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Abstrac t .  The goal of this paper is to determine the components of the 
complement of digital manifolds in the standard cubical decomposition 
of Euclidean spaces for arbitrary dimensions. Our main result generalizes 
the Morgenthaler-Rosenfeld's one for (26, 6)-surfaces in 7/3 [9]. The proof 
of this generalization is based on a new approach to digital topology 
sketched in [5] and developed in [2]. 
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1 Introduction 

Morgenthaler-Rosenfeld [9] define a digital surface S as a subset of points in 
Z 3 verifying certain local properties, and then they prove a digital version of 
the Jordan-Brouwer Separation Theorem. To prove this result, they define when 
a digital half-line intersecting the surface at a point crosses the surface at this 
point. The points p in the complement 7/3 - S of the surface S are arranged into 
two classes according to the number (even or odd) in which a half-line emanating 
from p and parallel to one of the coordinate axes crosses S. Finally, these classes 
are proved to be the connected components in which S separates its complement 
7/3 _ S. 

On the other hand, in [2] a definition of digital n-manifold, which generalizes 
the Morgenthaler-Rosenfeld (26, 6)-surfaces (see [1]), is given and the Digital 
Jordan-Brouwer Theorem is also generalized to arbitrary dimensions. The proof 
makes use of an architecture, sketched in [5] and developed in [2], consisting of 
several levels which provide a link between digital spaces and Euclidean spaces. 
By using this architecture, the hypotheses of the quoted digital theorem are 
translated to the hypotheses of the well-known Jordan-Brouwer Theorem in 
topology, and then the thesis of the latter is translated back again into the 
thesis of the former. In this way, the proof is based on suitable translations of 
knowledge through the different levels of the architecture, and a new proof for 
the Digital Jordan-Brouwer Theorem, independent of that  for the continuous 
result, is not needed. 
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However, this proof only assures that a digital (n - 1)-manifold M in 71" 
separates its complement Z ~ - M into two components, but does not provide a 
method for determining in which one a point ties. Our main goal is to give such 
a method by characterizing those points which belong to a given component of 
71'~ - M. 

In terms of the usual language of adjacency pairs of Rosenfeld and other 
authors, we can say that  a digital (n - 1)-manifold in 71" is a (3 ~ - 1, 2n)- 
hypersurface; that  is, one uses the (3 n - t)-adjacency for the hypersurface and 
the 2n-adjacency for its complement. Then, as in the continuous case, our main 
result (Theorem 4) characterizes the 2n-components of the complement 71" - M 
of a hypersurface M in terms of the notion of (digilal) index, id~g(z; M), of 
a point x E 7In - M. Namely, z belongs to the finite 2n-component of the 
complement of M if and only if idig(z;M) is odd. This method generalizes to 
arbitrary dimensions that from Morgenthaler-Rosenfeld [9]. 

To accomplish our objective, we begin in Section 2 by reviewing some defi- 
nitions and results from [2]. Section 3 is aimed to state precisely our main result 
exclusively in digital terms. The proof of this result needs of some other results 
from polyhedral topology which are introduced in Section 4, and then translated 
into the digital level in Section 5. In Section 6, we prove that  our method is ac- 
tually a generalization of Morgenthaler-Rosenfeld's one, and give a simplified 
algorithm for the case n = 3, which makes use of the characterization of the 
(26, 6)-surfaces due to Kong-aoscoe [7]. 

2 Previous  not ions  

In [2] a new approach to digital topology is introduced. In that  approach a 
digital space is defined as an architecture made up of several levels which pro- 
vides a bridge for transfering definitions, statements and proofs from continuous 
topology to digital topology. 

In that  approach the pixels on a computer screen are represented by the 
n-cells of a homogeneously n-dimensional locally finite polyhedral complex K.  
Namely, K is a complex of convex cells (polytopes) such that  each cell is face of a 
finite number (non-zero) of n-cells. If cr is a face of 7 we shall write o" < 7. Given 
~r E K,  the boundary of the cell a is the set O~ union of its proper faces, and the 

0 
interior of ~ is the set ~= e - c9~r. If [ K [ denotes the underlying polyhedron of 

0 

I f ,  a centroid-map is a map c :  g ~ [ g  [such that  c(~) E ~. We refer to [12] 
for all notions of polyhedral topology contained in this paper. 

The polyhedral complex K is called device level of the digital space. 
Three other intermediate levels bridge the gap between the device level and 

the continuous one. All of these levels are determined by the device level K;  so 
that,  K will also denote the whole digital space. 

