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A b s t r a c t .  A filling algorithm is proposed that  works in a matrix of pixels. It proceeds 
by spans and is directed by contour marching, a contour being viewed as a circular list 
of linels. This technique has 3D applications: it, is used in traversing the surfels graph 
of a voxelized object. 

1 I n t r o d u c t i o n  

Two-dimensional filling or coloring problems have received many solutions in the past. 
First  methods were influenced by vector graphics technology and thus by continuous 
methods. They are inspired by polygon scan-conversion with ordered active edges list 
[FVFH90]. 
Among discrete methods, a second kind of approach aims at adapting the parity check 
technique to raster memory. Pavlidis has proposed various algorithms to solve what 
he calls undersampling problems (different boundary points being merged in a single 
pixel, diagonal contact between pixels) [Pav79]. 
An important  family is the one of connexity methods. A seed pixel is supposed to be 
known. Depending on wether the transitive closure is done on pixels with the same value 
as the seed, or on those of value distinct from that of a boundary pixel, a distinction is 
made between flood and boundary techniques [FVFHg0, p.979] (H6gron used the term 
coloring, in contrast to filling [Heg85, p.67]). Coloring bet ter  fits to an interactive use, 
because the automatic determination of the seed is tricky. The child's coloring book 
metaphor was first proposed by Lieberman [Lie78]. 
Most of the works consider spans which are limited by two boundary pixels and do 
not contain any pixel with the new color. Smith avoids redundant contiguous span 
explorations [Smi79]. Most of the methods also resort to a stack for the coloring fronts. 
At any time, the already colored part  is limited by the object boundary, the current 
span and these fronts. 
Shani emphasized that  contour filling reduces to graph traversal [ShaS0]. In his wake, 
Pavlidis unified pari ty check and filling using boundary line adjacency graph [Pav81]. 
Nodes in this graph of degree greater than 1 are decisive, because they correspond to 
vertical boundary extremums. 
Finally, Tang et Lien analyse the Freeman code of the contour to fill [TL88]. 
The proposed tilling method proceeds by spans. Its originality lies in the fact that  it 
considers contours as circular lists of linels rather than pixels. Moreover, the will to 
minimize pixel map accesses has guided its elaboration. Finally, unlike the previous 
approaches, it is recursive and the processing of spans is directed by contour marching. 
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The next section gives the suitable definitions: some usual discrete topological notions, 
and definitions peculiar to our method. Section 3 is an informal and illustrated de- 
scription of the algorithm. Section 4 discusses about complexity and advantages of 
our approach with respect to other techniques. Finally, the last section outlines the 
application of this filling algorithm to surface traversal of voxelized objects. 

2 Definitions 

2.1 D i s c r e t e  t o p o l o g y  

We review some of the definitions given by Kong and Rosenfeld in [KR89]. Let us 
consider a binary bidimensional matrix of pixels. Each pixel is associated with a lattice 
point, that  is a point of the plane with integer coordinates. A lattice point associated 
with a pixel that  has value 1 (resp. 0) is called black (resp. white). 
A 3D (resp. 2D, 1D) unit cen is a c u b e  (resp. a square, a segment) whose linear length 
is 1 and whose vertices are lattice points. A 0D unit cell is a single lattice point. In 
a 3D space, following the terminology adopted by Frangon, we will respectively speak 
of voxels, sur]els, linels and pointels, by analogy with pixels, unit cells in a 2D space 
[Fra95]. 

o - - o - - o - - o - - o - - o - - o - - o  

r  

Fig .  1. Pixels (squares), linels (segments) and pointels (circles) 

