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Abs t r ac t .  In [1], we studied the problem of reconstructing a discrete 
set S from its horizontal and vertical projections. We defined an al- 
gorithm that establishes the existence of a convex polyomino A whose 
horizontal and vertical projections are equal to a pair of assigned vectors 
(H,V), with H 6 LW "~ and V 6 ~W ~. Its computational cost is O(n4m% 
In this paper, we introduce some operations for recontructing convex 
polyominoes by means of vectors H's  and V's partial sums. These oper- 
ations allows us to define a new algorithm whose complexity is less than 
O(n2m2). 

1 I n t r o d u c t i o n  

A cell is a unitary square [i, i + 1] • [j, j + 1] in which i, j 61N0. Let S be a finite 
set of cells. A column (row) of S is the intersection of S with an infinite vertical 
strip [i, i+1]  • (horizontal 1%• [i, i+1])  in which i EiN0. The i-th row projection 
and the j - th  column projection of S are the number  of cells in S 's  i-th row and 
j - t h  column, respectively. We dealt with the reconstruction of objects from their 
projections: with regard to establishing the existence of an S set of cells in which 
the i-th row projection and the j - th  column projection are equal to hi and vj, 
respectively, and H = (hi, h2 , . . . ,  hm) E~ rn and V = (v],v2,...,v~) E~ ~ are 
two assigned vectors. In [1], we studied the problem with respect to some cell 
set classes on which we imposed some connection constraints and devised an 
algori thm for convex polyomino reconstruction. This algorithm establishes the 
existence of a convex polyomino A having projections equal to (H, V). Moreover, 
if there is at least one convex polyomino having projection (H, V), the algorithm 
reconstructs one of them in a m a x i m u m  of O(n4m 4) time. In this paper, we 
deduce some operations (called partial sum operations) for the reconstruction of 
convex polyominoes, from some properties of H and V's partial  sums. We use 
these operations to define a new algorithm in which it is not necessary to find 
out feet 's positions, whereas the "old" algorithm has to examine all of them (i.e. 
O(n2rn 2) positions). Since the computat ional  cost of a partial  sum operations 
is O(n m), new algori thm's  complexity is less than O(n2m 2) and is therefore 
smaller than  the previous algorithm's.  At the moment ,  however, we only have 
experimental  evidence to support  the fact that  our algorithm establishes the 
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existence of a convex polyomino A whose projections are equal to (H, V), for 
all instances (H, V). We wish to point out that Woeginger [3] proved that the 
reconstruction problem in the classes of horizontally and vertically convex sets 
(h,v) and polyominoes (p) is an NP-complete problem. In [1], we showed that the 
reconstruction is NP-complete in the classes (p,h), (p,v), (h) and (v). Therefore, 
the problem can be solved in polynomial time only if all three properties p, h 
and v, are verified by the cell set. This, in turn, means that  the set is a convex 
polyomino. 

2 Preliminaries 

A polyomino is a connected finite set of adjacent cells lying two by two along a 
side and it is defined up to a translation. A polyomino is convex if all its columns 
and rows are connected. We denote the class of convex polyominoes by (p,h,v).  
Let H = (h t ,h2 , . . . , h ,~ )  EIN m and V = (v t ,v2 , . . . , v~)  EIN ~. The pair (H, V) 
is said to be satisfiable in class (p,h,v) if there is at least one convex polyomino 
S such that S ' s / - t h  row projection and j - th  column projection (starting from 
the upper-left corner) are equal to hi and vj, respectively, for i = 1 , 2 , . . . , n  
and j = 1, 2 , . . . ,  m. We also say that S satisfies (H, V) in (p,h,v).  From the 
definition, we can deduce that if (H, V) is satisfiable in (p,h,v),  then: 

n 

Vi E [1..m] 1 <_ hi < n, V j e  [1..n] 1 <<_ vj <_ m, ~ h i = ~ v~. (2.1) 
j----1 i = l  

Consequently, if a convex polyomino S satisfies a pair (H, V) havivg H E *Wm 
and V E ~V ~, S is contained in a rectangle R of size n x m (see fig. 1). 