The nearest to the device level, called logical level of K, is an undirected 
g raph / :K  whose vertices are the centroids of n-cells in K,  and two vertices are 
adjacent in s  if their corresponding n-cells intersect. 
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Fig. 1. The device level t/2 and its logical, conceptual and simplidal levels. 

The digraph CK, called conceptual level of K, is defined as follows. Its vertices 
are those ofs and, in addition, the centroids c(a) such that a is the intersection 
of  two or more n-cells of  K.  The directed edges are pairs (c(r), c(,r)) with r < 
(i.e., r face of o'). 

The simplicial analogue of K is the order complex .AK associated to the 
graph CK. That is, {Xo, x l , . . . ,  z,,~) is an m-simplex of.AK if x0, z l , . . . ,  arn is a 
directed path in the digraph r This simplicial complex defines the simplicial 
level of the architecture and, finally, the continuous level is represented by the 
underlying polyhedron I ,4K I of .AK. This polyhedron is called the continuous 
analogue of K. 

In this paper we will deal with the digital space R n defined by the stan- 
dard cubical decomposition of the n-dimeusional Euclidean space IR n. That is, 
the device level of R" is determined by the collection of unit n-cubes in ~ "  
whose edges are parallel to the coordinate axes and whose centers are in the set 
Z n C_ IR n of points with integer coordinates. The centroid-map we will consider 
associates to each cube r its center c(a). Hence, the logical level s is the 
graph of (3 n - l)-adjacencies whose vertex set is 7/n and two points x, y E 7/n 
are adjacent if each one of their coordinates differs in at most 1. The conceptual 
level is the digraph Cnn which consists of the centers of all cells in R ~ as its 
vertices, and two of them are adjacent if one of their correspondig cells is a face 
of the other. Notice that CR* agrees with the n-dimensional Khalimsky's digital 
space (see [6] and [2]). Finally, the simplicial analogue Ann is a simplicial com- 
plex whose m-simplices are all the complete subgraphs with m + i vertices of 
CR*. Observe that .ARn is simpliciaUy isomorphic to the derived subdivision of 
/T ~ induced by the centroids of its cells; and thus, AR- is a triagulation of the 
Euclidean space IR n. In Figure I it is represented a portion of R 2, the standard 
cubical decomposition of the Euclidean plane, and its logical~ conceptual and 
simplicial levels. Notice that the graph/~n2 is obtained by linking each point in 
Z 2 with its 8-neighbours. In fact, when n = 2 (n = 3) Z:Rn is the graph of 8- 
(26-) adjacencies used by Rosenfeld in his approach to digital topology (see [11] 
and [9]). 

A digital object in a device level K is a subset O of the set of n-cells of 
K. Every digital object O induces a digital space by regarding the subcomplex 
K(O) = {c, E K I ~ < r, r E O} as a new device model. Therefore, the logical 
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and conceptual levels, and the simplicial and continuous analogues of K(O) are 
naturally associated with O, and we will denote them Co, Co, A o  and [Ao  I, 
respectively. It is easy to verify that these levels of K(O) are substructures of 
the corresponding ones of K. This justify to call K(O) a digital subspace of K. 

It is well-known that, to avoid certain paradoxes related to the Jordan Curve 
Theorem, in most of the graph-based models for digital topology must be defined 
two different notions of connection, one for the objects and the other for their 
complements. As the logical level of a digital space is also a graph, the following 
notions of connection are needed in this architecture. A subset C C O is called a 
component of the digital object O if ~c  is a connected component of Co. On the 
other hand, a subset D of n-cells is called a c.component of the complement of 
O if the centroids of elements in D are the vertices of a connected component of 
C/~ - Co. However, these notions can be established in terms of the usual notion 
of connectedness in the continuous analogue. Indeed, C is a component of O if 
and only if the continuous analogue [ A c  ] is a connected component of [ A o  ]; 
and, there exists a 1-1 correspondence between the set of c-components of the 
complement of O and the set of connected components of the topological space 
[ AK [ -- I Ao  [. In fact, each c-component D is determined by the n-cells of K 
whose centroids are in a connected component of l A g  [ -  I Ao  [ (see [2]). 

With the above notation, a digital object M will be called a digital n-di- 
mensional manifold (without boundary) if ],AM [ is a combinatorial n-manifold 
(without boundary); see Section 4. Hereafter, manifold will mean combinatorial 
manifold. In this context a digital version of the Jordan-Brouwer Theorem can 
be proved by using the corresponding continuous result. 

T h e o r e m  (Digital  Jo rdan-Brouwer  Theorem) .  Let K be a polyhedral com- 
plex such that I K [ = ]R '~. I f  a digital object M in K is a connected digital 
( n -  1)-manifold without boundary, then its complement is divided into two c- 
components. Moreover, if M is finite then one of the c-components is finite. 