A digital pictureis a quadruple ! = (V, rn, n, B) where B C_ V = N 2 is the black points 
set. (rn, n) = (8, 4) or (4, 8). Two black points are said to be adjacent if they are 
m-adjacent. For any other pair of points n-adjarency is used. 
A set S of black and/or  white points in a digital picture is connected if S cannot 
be parti t ioned into two non adjacent subsets. A component of a set of black and/or  
white points S is a non-empty maximal connected subset of S (i.e. it is not adjacent 
to any other point in S). A component of the set of all black (resp. white) points 
of a digital picture is called a black component (resp. white component). The digital 
picture is supposed to be finite. So there is a unique infinite white component, called 
the background. Let X and Y be two sets of points in a digital picture (V, rn,n, B), X 
being connected. Then X is said to surround Y if each point in Y is contained in a 
fmite component of V - X. In 2D, a white component adjacent to a black component 
C and surrounded by it is called a cavity of C. 
A black point is a border pointif it is adjacent to one or more white points. Otherwise, 
it is called an interior point. The border (resp. interior) of a black component C of Z 
is the set of every border (resp. interior) points of C. 
We will use the classical notions of xy-convexity and xy-concavity. For a precise defi- 
nition, we refer to [ME82] or to the automat given in [Mat95]. 

2 .2  S p a n  f i l l i n g  d i r e c t e d  b y  c o n t o u r  m a r c h i n g  

Let us consider a digital picture Z - (V, 8, 4, B). Let us suppose that  B has a unique 
component we call object O. This objet will possibly have holes: V - B may have many 
components. 
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By contour, we mean the set of closed curves of border linels, that is circular lists of 
linels separating O from O. Between O and the background stands an exterior contour. 
It is traced clockwise. Between O aald the possible cavities stand interior contours. They 
are traversed counterclockwise. The fonction march_contour() will actually involve a 
contour marching algorithm [CM91]. But when the circular chaining of linels is built, it 
is enough to follow the links. A variable cu r r en t  contains a contour lind. It is initialized 
with an horizontal upper linel of a black pixel, taken in the first non empty scan line. 
Interior exploration is done by means of spans. A span is a maximal connected set of 
black points on a line of the picture. Thus spans are horizontal. They will systematically 
be explored from left to right. From a vertical left lind, explore_span()  progresses 
inside the object and returns the first right linel encotmtered. Each span is caracterized 
by two vertical border linels which delimit it. In the sequel, we denote them by their 
two beg in  and end fields. Ends of the current span will be given by c u r r e n t  and end. 
Taking into account only vertical border linels, we need fonctions i s  v e r t i c a l ( )  and 
i s  l e f t  (). Fonction i s e x t e r i o r ( )  is useful as well. Figure 2a shows the contour of 
an simple object. Figure 2b shows its two spans. Useful linels are numbered. 

(a) i ~ i ~ i ~ i  [4 11 
o - - o - - o - - o - - o  2 
o--o--o--o C~ 

Fig.  2. Contour and spans 

The algorithm uses a global table to mark linels. Initially, a l ind mark is null, what 
can be tested by function is_new(). Function co lo r ( )  treats a span. It either assigns 
the color of the span pixels or it stores its ending linels for later use. In each case, the 
latter are marked such that i s  co lored()  avoids coloring them again. 
The method makes use of stacks and so has at its disposal the traditionnal primi- 
tives c r e a t e s t a c k  (), e m p t y s t a c k ( ) ,  push() ,  top()  et pop (). Some stacks are some- 
times accessed as queues, so operations enqueue (), bo t t  om () and dequeue () have been 
added. 

3 Description of the algorithm 

We will present the algorithm in an informal way by showing its execution on some 
examples. They hare an increasing complexity (xy-convex object without cavity, object 
without cavity, object with cavities), so this allows an "incremental" understanding of 
the spirit of our method and of the data structures role. For a more formal approach, 
the reader is refered to the pseudo-code given in appendix. Throughout the text, ij 
refers to instruction number j .  The main loop presents six cases of iteration end. The 
first three ones work for a left current linel and the last three ones for a right current 
linel. Those cases are indicated as comments in the pseudo-code and in the last column 
in the tables showing the stacks states. In the text, li refers to the line of the table for 
which c u r r e n t  is i. Significant elements of that line are in bold. Finally, in the figures, 
circled numbers give the order in which spans are colored. 
The general methodology consists in marking each lind while marching along the con- 
tour, clockwise for the exterior contour, counterclockwise for an interior one. For a 
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vertical left met  linel, a span exploration is carried out. For a vertical linel encoun- 
tered again, or for a right linel, instead of exploring a span we retrieve it from one of 
the stacks e x p l o r e d  (local) or r ema i n d e r  (global). Another  global stack l i n e l s  stores 
already encountered but  not  yet belonging to a colored span. The algorithm is called 
recursively for each discovery of an interior contour. The detection of a potent ia l  cav- 
ity happens  when the exploration ends up at a never encountered linel. Confirmation 
is provided only farther on the current contour marching, so a last da ta  s tructure is 
needed. Local variable d i s c o v e r y  stores a span that  may lead to a new contour. But  
let us explain more deeply the whole process by means of examples. 