3 Some convex polyomino properties 

Let us take two vectors H E F/"~ and V E ~ and a convex polyomino A that 
satisfies (H, V). A is contained in a rectangle/~ of size n • m. Let [S, S'] ([N, g ' ] ,  
[E, E'], [W, W']) be the intersection of d 's  boundary on/~'s  lower (upper, right, 
left) side. Segment [S, S ~] is the base of a set made up of hm consecutive columns 
of A, called A's foot, denoted as Ps.  In the same way, we define A's other three 
feet PN, PE and Pw by referring to intersections [N, N'], [E, E'], [W, W']. We 
denote feet Ps's,  PN's, /DE'S and Pw's by [sl..s2], [ni..n2], [el..e2] and [wl..w2], 
respectively. Let e(uj, j) and c(dj, j)  be the upmost and lowest cells of A's j - th  
column (see fig. 2). Let Wj be the set of columns denoted by A~, with k e [1..j], 
and let and Ni be the set of rows denoted by A ~, with k E [1..i]. 

P r o p o s i t i o n l .  i) Nut-1 C V~_I, for n2 < j < n, 
ii) Wj C Ndj, for 1 <_ j < sl~ 

iii) N~j-1 C A - Wj, for 1 <_ j < nt, 
iv) A -  Wj - t  C Ntis, for s2 < j <_ n. 

Proof. (i) Let c(i, k) e N,~_ t, with n2 < j _< n. We have to prove that k < j. 
As we proceed from left to right starting from n2-th column, the ordinates of 
the columns' upmost cells increase progressively. Therefore, if k > j ,  upmost 
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Fig.  1. A convex polyomino that satisfies (H, V) and its vertica] projection 
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Fig.  2. A convex polyomino's feet 

c(uk, k) and c(uj, j) cells' ordinates are such tha t  uk >_ uj. This is impossible 
because c(uk, k) is the k-th co lumn's  upmost  cell and so uk _< i and we obtain  
i < uj f rom c(i, k) E Nuj -1 .  Therefore, we get k < j .  
In t h e  s a m e  w a y  w e  can prove  the  propert ies  (ii) ,  (i i i)  and  ( iv) .  

Let Hk = ~ h j ,  Vk = ~ v i  and A = hj = vi. From the previous 
j= l  i=1 j= l  i=1 

Propos i t ion  we get: 
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C o r o l l a r y 2 .  i) Hus_l < b~-l, for n2 < j <_ n, 
ii) Vj < Hd~, for 1 <<_ j < Sl, 

iii) H~s-1 < A - Vj, for 1 <_ j < nl,  
iV) A - Y j _  1 < Hd s , for s2 < j <_ n.  

We can deduce the same properties for the rows. 

3.1 T h e  f e e t ' s  p o s i t i o n s  

From the definition of convex polyomino,  it follows tha t  two pairs of consecutive 
feet have a non-empty  intersection. In other words, 
(PN fq P w  # 0 and Ps N PE # r or (PN N PE # 0 and Ps N P w  # 0) (3.2) 
Let us now assume tha t  vj < m for all j E [1..n]. Then,  PN N P s  = O. 
Moreover, f rom A's convexity, we deduce tha t  lengths vn, ,vn~+l , . . . ,  v,~ and 
vsl, v s ,+ l , . . . ,  v~ of PY's  and Ps's columns are such that :  
- i f P N i s t o t h e l e f t o f P s  ( n 2 < 8 1 ) , t h e n v n ~  <_ vnl+l < . . .  < vn2 and Vsl >_ 
Vsl+l  >__ ' ' '  >__ Vs2 (see fig. 1), 
- if PN is to the right of Ps  (s2 < n l ) , t h e n v s ~ _ < v ~ + l _ < . . . _ < V s ~  and vn~ >_ 
V n l + l  ~.~ - - .  __ Vn~. 
Let l and r be 1 = max{ j  E [1..n]: vq < vq+l, Vq E [ 1 . . j -  1]}, and r = min{ j  e 
[1..n] : Vq > vq+l, Vq E [j..n - 1]} (see fig. 1). If PN is not contained in A's first 
l columns or last n - r - 1 columns, then we have the disconnection shown in 
fig. 3(a). Therefore,  f rom the convexity proper ty  we obtain:  

n I ... n 2 n I . . ,  n 2  

(a) 0') 

Fig. 3. Two illegal positions of A's foot PN 

P r o p o s i t i o n 3 .  I f  there is a convex polyomino A that satisfies (H, V) with vj < 
m for all j e [1..n], then the positions [nl..n2] and [Sl..S2] of A's  feet PN and 
Ps are such that: (n2 < l and sl > r) or (s2 <_ l and nl > r). 