As it was mentioned above, the architecture introduced in this section allows 
us to translate the digital statement of the above theorem to a continuous one. 
Then, to prove this theorem it is enough to guarantee that the thesis of the 
continuous one (III.11.17 in [8] and 8.3.6 in [4]) can be translated back to the 
device level. 

This is a general method for proving results in digital topology, but some 
times one fails to find in literature a continuous result which matches exactly 
the translated digital one. In these cases some previous work must be done to 
obtain such a continuous result. Our present goal is an example of this situation. 
So that, in Section 4 we include an alternative proof of a well-known result in 
topology which can be more easily translated to the device level. 

From now on, unless otherwise is said, M will stand for a finite connected 
digital ( n -  1)-manifold without boundary in the standard cubical decomposition 
R'* of IW*. In order to simplify notations, M, and any other digital object in R '~ , 
will be identified with the subset of points in 2~ n which are the centroids of its 
n-cubes. As an extreme case of this, a digital point, i.e. a digital object consisting 
of one n-cube a E R n, will be identified with its centroid c(cr) E Z n �9 
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Fig. 2. A transversal intersection and a tangency. 
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3 Characterizing the c-components of the complement of 
a digital (n - 1)-manifold in R" 

As in the continuous case, our characterization of the c-components of the com- 
plement of a digital manifold in R n is based on the notion of transversal inter- 
section between a half-line and the manifold. Despite that  in the continuous case 
this notion is well defined for any half-line, only for those half-lines parallel to 
coordinate axes it has an immediate translation to the device level. Following 
our outlook, what allows us to define a digital notion of transversal intersection 
for this type of half-lines is contained in Lemma 2 below. 

In what follows, Hx will denote the digital half-line consisting of the points 
( x l , . . .  ,xn-1,  )~) in Z n with ,k >__ z,,, where z = ( x l , . . .  ,zn) is an arbitrary point 
of 7/'~. Notice that  the continuous analogue 7-/, = [A~r. I of H,  is the half-line 
~t= = { @ 1 , . . . ,  ~ , -1 ,  a) I a e ~ ,  a >__ ~.} in IR '~. 

L e m m a  1. (see [2]) For any digital object 0 in a digital space K,  D is a con- 
nected component of the continuous analogue 1,4o I if and only if D = I A c  ] is 
the continuous analogue of a component C o f O .  

L e m m a 2 .  1) Let 0 and O' be two digital objects in a digital space. The contin- 
uous analogue I Aono,  I of the intersection 0 n O' of these objects is contained 
in the intersection of their continuous analogues I alo In I ~4o, I. 

2) I f  H~ is a digital half-line in R n which is parallel to one of the coordi- 
nate azes, then [ AH.nO, ] = I AH~ I n l A o ,  I = 7r n I Ao, I. In addition, the 
components of H~ n 0 ~ are digital points and segments. 

Proof. The proof of (1) follows directly from the definition of simplicial analogue. 
The first part in (2) is straightforward from the fact that  in R n every ( n -  1)-cell 
is face of exactly two different n-cells. And to prove the final part, it is enough 
to use that  each component of the continuous analogue of a digital object is the 
continuous analogue of a component of that object (see Lemma 1). 

We are now ready to define a function id~g (- ;  M) from the set of digital points 
in the complement of a digital (n-1)-manifold M into the set of integer numbers. 
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For this we need more notation. Given an n-cube a E R'* let N(a) C_ 7/'* denote 
the set of all points in 7/n which are the centroids of n-cubes of R '~ intersecting 
or (c(or) itself included). We call N(or) the cuboid of or in 7/n. The cuboid of a 
component C C_C_ H~ N M is the union N(C) = u{g(or) [ or E C}. Moreover, 
given C we can consider the predecessor pc and the successor sc in H ,  of the 
digital points in C. Notice that Pc and sc are both in the relative complement 
N(C) - M of M in the digital subspace induced by N(C). 

Def in i t i on  3. The digital index of a digital point z E 7/" - M is iaia(x; M) = 
~ c  idia(C; M), where C ranges over the set of connected components of Hx M M 
and iaia(C; M) is defined as follows. We write iaia(C; M) = 0 and say that  Hr 
is tangent to M at C if its predecessor pc and successor sc  are in the same 
c-component of the relative complement N(C) - M of M in N(C). Otherwise 
we write idia(C; M) = 1 and say that H~ is transversal to M at C. 

The following result characterizes the points in each c-component of 7/'* - M. 
Its proof will be given in Section 5. 