3 .1  X y - c o n v e x  o b j e c t  w i t h o u t  c a v i t y  

id disc. cur. e linels explored case 
6 1 - " 12 ~ 6 2 

3 i ~ 1:3-2 
4 1:4-1 

T a b l e  1. Execution for an xy-convex objet without cavity (see fig. 2) 

The main  loop consists in marching the whole exterieur contour (i l ,  i7, i~, ie), taking 
into account only vertical linels (i10, i11). Each new encountered linel is marked with 
the current contour index, here n _ c o n t o u r  = 1 ( i@ According to the choices given 
above for the initial linel and the directions of marching, right linels come up first. 
They are pushed into the global stack l i n e l s  (i31, case 6, 11 and 12 table 1). After 
that ,  left linels are found (i12). A span exploration is done from the beginning of each 
of them (it3). It necessarily ends up at the linel on top of the stack (i15). The la t ter  is 
then popped and the span colored (i16, case 1, 18 and 14 table 1). In this first coloring 
case, the left vertical linel of the span is always encountered after its right one. 

3 .2  O b j e c t  w i t h o u t  c a v i t y  

27 2 O 7 ,~ 

25 l __ (~} 116 1 9 ~ ~  

In the presence of xy-concavities, an exploration begilming at a left linel may now not  
end up at the linel on top of l i n e l s  anymore (/4 table 2 : top 3, end 15). This left 
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linel is then pushed into l i n e l s  (z20). A stack exp lored ,  local to the call, stores the 
span just  explored (i26, case 3). For a right linel, we examine the exploration stored on 
top of exp lo red ,  by means of a l r e a d y  exp lo red ( )  (i29, end between parentheses in 
the tables). If this span end do not correspond to the current linel, its beg in  is simply 
pushed into l i n e l s  (i31, case 6, li1 table 2). In the opposite case, the span is colored 
and the two stacks popped (i30, case 5, 19 table 2). In this second coloring case, the 
span left linel is always encountered before its right one. 

cur .  e n d  disc .  l inels  e x p l o r e d  c a s e  
1 1 ~ 6 
2 2 ~ 6 
3 . 3  ~ 6 
4 15 4-15 i . . .  4 4 -15  3 
5 10 4-15 5 4-15 5-10 3 
6 (10) 4-15 6 4-15 5-10 6 
7 6 4-15 5 4-15 5-10 1 : 7-6 
8 9 4-15 8 4-15 5-10 8-9 3 
9 ( 9 )  4-15 5 4-15 5-10 '5 : 8-9 
10 (10)  4-15 . . 4  4-15 5 : 5-10 
11  ( 1 5 )  4-15 11 4-15 6 

12 (15) 4-15 12 4-15 ~6 
13 12 4-15 ii 4-15 i : 13-12 

14 11 4-15 ..4 4-15 1 : 14-11 

15 (15) .3 ~ 5 : 4-15 

16 16 r 6 

17 17 ~ 6 

18 21 18-21 18 18-21 3 
19 20 18-21 19 18-21 19-20 13 
20 (20)  18-21 18 18-21 15 : 19-20 
21 (21) 17 ~) 5 : 18-21 
22 22 r 16 
23 22 17 r 1 : 23-22 

24 17 .. 16 $ Ii : 24-17 

25 16 . 3 r I : 25-16 
i 

26 3 2 ~ 1 : 26-3 

27 2 1 {~ 1 : 27-2 
28 1 0 0 1 : 28-1 

T a b l e  2. Execution for an objet without cavity 

3.3 Object with cavities 

When e x p l o r e d i s  empty, a span exploration ending up at a linel different from l i n e l s  
top possibly means the discovery of a cavity. So this span is stored in a variable 
d i s c o v e r y  (i21, i23, i25), local to each recursive call. Sometimes, it is a false alarm: linel 
d i s c o v e r y - > e n d  belongs to the contour. It will be encountered later and d i s c o v e r y  
canceled (figure 3a, table 2). In other cases, we actually deal with a cavity (figure 3b, 
table 3). While d i s c o v e r y  is not assigned, explored spans are pushed in global stack 
r ema inde r  (i26, case 3, 114 table 3). 
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(a) (b) 