Let us now assume tha t  there is a set C of adjacent columns having the same 
length (always less than  m), with C C__ Wl (or A - Wr-1) .  If C 's  columns are 
more  than  the number  hi of P g ' s  columns and PN N C ~ O, then PN N C is 
contained in C's  first or last hi  columns. If this condition does not  occur, then  
we obtain the disconnection i l lustrated in fig. 3(b). Therefore,  if we denote  ll 
and r l  as 11 = min{ j  E [1..n] : vj = vl}, r l  = max{ j  E [1..n] : vj = vr}, (see 
fig. 1) being PN C Wl and 11 + hi - 1 < l, we can deduce tha t  PN C Wh+hl_ 1. 
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Consequently, by setting: lN = min{ll + hi - 1, l}, ls = max{ll + h,~ - 1, 1}, 
r s  = max{r1 + hm - 1, r}, and rN = max{r1 + hi - 1, r}, we obtain: 

P r o p o s i t i o n 4 .  I ra  convex polyomino A exists that satisfies (H, V) with vj < m 
for  all j �9 [1..n], then posit ions [nl..n2] and [sl..s2] of A ' s  feet  PN and Ps  are 
such that: (n2 <_ lN and sl >_ r s )  or (s2 <<Is and nl  >_ rN).  

We now examine the case in which there is at least one j E [1..n] such that  
vj = m: the j - th  column belongs to both feet PN and Ps.  It follows from A's 
convexity that  if there is a set M of m-long columns, these columns are adjacents 
and are contained in PN and Ps.  Moreover, V's elements are a unimodat sequence 
and we have the three cases are illustrated, in fig. 4 (a), (b) and (c): 

P r o p o s i t i o n h .  The numbers hi and hr~ Of PN and P s ' s  columns are such that 
hi >_ l -  r + l and h,~ > l - r + l.  Moreover, 
a) i f  hl  > l - r + l and hm > l - r + l ,  t h e n : h i = l - h i + l ,  n2 = l and sl = 
r, s2 = r + hm - 1 ,  or nl  = r, n2 = r + hrn - 1  and sl  = l -  hl + l ,  s2 = l. 
b) I f  hi  = l - r + l and hrn > l - r + l,  then: nl  = r, n2 = l and sl >_ 
l -  h.~ + l ,  s2 <_ r + h.~ - l .  
c) I f h l  > l - r + 1  and h.~ = l - r + 1 ,  then: nl  >_ l - h i + l ,  n2 <_ r + h m - 1  and sl = 
r, 8 2 -: l. 

Ill  

sl= r s2= r + h ~ l  

n =I  
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Fig. 4. Some convex polyominoes containing a set of m-long columns 

In the same way, by using the vector H,  we can deduce that  feet P w ' s  and PE's  
position have analogous limitations. 

4 P a r t i a l  s u m  o p e r a t i o n s  

In this section, by using the properties of partial sums Hi, Vj and the feet's 
positions, we define some operations for reconstructing convex polyominoes A 
from their projections (H, V). We call any set a of cells such that  a C_C_ A a 
kernel, and we call any set /3 of cells such that A C fl C R a she l l ,  where R 
is the rectangle containing A. Assuming that  a : = 0  and fl := R, we define the 
partial sum operations for A's reconstruction that  reduce the shell and expand 
the kernel. We reduce the shell by eliminating the cells not belonging to A from 
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ft. Vice versa, we expand the kernel by putting the cells belonging to A into a. 
We label a 's  cells "1" and the ones not belonging to ~3 "0". 