T h e o r e m  4. Let M be a finite connected digital ( n -  1)-manifold without bound- 
ary in R n. A digital point z E 7/'* - M belongs to the finite c-component of the 
complement of M if and only if Qig(x; M) is odd. 

4 A topological criterion to determining components 

It is part of the folklore concerning the Jordan-Brouwer Theorem that  the com- 
ponent of a point x in the complement of an (n - 1)-manifold M C IR n is 
characterized by the number of points in L M M, where L is a half-line ema- 
nating from x which intersects M transversally. However, it is not easy to find 
in literature a general and precise proof of this fact (see, for example, chapter 
9 in [3] for one of these proofs). In any case, all of these proofs make use of 
e-movements to avoid degenerated cases. But this kind of movements can be 
hardly done in a digital space. So that, in this Section we will give a new proof 
which does not make use of any displacement of objects and, thus, can be more 
easily translated to digital topology. 

By a (combinatorial) n-ball (n-sphere, respectively) we mean a polyhedron 
I K [ such that certain subdivision of K is simpficially isomorphic to a subdi- 
vision of the n-simplex (the boundary of the (n + 1)-simplex, respectively). A 
(combinatorial) n-manifold is a polyhedron [ M ] such that  the link lk(~; M) of 
each k-simplex or E M is either a combinatorial (n - k - 1)-ball or a combina- 
torial (n - k - 1)-sphere. Here the link of or is the set lk(a; M) = {c~ E M I 
c~ M or = 0 and there exists/3 E M with or </3,  a </5}. The boundary of M is 
the subcomplex OM = {~ E M I tk(or; M) is a ball}. 

In this section M will stand for a closed (i.e. compact and without boundary) 
connected (n - 1)-manifold M C ]R '=. Then, we have the following well-known 
separation theorem. 
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T h e o r e m  5. (see [4, VIII.4.8]) If  M C IR n is a closed ( n -  1).manifold then 
IR n - M has two components, one bounded B, and one unbounded U. Moreover 
M is the common boundary of both components. 

For each point x E ]1% n - M, we denote by S~ C 11% n an arbitrary half-line 
start ing at z. Then, the following lemma is easily checked. 

L e m m a  6.  The intersection $:: M M consists of  a union of  a (possibly empty )  
finite family of pairwise disjoint arcs and points. 

A relative ballin (]1% n, M) is a pair of balls ( B n , B  n-~) such that  B n-~ C B n, 
B n-1 130B n -- OB n-1 and B "-1 = B n 13 M.  

L e m m a T .  Any relative ball ( B n , B  "-x) in (IR'~,M) verifies that B ' ~ -  B n-1 
has exactly lwo components each of which is contained in a distinct component 
o f lR  ~ - M.  

Proof. That  B n - B n-1 has two components is an immediate consequence of a 
general separation theorem for manifolds with boundary proved in [10, Th. 3]. 

Moreover each component of B " - B  n-1 is in a distinct component of JR n - M. 
Otherwise if B n - B  n-1 C_ U, where U is the unbounded component of IK n - M ,  
then B n C_ U = U U M  and hence there exists a point x E int B n with 
x E M = Fr(U) .  This is a contradiction because x would be an interior point of 
~ .  Similarly if B ~ - B n-1 C B, with B the bounded component of IR n - M. 

= B'* Let B(x)  {( c ,  B~-I)}  be a family of relative balls in (]1% n, M) where C 
ranges over the set of components of S= M M. We say that  B(x) is an admissible 
family of relative balls for $= M M if B~ NS= is an arc containing C in its interior 
and int B~ M int B~ = @ for all C, D C $~ M M. 

L e m m a  8. The family B(z)  always exists. 

Proof For each component C C S~NM we can consider a regular neighbourhood 
N c  of C in IR" such that  N~ = Nc  13 M is a regular neighbourhood of C in 
M and S= 13 Nr  is a regular neighbourhood of C in $~. Since C is collapsible, 
from a well-known result from polyhedral topology (see [12, p. 41]) we get that  
(No,  N~) is a relative ball and, moreover, S~ M Nc is an arc. 

Finally we choose N c  small enough to guarantee Nc f3 ND = 0 for C r D. 

Now we are ready to define the (topological) index of a point in the comple- 
ment of the combinatorial manifold M. 