Fig.  3. Cavities: (a) false discovery (b) true one 

The assignation of d i scovery  is not sufficient to detect a cavity. Three situations are 
possible, as illustrated on figure 4. In the first one, the end of the exploration is different 
from the linel on top of l i n e l s  and it has mark 1 of the exterior contour. Then it is 
certain that a cavity lies under this last explored span or on the right of the current 
contour (i17, 114 table 3). In the example of figure 4a, span 2 confirms the presence 
under it of a cavity discovered with span 1. On figure 4d, span 8 confirms the presence 
on the right of the current contour of a cavity discovered with span 6. 

(a) (c) 

Co) 

Fig.  4. Different cases for recursion 

In the second situation, the current contour marching completes without any explo- 
ration having ended up at an exterior linel. The span d i scovery  leads in this case to 
a cavity on the right of the current contour (is, i9, 120 et la2 table 3). In the example 
of figure 4b, the discovery made with span 3 is confirined only after completion of the 
contour marching. 
Finally, in the last situation, the current interior contour marching reaches d i scovery  
->end. Thus it is certain that a cavity lies above the discovery span (i27). In that case, 
the span that actually leads to the cavity stands in explored after d iscovery .  It is 
determined by fonction a c t u a l d e c  (), that Mso transfers into remainder  spans what 
is popped from explored.  On figure 4c~ span 4 has been considered as a discovery, but 
the true discovery span is 5. 
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24 

1 
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32 

disc l inels e x p l o r e d  

13 9-20 10-27 11-26 12-25 13-24 

, - ........... 13,9-20 10-27 11-26 12-25 13-24 

....... 5 , 0 

4 

17-32 17 17-32 

r e m a i n d e r  

0 
14-I 
14-1 
14-1 
14-1 

(32)  17-32 18 
(32)  17-32 19 
(32) 17-32 ........ 20 . 

4 ..3 

3 .2 

2 i 

.24 

..25 
26 

27 

19 - 28 

34 29-34! i  . 2 9  
31 2 9 - 3 4 .  30 

(31)  2 9 - 3 4  . 2 9  

17-32 
17-32 
17-32 

14-1 

14-I 

14-1 

14-I 

14-1 
14-1 

14-1 
0 14-1 
0 14-1 

0 14-1 
0 14-1 28-19 

29-34 14-1 28-19 

29-34 30-31 14-1 28-19 

29-34 14-1 28-19 

(34) 29-34 ........ 32 . 