Let us take two vectors H �9 LTV "~ and V �9 f g ' .  From Corollary 2's condi- 
tions we can deduce a lowest (upmost) bound of the upmost (lowest) cells of A's 

columns, where A satisfies (H, V). Let @1) = m a x / s u c h  that  Hi-1 < A - I~, 

@ 2 ) =  max / such  that  Hi-1 < Vj-1 where i �9 [2. .m+ 1], and D} 1) = mini  such 

that  A - Vj-1 < Hi, D} 2) = mini  such that  I~ < Hi where i �9 [1..m]. 
If we know the position nl and n2 of A's foot PN, from conditions (i) and (iii) 
of Corollary 2, the ordinate uj of the upmost cell c(uj, j) is: 

uj < U(j 1), for 1 < j < n l  a n d u j  < U (2), f o r n 2 < j ~ n .  
Likewise, if we know the positions sl and s2 of A's foot Ps, then from conditions 
(ii) and (iv) of Corollary 2, we deduce that  the ordinate dj of the lowest cell 

c(dj,j) is: dj >_ D} 1), f o r l < j < s l  a n d d j > D ~  2), f o r s 2 < j _ < n .  

Therefore, U} p) with p = 1, 2, is the lowest bound of uj, while D} q) with q = 1, 2, 

is the upmost bound of dj. For instance, some positions of Uj (2) and D~ 1) are 
illustrated in fig. 5. Since the length of the j - th  column is vj, we obtain the 
following shell reduction from these bounds: 
1) if 1 _< j < nl and i > UO)+ vj, then c(i,j) ~ A; 
2) if n2 < j _< n and i >_ U (~) + vj, then e(i, j) ~ A; 
3) if 1 <_ j < 81 aIld i ~ D51) - vj ,  then c(i, j)  ~ A; 

4) if s2 < j _< n and i <_ D5 2) - vj, then c(i,j) ~ A. 
We now consider a column in which there are both hounds U (p) and D5 q). More- 

over, we assume that  this column's bounds are such that: U? ) < D5 q). 
If D5 q) - @P) + 1 > vj, then dj - uj > vj. Consequently, there is no a convex 
polyomino A that  satisfies (H, V). 
If D5 q)-  U(P) + 1 ~ vj, then we get an expansion of the kernel, that  is c(i, j) �9 A, 
for U (p) < i < Dbq), because @P)is the lowest bound of c(uj,j)'s position and, 

therefore, we have il _< U (p) such that c(il,j) �9 A. Likewise, since DJ q) is the 

upmost bound of c(dj, j) 's  position, we obtain i2 >_ D5 q), such that  c(i2, j)  �9 A. 
By means of A's convexity, we deduce that  c(i,j) �9 A, for il _< i < i2 and 

U~ p) < i < Dbq). Therefore: 

5) if j exists such that  D5 q) - U (p) + 1 > vj, there is no convex polyomino that  

(q) @P) then c(i,j) �9 A, for satisfies (H,V); otherwise, if 1 < Dj - . + 1 _< vj, 
(q) u(P) < i < Dj . 

It is worth noting that if D} q) < U (p), we cannot expand the kernel, but we can 
reduce the shell by means of steps (1)-(4). Steps (1)-(5) are called partial sum 
operations. Unfortunately, we do not usually know the feet's positions and so if 
we want to perform any partial sum operation, we have to use the properties 
of the feet's positions as determined in the previous section. We start out by 
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Fig. 5. Bounds -a U!2)'Dj(1) and the shell reduction obtained by operations (2) and (3) 

assuming that  vj < m for all j E [1..n]. From Proposition 4, we get the following 
two cases: 
a) PN is contained in the first lN columns and Ps in the last n - rs - 1 columns; 
b) Ps is contained in the first ls columns and PN in the last n - rN -- 1 columns. 