D e f i n i t i o n  9. The (topological} index of a point z E lR n - M is itop(X; M)  = 
~ c  itop(C; M) ,  where C ranges over the set of components of $= 13 M and 

= B n i top(C;M) is defined as follows. Let B(x) {( c , B ~ - a ) }  be an admissible 
family of relative balls for Sz M M. We write itop(C;M) = 0 and say that  Sr 
is tangent to M at C if the difference B~ N Sx - C (which is the union of two 
disjoint segments) is contained in one component of B~ - B~ -1. Otherwise we 
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say that  Sz is transversal to M at C and we write itop(C;M) = 1. It can be 
proved, by Lemma 7, that  this definition does not depend on the choice of the 
family B(z). 

Next we characterize the points in a component of lg  n - M in terms of the 
index defined above. 

T h e o r e m  10. The point z E IR '~ - M lies in the bounded component B if  and 
only if itop(Z; M) is odd. 

Proof. Since M is compact there exists a last point z ~ E Sz gl M such that  
S~ N M is contained in the arc from z to x ~. We order the components Co , . . . ,  Cr 
of Sx f3 M according to the linear order on Sz determined when one identifies 
t E [13, 1] with the point (1 - t)z '  + tz in S~. In particular Co is the component 
containing z ~. 

We now choose an admissible family of relative balls {(B~, B~-1)}0<i<r, and 
let B n N S~ the ordered segment [pi, qi]. Since the components of B n - B n-1 
determine, by Lemma 7, the components of IR a - M then S~ locally crosses 
B~ -1 if and only if Pi and qi are in distinct components of lR" - M. As P0 lies 
in the unbounded component U due to the election of z ~ and because Pi+l and 
qi, 0 < i < r -  1, are in the same component of lR n - M ,  it follows that  qr E B, 
and so z E B, if and only if itop(Z; M) is odd. 

5 A p r o o f  o f  T h e o r e m  4 

In this Section we will prove our main result. To do this, the crucial step is to 
find an admissible family of relative balls which is suitable for translating the 
continuous result (Theorem 10) to the digital one (Theorem 4). Given a digital 
(n - 1)-manifold M in R n and a digital point z = ( z l , . . . ,  z , )  E 7In - M, 
the required family of relative balls will be determined by the cuboids N(C) of 
components C of H~ f3 M, where H~ is the digital half-line { ( z l , . . . ,  z , -1 ,  A) E 
7/'~ I A > xn }. The following result states this fact. 

P r o p o s i t i o n  11. The pairs (1.4N(C) 1, [ .aN(c)n M ]), when C ranges over the set 
of connected components of H~ M M, yield an admissible family of relative balls 
for I AH=oM I -- I ~4Hx IN I AM I -" ~'~ N t ~4M I. Moreover, each c-component of 
the complement of M meets N(C) in a c-component of the relative complement 
N(C)  - M of M in the digital space #enerated by N(C).  

The proof of this proposition requires some technical results which are given 
below. In order to simplify notations, in what follows we consider a fixed hut 
arbitrary component C of the intersection H= N M, and we will denote the 
cuboid N(C) of C simply by N. We start with the following crucial property of 
the simplicial analogue AN of N. 

Let s t ( L ; J ) - - { a e J [  there e x i s t s f l E J w i t h f l N [ L [ 5 $ a n d a < f l } b e  
the star of the subcomplex L in the simplicial complex J .  
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L e m m a  12. A centroid c(#) in the simplicial analogue Ate. belongs to AN if 
and only if all n.cubes containing # are in N. Moreover 

st(Ac; AN) = st(Ac; AR-) 

Proof. As it was remarked in Section 2, for any cell It 6 R" its centroid e(/z) 
belongs to A n - .  Therefore if all n-cubes containing It are in N we get c(it) 6 .AN. 
Conversely, if c(it) 6 ,AN and there exists an n-cube 0" ~ N with It < 0", then 
I t n C  = 0. So that ,  for each n-cube 0" 6 N with It < 0" one can find a ( n -  1)-face 
r < 0" containing It which is not the face of any other n-cube in N. In fact r 
defines a hyperplane H e such that all n-cubes containing It meet H e in a (n - 1)- 
face and hence these cubes share a face of greater dimension than It. This is a 
contradiction, and the proof of the first part is finished. 

In the second part only the inclusion s t (Ac;AR.)  C_ st(Ac;,AN) needs to be 
checked. If  c(it)is a centroid of st(Ac; M R . ) -  ,Ac then there exists a 1-simplex 
(c(it), c(p)) where c(p) 6 Ac; that  is, either p is an n-cube in C or p is the 
common face of two n-cubes o"1, 0"2 6 C. In any case all n-cubes which define It 
meet some cube in C .and hence they are cubes in N. From the first part  we get 

c(it) e ,AN. 

