set 
of subdivided surfaces), whose boundary, is the set of non-paired l-cells; 
. By pairing some faces of 3-cells we get a 3-manifold (combinatorial notion of a set 
of subdivided volumes), whose boundary is the set of non-paired 2-cells. 
A basic result is: the boundary of a k-manifold is either empty or is a (k-l)-manifold 
without boundary. 
- O r i e n t a b i l i t y  of a connected 2-manifold is defined by the unicity of obtaining an 
orientation of any face by propagating a given orientation of a starting given face. 

- By taking the 4-c graph of Z 2 and for faces all the minimal cycles (unit squares), we 
get the 2D cellular space of numerous authors. This space is a 2-hmnifold without 
boundary; in this space it is natural to define a region as a connected 2-manifold with 
boundary; in the same way, a curve is a connected 1-manifold. 

- By taking the 6-c graph in 2 3, for faces, taking all the minimal cycles (unit 
squares), for volumes, taking all the unit cubes, we get the 3D cellular" space of 
[Kov93], [Kha90a], [Ahro95]. This space is a 3-manifold without boundary. It is 
natural to define in this space a region as a connected 3-manitMd with boundary, a 
surface as a connected 2-manifold and a curve as a connected l-manifold. 
- A classical construction is that of the b a F r c e n t r i c  s u b d i v i s i o n  of a manifold. Let M 
be a k-manifold whose vertices are (embedded in) points of Z n (or Rn). For any cell 
of M, compute the barycenter (coordinatewise) of its vertices. By adding these new 
points, we get a new space, equipped with the incidence graph of cells, and a 
canonical triangulation of edges, faces, and volumes. This is a new 3-manifold whose 
volumes are tetrahedra, and faces are triangles. This space is used in [Kop91 ] for a 
concept of a discrete surface with a Jordan theorem, and in [Aya95]. 

3.3.3. M o r e  on 2-mani fo lds  
Let us now have a look at 2-manifolds in recent works. 2- and 3-manifolds are 
constructed in [Ken96]; 2-manifolds are constructed in [Kop91], [Aya95], [Fra95]. 
[Fra96a]. Let me develop two examples. 
- The spanish group, in [Aya95], proves that a Morgenthaler (26,6)-surface is a 2- 

Figure 2. The spanish faces in a unit cube 
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manifold without boundary. Its faces are the 3 of figure 2, up to the symetries of the 
cube. 
Note that these faces are planar in an euclidean sense. But not any 2-manifold, having 
only spanish faces, is a (26,6)-surface of Morgenthaler. We are thus led to the 

Problem 1. Caracterize the 2-manifolds in Z 3 whose faces are (maybe a subset of) the 
spanish faces. 
- It can be easily proved that a naive plane is a 2-manflbld without boundary whose 
faces are bicubes [Fra96b]. There are 5 bicubes, up to the symetries of the cube, 
drawn in figure 3 (the drawn cubes are unit cubes). 

Figure 3. Five bicubes 

Note that only 3 are planar in an euclidean sense; but all are planar in a discrete sense. 

Problem 2. Caracterize the 2-manifolds in Z 3 whose faces are (maybe a subset of) the 
bicubes. 

3.4. Advantages of the combinatorial topology 
The major advantages of CT in DG are: 
1) It can be used in different ways (see above). 
2) It benefits from over 100 years of intensive mathematical research, in particular: 
- The invariant theory of compact 2-manifolds, their correspondance with 
combinatorial 2-manifolds, their classification; in the case of orientable 2-manifolds 
the two fundamental results are: 
(i) Two 2-manifolds of same genus (number of holes) are topologically equivalent, 
(ii) The genus g of a 2-manifold whose number of k-cells is c k, k = 0, 1, 2, is given 
by the Euler formula 