18 . . . . . . . . .  3 3  , 
- , - , . . . . . . .  34  , 

( 3 4 )  . . . . . . . . .  3 3  , 

- , . . . . . . .  3 2  , 

(32) ......... 33 , 

28 

27 

- h " I ..... 2o i 

( 2 . 0 )  ~ I .... 27 I 

29-34 

0 
0 

1 0 - 2 7  11-26 12-25 13-24 

14-1 28-19 

l ~ 14-i 28-19 33-18 

14-1 28-19 33-18 

14-1 28-19 33-18 

14-1 28-19 33-18 

1 4 - 1  2 8 - 1 9  3 3 - 1 8  

1 4 - 1  2 8 - 1 9  

1 4 - 1  

1 4 - 1  

1 4 - 1  

3 

2 

i : 15-6 

I : 16-5 

3 

6 

6 

6 

i :21-4 

i : 22-3 

1 : 23-2 

6 

6 
6 

6 

3 

3 

3 

5 : 30-31 

6 

3 

6 

1 : 29-34 

6 

!I : 1%32 

5 : 33-18 

5 : 28-19 

'61 : 9-20 

T a b l e  3. Execut ion  for an  ob je t  wi th  cavities 
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The detection of a cavity results in a recursive call of f i 1 l i n g  () on the new interior 
contour (it9 et i24, case 2; 9; i28, case 4). A call to fonction s t ep_back( )  then man- 
ages poping l i n e l s  up to d i s c o v e r y - > b e g i n  included (is, in). After incrementation 
of the contour index, a recursion on d i s c o v e r y - > e n d  takes place (in, i4, 12t et 133 ta- 
ble 3). Back from a recursive call, the current finel is restored to d i s c o v e r y - > b e g i n  
(is, c u r r e n t  between parentheses in the tables, 1(29) table 3). 
Furthermore, after recursion (it) ,  and while e x p l o r e d  is not empty, no span exploration 
happens and the fonetion a l r e a d y _ e x p l o r e d ( )  accesses to the bot tom of exp lo red ,  
whilst d e l i s t  () dequeues (i14, is0, 1(9) table 3). When e x p l o r e d  gets exhausted, a l r e a  

dy e x p l o r e d ( )  returns the top of remainder ,  whilst d e l i s t ( )  pops it 'second lls 
table 3). 

4 Discussion 

In usual methods, and following the definition from [KR89], the border is a set of 
pixels. Following this border poses specific problems that Pavfidis collectively termed 
undersampling [Pav79]. We have considered a contour as a circular list of linels. Using 
a "border" in the common meaning of topology, undersampling problems have been 
disposed of. 
In the general case, an exploration is saved in e x p l o r e d  or remainder  (i2s, i26, case 3). 
A span which allows to claim that  d i s c o v e r y  actually leads to a new cavity is saved 
as well (ilg, i23), except in the case when its end is an interior linel. For that  kind of 
relatively uncommon configuration (see span 8 in figure 4d), the span will be explored 
twice. Most of the spans are visited only once and the redundancy of binary map ac- 
cesses is minor. The number of accesses to each pixel is thus in O(n). This number 
is in O(3n) in Pavlidis's algorithm [Pay81]. In his approach, a span exploration sys- 
tematically entails the one of the two neighboring spans, above and below, in order to 
determine the degree of this vertex in the line adjacency graph. 
The number of recursive calls is proportional to the number of interior points in the 
nai've version of the coloring algorithm. In usual "span" methods, among whom the 
one of Pavlidis, the size of the stack is in ratio to the number of spans in the boundary. 
In the proposed algorithm, the number of recursive calls is he number of cavities in the 
object. So the size of the stack is not a problem anyway. 
The fact that  the method is driven by contour marching directly gives the number of 
cavities. The approach preserves more topological information than usual methods, the 
latters being driven by the waiting structure for spans. This is attractive when having 
3D applications in mind. 

5 Voxelized object surface traversal 

Given a cut plane, surfels of a voxelized object can be divided into two sets: slice surfeis 
and ring surfels. The former are parallel to the cut plane and shaded in figure 5. The 
lat ter  take their name from the fact that in each slice, they can be described by circular 
lists. 
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Fig .  5. Ring and slice surfels 

Work is in progress to realize the sur]ace tracking of a voxelized object according to a 
ring/slice scheme. It can be described informaly by the following procedure: 

z = initial slice; 

surfel = a ring surfel in slice z; 

push( surfel, z, NEG ); 
push( surfel, z, POS ); 

while ( non empty stack ) 
{ 

( surfel, z, direc ) = pop(); 

if ( is_( surfel, z, direc ) = pop(); 

ring = detect_contour( surfel ); 
if ( is_already_treated( ring ) ) continue; 

z_next = ( direc == NEG ) ? z-I : z+l; 

opp_direc = ( direc == NEG ) ? POS : NEG; 
if ( ring type( ring ) == EXTERNAL ) 

filling( ring ); 

else 
next_ring( ring ); 

for ( each new ring i ) 

if ( trailer[ i ]->z == z ) 
push( trailer[ i ]->surfel, z, opp_direc ); 

else 
push( trailer[ i ]->surfel, z_next, direr ); 