L e m m a  13. For any digital object 0 in R" with C C 0 we have ,AOnN = 
,40 fl ,AN. Moreover 

st(,AC;AOnN) = s~(Ao;,AN) N ,AO = st(,AC; ,AO) (1) 

Furthermore if T(C;O) denotes st(Ac;,Ao) then 

,Aon, g = st( T( C ; O);.4o) (2) 

Finally if 0 is a digital k-manifold then T(C; O) is a combinatorial k-ball with 
boundary 

OT(C;O)= {(c(l~l),...,c(it,)) II t, < ~N0",0"E C, a' ~ C} (3) 

Proof. Clearly ,ANnO C ,AoNAN. Ifc(it) E AN then any n-cube in R n containing 
It belongs to N by Lemma 12. Since c(p) also lies in Ao,  any n-cube in O 
containing It necessarily belongs to N and so c(p) 6 ,AonN. The definition of 
simplicial analogue yields .4o ft AN C_ AOnN. The second equality of the lemma 
follows from the first part, Lemma 12 and the well known equality st(L; J1NJ~.) = 
st(L; Jr)  n J~_ when Ji (i = 1,2) are subcomplexes of J containing L. 

Now we prove (2). Let c(it) 6 AonN = Ao M AN. Then all n-cubes con- 
taining It are in N by Lemma 12. This implies that there necessarily exists 
an n-cube e,0 6 C with It n 0"o # O. Also It is the intersection of n-cubes 
a l , . . - , o r -  in O, so r = /l f'l 0"0 = 0"1 N . . .  n 0"m gl 0"o and since C C_ O it 
follows c(r) E .4o. Moreover, as (c(v), c(0"0)} 6 -40 we have c(r) 6 T(C; O) and 
hence (c(r),c(it)) 6 st(T(C;O);Ao).  Conversely, if a E st(T(C;O);,Ao) is a 
face of (c(pO,. . .  ,c(p,)) = Z E .40 with c(pio) 6 ~ n T(C;O), it follows that  
pl < Pio < tr for some 0" 6 C. Therefore all cubes pj (1 < j _< t) meet cr and so 
all n-cubes of O which define c(pj) E Ao are in N. Therefore ~ < fl 6 ,Aong. 
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In order to prove the third part of the lemma we proceed inductively as 
follows. Let t be the number of n-cubes in C. If t = 1 then C = {o'} and 
A c  is the centroid c(~). Then T(C;O) is the star of c(a) in Ao; that  is, a 
combinatorial k-ball. Moreover OT(C;O) = {(c(pl) . . .c(p~)/  E Ao I g, < ~}. 
Assume we have already proved the result for t - 1. If C1 = C - {~t} then both 
T(C1; O) and T({~t}; O) are k-balls, and T(C; O) = T(C1; O) UT({~,}; O) with 
T(C1;O) f3 T({at}; O) = st(c(IJ); ast(c(at);,40)) where p is the unique (n - 1)- 
face of (rt in contact with C1. Now st(e(p);st(c(~,);Ao)) is a combinatorial 
( k -  1)-ball in the ( k -  1)-sphere Ost(c(~);Ao). Hence by [12, 3.16] T(C;O) is 
a k-ball. The formula of the boundary also follows inductively since bT(C; O) is 
the union 

8T(C1;O) - st(c(p); Ost(c(cr,); Ao)) U 8T({~t}; O) - st(c(IJ); Ost(c(~,); Ao)) = 

{{c(~1),. . . ,  c(a))  e ,40 1 ~, < ~ n ~', ~ ~ c l ,  ~' r c~, ~' # ~,) 
u{(c(~l),...,c(~,)) E.~o I~, < ~,,~, # ~,,~} = 

{(~(r~),...,~(a) ~ ~o l a  < ~ n ~ ' , ~  ~ c ,~ '  r 
where K - L stands for the set of simplexes which are face of some simplex tr 
in the complex K with (r !~ L. 

Note 14. If O - g then ] T(C; N) I = U{er I a E C}. Indeed, one easily checks 
0 

1T(C; N) I C_ U{o- 1 cr E C].  Moreover, if z 6~ with r /a  cube in C then z lies in 
a simplex (c(r/) , . . . ,  c(cr)} G AR=. Therefore x G st(c(a); AR~) C IT(C; N)I.  

In order to show that  MOaN is a combinatorial ball we set the following 
definition and lemmas. 

D e f i n i t i o n  15. Given an arbitrary digital object 0 in R" we say that  the cube 
r is minimal with respect to 0 if c(r) is a minimal vertex in the conceptual level 
Co. Here we use the digraph structure of Co. That  is, for any other cube/~ either 
r N # = 0 o r r < p .  