c 0 -  el + c2 = 2 - 2g. 
- Continuous analogs (piecewise linear or convex) and general Jordan theorems are 
known (see [Kop91], [Ahro95], [Aya95]). 
3) Surfaces (2-manifolds) with boundary are easily obtained; this is not the case of the 
surfaces defined in the framework of CBT. 
4) It benefits from over 25 years of research in the field of topology based geometric 
modelling, with an advanced set of theories, data structures, algorithms, softwares. 
and methodology (see [Bor93] for a first step). 
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3.5. P r o b l e m s  
We are thus naturally led to problems. Let me list a few. 
Problem 3. Let M be a 2-manifold of some family; develop a theory of preservation 
of the topology of M under the suppression of one (or more) point; for orientable 2- 
manifolds without boundary only use the preservation of the genus. 
Problem 4. Define Morgenthaler (26,6)-sufaces with boundary in the framework of 
CBT through the 2-manifolds with boundary whose faces are spanish faces. 
Problem 5. Search for 2-manifold caracterization of all the surfaces defined in the 
framework of CBT; in other words, systematically follow the process of the spanish 
group. 
Problem 6. Let be a region segmented 3D image; if no region is included into another 
it is a 3-manifold with boundary; if not, it can be described by an inclusion tree of 3- 
manifolds with boundary; use a theory and a data structure of geometrical modelling 
to compute this structure; in other words, extend in 3D the problem of section 22. 

4, Linearity and piecewise linearity 
It is claimed in the folklore that any finite set of points in Z 2 o1" Z 3 is piecewise 
linear, i.e. locally a straight line or a plane. This is true and well known for any 8- 
connected or 4-connected curve in the usual discrete plane (see [Kov90], [Krop89]. 
[Deb92]), and even for some 3D curves. A subdivision of" a curve into a true I- 
manifold is obtained. Recognition of a discrete plane, the first step toward a piecewise 
linearization of surfaces, is also studied (see [Deb94], [Fra96b]). The possibility of 
piecewise linearization is also true for a surfel boundary because a surfel can be 
obviously considered as planar in an euclidean sense or in a discrete sense. In scction 
3.3. the planarity of the spanish faces, thus the local planarity of the Morgenthaler 
(26,6)-surfaces, is raised up; the discrete planarity of bicubes, thus the local planarity 
of any 2-manifold whose faces are bicubes, follows the same way. 
But an open problem, surely with non unique solutions, is: 
Problem 7. Subdivide a discrete surface, in some sense, into segments that are planar 
in some sense (e.g. segment of  a naive plane, or a standard plane, even an euclidean 
plane). Subdivide a 2-manifold into a 2-manifold whose faces are planar and edges are 
straight lines (see a first step in [Bor94]). 

The point of view of discrete modelling calls for a notion of discrete polygon, and 
particularly for a discrete polygon that is also a 2-manifold (with one boundary), in 
some sense. In the usual 4-c discrete plane, let be M the union of a Jordan curve C 
and of its interior; it is always possible to piecewise linearize C, then to describe M 
as a 2D discrete polygon, and finally to solve the problem 7 for a 2D image (done in 
[Kov90]). But an open problem is: 
Problem 8. Define a discrete polygon in any discrete plane by a sequence of its 
vertices; then, add the condition that a polygon must be a 2-manifold with one 
boundary. 
Other problems could be added, e.g. that of discretization of an euclidean polygon into 
a discrete polygon (of some given family) (see [Coh95] and this DGCI'96 conference). 
It is obvious that a lot of  CI objects can be reduced to piecewise linear objects, and 
that the theory of piecewise linearity in DG must progress. 
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5. Conclusion 
Present trends in discrete geometry, that [ believe the more important and more 
promizing, have been described. Problems and conclusions for future work have been 
given. 
I believe that future research will confirm a general trend toward: 
- An nD discrete geometry consisting of an arithmetic geometry and, maybe, an 
unified topology theory; 
- A discrete geometric modelling, merged With the present topology based geometric 
modelling, widely using piecewise linearity; 
- A fully discrete computer imagery, in analysis and in synthesis, based on this 
discrete modelling. 
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