} 

Fonction d e t e c t _ c o n t o u r  () is a contour tracking that chains detected surfe]s as a ring. 
The filling algorithm is adapted for the slice surfels detection. Fonction march_ c ont our () 
is reduced to tracing the ring just built, whilst f i l l i n g ( )  is enriched with the man- 
agement of a t r a i l e r  table, indexed by interior contours. Each of its elements is a 
trailer surfel for an incoming ring, coupled up with the corresponding slice value. The 
la t ter  is either the current ring slice value, or the one of a contiguous slice, depending 
on wether the ring type (external or internal) reverses or not. 
The surface tracking method that is traditionnally used is the one described by Artzy 
et al. [AFH81]. Though elegant, the algorithm does not offer any a priori knowledge of 
the order in which surfels will be detected. This poses problems, especially pagination 
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when accessing the 3D binary map [FHMU85]. It seems to be worthwhile to load in 
memory a few contiguous slices from the voxmap (we call it a "metaslice") and to 
treat  it without having to access it again. Furthermore, if the detection progresses slice 
by slice, a parallel implementation can be taken under consideration, in which each 
processor should work on a different metaslice. Finally, this approach is also richer in 
topological information. It is indeed possible to build on the fly the Reeb graph of the 
object [SKK91]. 
More generally, this ring/slice scheme may be applied to every surfels graph traversal, 
for example the search for local extremums on the surface. It also directly leads to a 
3D filling algorithm. 

6 C o n c l u s i o n  

We have proposed a 2D filling Mgorithm. It is free from undersampling problems be- 
cause of its use of contours constituted of linels instead of pixels. The redundancy of 
binary map accesses is minor. The approach is recursive and the number of calls is 
only the number of cavities. The principle of a treatment of spans directed by contour 
marching directly provides the cavities. In that,  it offers more topological information 
than usual techniques. The method finds an application in 3D voxelized objects sur- 
face traversal. It is in fact a basic procedure of algorithms for tracking, searching for 
extremum and filling of those objects surface. 

The author wishes to thank the anonymous reviewers, D. Michelncci and B. P6roche 
for their constructive remarks on the preliminary version of this paper. 
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Appendix: pseudo-code 

filling( c u r r e n t  ) 
{ 

1 f o r  ( e x p l o r e d  = c r e a t e . s t a c k ( ) ,  d i s c o v e r y  = n u l l ,  
recurse = after_recursion = O, n contour = i ; ; ) 

{ 

2 if ( recurse ) 
{ 

3 step_back( discovery ); ++n_contour; 
4 filling( march_contour( discovery->fin ) ); 
5 current = discovery->begin; discovery = null; 

6 after_recursien = I; recurse = O; 
} 

e l s e  { 
7 c u r r e n t  = march_contour(  c u r r e n t  ) ;  mark( c u r r e n t  ) = n_con tour ;  
8 i f  ( contour  completed ) 

9 if ( discovery ) recurse = i; else return; 
} 

} 

lO if ( recurse lJ !is_vertical( current ) ]] is_colored( current ) ) 
11 continue; 
12 if ( is_left( surren~ ) ) 

{ 

13 if ( !after.reoursien ) end = explore.span( current ); 

14 else ( end = already.exploredO-~end; delistO; } 
15 if ( end == top( linels ) ) 

{ 

18 color( current, end ); pop( linels ); /* i */ 
} 

17 else if ( cavity_under.or_right( discovery, end ) ) { 
{ 

18 if ( is_exterior( end ) ) push( (current, end), remainder ); 
19 recurse = I; /* 2 */ 

} 

else( 
20 push( current, linels ); 
21 if ( !discovery ~ is_new( end ) ) 

{ 

22 if ( after.recursion ) 
{ 

23 enqueue( discovery = (current, end), explored ); 
24 recurse = I; /* 2 */  

} 

25 else push( discovery = (current, end), explored ); 
} /* 3 */ 

26 else push( (current, end), discovery ? explored : remainder ); 
} 

} 

27 else if ( cavite_above( discovery, current ) ) 
{ 

28 actual_dec( discovery, explored ); recurse = I; /* 4 */ 
} 

29 else if ( span = already_exploredO ~ span->end == current ) 
{ 

30 color( span->hegin, end ); pop( linels ); delistO; /* 5 */ 
} 

31 else push( current, linels ); /* 6 */ 
} 
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