L e m m a  16. Two minimal cubes wi~h rcsped to 0 cannot span an edge in Ao.  

Let us assume again that O is a digital k-manifold i n / ~  with C C_ O. 

L e m m a  17. If n > 2, all the centroids of minimal cubes with respect to 0 f3 N 
are in or(c;  0). 

In any case, let r l , . . . ,  Tm be the set of minimal cubes with respect to O N N 
which lie in bT(C; 0). We inductively define Mo ~ = T(C; O) and M ~ = M~ U 

st(c(r{); Ao - M~ Then, the following result is proved. 

L e m m a  18. The following properties hold 
o 1) c(ri) E c~M;_l. 

2} Mi ~ 0 st(c(ri);Ao - M~  - st(c(ri); aM~ 
3) Each M 0 is a combinatorial k-bali. 
4) M ~ = A o ~ .  
5) a A o ~  = {(~(p~),..., c(p,)) e A o ~  I p~ r ~ fo~ all ~ E C ,~d i < ,  }. 
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Proof. (1) is immediate from Lemma 16. Both (2) and (3) follow from the same 
inductive argument. Namely, Mo ~ is a k-ball by Lemma 13. Assume we have 

proved ( 2 ) and ( 3 ) for i -  1. Then st( c(ri ); 0 M ~ 1 ) is a ( k -  1)-ball and ,4o - M ~ 1 
is a combinatorial k-manifold by [12, 3.14]. Now (2) is a well known formula in 
polyhedral topology and hence M ~ is the union of two k-balls which meet in a 
(k - 1)-ball; and thus it is a combinatorial k-ball by [12, 3.16]. 

(4) Assume n _> 2. The case n = 1 is obvious. If c(#) E AonN verifies 
/a < o- for some a E C then c(#) E T(C;O) = Mo ~ �9 If p ~ a for all ~r E 
C, let a E .4o be a k-simplex with c(p) a vertex of a. The minimal vertex 
c(r) of a belongs to OT(C; O) by Lemma 17 and hence c(#) E M ~ for some 
i. Therefore .AonN C_ Mm ~ Conversely, by definition and Lemma 13(2) M ~ C_ 
st(T(C; O);,4o) = .Aong for all i < m. 

(5) Let SC(C; O) denotes the simplicial complement of T(C; O); that is 

s c ( c ;  o)  = = <c(pl),. . . ,  c(p,)) E .401 n T(C; O) = 0} 

= ,c(p,)) E .40 I p, r for all E C}. 

We have S C ( C ; O ) O A o m v  = {(c(pl), . . . ,c(p,)) e .AOnN I Pi r ~ for all c r e  
C}. By using Lemma 13(2) it is easy to check that the complex SC(C; O) trian- 
gulates the topological closure .4o - .Aong. In addition, since A o n g  and -4o are 
both combinatorial k-manifolds, it follows by [12, 3.14] that SC(C; O) is a combi- 
natorial k-manifold with boundary OSC( C; O) = O .AOnN = SC( C ; O) n .AonN. 

Proof of Proposition 11. The first part of Proposition 11 is now immediate since 
.AN(C) and .AN(C)nM are balls with O.AN(C)nM = O.AX(c)A.AM by Lemma 18(4) 
and (5). The second part follows from Lemma 7 and the fact that each c-com- 
ponent of the complement of a digital object O consists of the n-cells whose 
centroids are in the complement of its continuous analogue [ .4o [. 

Now we are ready to prove our main result by relating the digital index 
iaia(z; M) of a digital point z in the complement 7/" - M of a digital (n - 1)- 
manifold M to its topological index itop(Z; I .AM [) as a point in the complement 
]R n - [ .AM [ of the combinatorial manifold [ .AM 1. 

L e m m a  19. (see [2]) Let M be a finite connected digital (n - 1)-manifold with- 
out boundary in R n. A digital point z belongs to the finite c-component of the 
complement 7] n - M  of M if and only if x belongs to the bounded component of 
�9 e - I . A M  I. 

Proof of Theorem ~. According to Theorem 10 and Lemma 19 it will suffice to 
show the identity idia(x; M) = itov(z; [ AM [) since the c-components of the com- 
plement ~ ,n_M of M are determined by the components of ]R n -  [ .AM [. Here we 
use Lemmas 2 and 1 to check that C is a component of the intersection Hr n M if 
and only if[ Ac  [ is a component of[ .AH=nM [ "- [ MHz In[ .AM I -" ~-~x n [ ,AM [. 
So that, the previous identity is obtained by proving idla(C; M) = itov(C; I .AM [) 
for each component C of Hx n M. Now we use the admissible family of relative 
balls {([ .AN(C) [, ] AN(V)nM D} for ~= n [.AM [, given in Proposition 11, and 
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observe that  the predecessor pc  and successor sc  of C are each one of them 
contained in a different segment of [.AN(C) [ rl 7t5 - l a y  I. And finally, as the 
c-components of the relative complement N(C)  - M = g ( c )  - g ( c )  rl M of 
M in the digital space generated by N(C)  are determined by the components of 
[ AN(C) I -- [ "AN(C)nM l, PC and sc  are in the same c-component of N ( C )  - M if 
and only if the two segments in [ .AN(C) Irl?/~-] Ac  [ are in the same component 
of I AN(C) [-- [.AN(C)rlM l" 

6 A simplified algorithm for the 3-dimensional case. 

In [1] it is proved that 2-manifolds in R 3 and (26, 6)-surfaces in the sense of 
Morgenthaler-Rosenfeld [9] are the same. From this, we will observe that  our 
method to determining the c-components of the complement of a digital (n - 1)- 
manifold M in R n coincides, for the case n = 3, with that  method given in [9] 
by Morgenthaler-Rosenfeld to determining the 6-components of the complement 
of a (26, 6)-surface. 

Firstly, notice that  our definition of transversal intersection essentially agrees, 
up to the notions of connection used, with the one given in [9]. Because of this, 
it will suffice to show that these notions coincide not only in the ambient space 
/~3 but also in the digital subspaces generated by N(C),  where C is a connected 
component of Hx rl M. 

From definitions in Section 2 it is immediate that  our notion of connection 
in R n, and its subspaces, agrees with the notion of (3 n - 1)-adjacency in 77". In 
fact, following this language, a component of a digital object O C R n is just  a 
(3 n - 1)-component of O, when O is regarded as a subset of 77n. On the other 
hand, in [2] it is proved that a c-component of the complement of O in R n is 
a 2n-component of 77" - O; and the proof can be easily extended to show that  
these notions also coincide for complements of objects in the digital subspace 
generated by N(C) .  

In this way, Theorem 4 shows that a point z in the complement 7/" - M of 
a finite (3'* - I, 2n)-hypersurface M in 7/n belongs to the finite 2n-component 
of 77'* - M if and only if/dig(z; M) is odd. 

Finally, we are going to introduce an important simplification for the case n = 
3. In the general case, the index of a digital point z 6 77n _ M can be computed 
in O ( 3 n - l K  + L) time, where K is the number of points in the intersection 
H~ r'l M and L is a constant which depends on the size of the digital picture 
representing M. The Mgorithm scans along the line H~ to get the components 
C of H~ N M,  and then computes the c-components of N ( C )  - M by using 
depth-first search in the graph of 2n-adjacencies with vertex set N ( C )  C 77". 
On the other hand, Theorem 20 below shows that  to compute the index of a 
digital point x E 773 _ M it is enough to study certain planes containing the 
predecessor Pc and successor sc  of each component C of H~ rl M, which can be 
done in O(t Jr L) time where t is the number of such components. So that ,  to 
compute the c-components of N(C)  - M is no longer needed for the case n = 3. 
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Fig. 3. Cycle plates at a point of a (26, 6)-surface. 

This simplification is based on the characterization of (26, 6)-surfaces in terms 
of cycle plates due to Kong-Roscoe [7]. 

Let C be a component of HzAM, and let Pc, So C )73 the orthogonal planes 
to H= which contain the predecessor Pc and the successor se of C, respectively. 

T h e o r e m 2 0 .  The digital half-line Hx is tangent to M at C O.e.: iaig(C; M) = 
O) if and only if the intersection PeNMAN(C) is non.empty and SeAMAN(C)  
is the image of Pc n M n N(C) by the obvious translation along H=. 

Proof Figure 3 shows all possible (up to rotations or symmetries) cycle plates at 
a digital point x of a (26, 6)-surface. So, if C is a digital point then Hx is tangent 
to M at C if and only if the cycle plate at C is either one from (h)-(m) in Figure 
3 or any other obtained from it by a rotation or symmetry which preserves the 
property established in Theorem 20. 

In case C is a digital segment one checks that for all planes P between Pc and 
Sc the intersections P n M n N(C) are the images of each other by a translation 
along Hx (see Figure 4 for some examples). Therefore the tangency depends only 
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Fig. 4. 

on the intersections Pc N M N N(C) and Sc f3 M N N(C)  and one concludes as 
in the case when C is a point by an exhaustive analysis of cycle plates. 
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