In the first case, we have n2 < IN and sl >_ rs.  Consequently, by determining 
U (2) for IN < j <_ n, and DJ 1) for 1 _< j < rs,  we get the lowest bound of uj (i.e. 

uj _ U (~)) and the upmost bound for dj (i.e. dj >_ DJl)). Foot PN is made up 
of hi columns and so j - th  column, with 1y -- hi q- 1 <_ j <_ lg ,  belongs to PN or 
is on its right. Therefore, uj = 0 or uj < U (2), and so @2) is the lowest bound 

o f u j ,  for IN -- hi q- 1 <_ j < n. Analogously, D~ 1) is the upmost bound of dj, for 
1 _< j < rs + hm - 1. Consequently, we can perform partial sums operations (2) 
and (3) as follows: 

a.2) i f I N - h l + l < j < n a n d i >  U (2) + vj, then c ( i , j )  ~ A; 

a.3) if 1 <_ j <_ rs + h,~ - 1 and i < DJ 1) - vj,  then c(i, j )  f~ A. 

Bounds U (2), DJ 1) and the consequent shell's reduction are illustrated in fig. 5. 
Let us now consider the j - th  columns, with IN -- hi + 1 <_ j < rs + h,~ - 1 
(i.e., the columns having both bounds U (2) and D}I)). By means of U(2)'s and 
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D}l)'s definitions, we get: HuJ2)_ 1 < Vj-1 < Vj < HDJl), and consequently: 

U (2) _< DJ 1). We then perform the partial sums operation (5) as follows: 

a.5) if there is j e [ IN-hi  + 1 . . r s + h , ~ -  1] such that D~I) - U(2) + 1 > vj, then 

there is no convex polyomino that satisfies (H, V); otherwise, if DJl) -U(2)+  1 <_ 

vj for all j e [1N - hi + 1..rs + h,~ - 1], then c(i,j) e A for U (2) < i < D~ 1). 
This kernel's expansion is shown in fig. 6, and cells c(i, j) with j ~ [1N -- hi + 
1..rs + hm - 1] belong to A. 
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Fig. 6. The expansion of kernel obtained by operation (5) 

Let us now consider the j- th column, with hi + 1 <_ j < IN --  h i .  It is either 
to the right or left of PN, or belongs to it. If it is to the right of PN or belongs 
to it, then uj _< U (2) or uj = O. If the j - th  column is to the left of PN, then 
we obtain the column's lowest position when PN is in the rightmost position 
(i.e., [nl..n2] = [/N -- hi + 1../N]). From A's convexity we deduce that  the or- 
dinate dj of the j - th  column's lowest cell cannot be greater than vtN_hl+l (see 
fig. 6). As a consequence, uj _< 0 (2), where 0 (2) = vlN_hl+l--v j +1~ Therefore, if 

hi +1 < j _< I N - h i ,  then max{U (~), UJ 2)) is the lowest bound of uj. By perfom- 

ing partial sum operation (5), we obtain that, if max{U~ 2), 0 (2)} <_ D~ 1), the cells 

between D~ 1) and max{ U (2), 0 (2) } belong to A, while, i f  D~ 1 ) < max{ U (2), U(2)}, 

(because U (2) < D~ 1)) we obtain 0 (2) = max{U(2), 0(~)}. In this case, the ordi- 
nate dj cannot be greater than v~N_hl+l, that is, c(i,j) ~ A for i > vlN-h~+l. 
Sequences /U (2) U (2) , rr(2) x and sn( t )  n(1) D (t) } are two t hl+l' ht+~l �9 �9 �9 , v1N--hlJ t J J h l + l '  ~ ' h 1 + 2 :  " " " ' lN--hl 
increasing sequences with D~l) > U(~) for each j, w h i l e j C l ( ~ ) _  l h~+l, ~(2)h1+2," �9 �9 ~'ZN--h, ; / r ( 2 )  
is a decreasing sequence. Hence, there is a k E [(h~ + 1)..hzN-hl] such t h a t :  
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U (~) < DJ 1) < Cr(2),j �9 [(hi + 1).~ 1)], max{U(2), 5 r(2)} < DJl),j �9 [k..htN-h,], 
(see fig. 6) and by performing operations (2) and (5), we obtain the following 
shell reduction and kernel expansion: 
a.2) c(i,j) f~ A, for i > VlN_hld_ 1 and j �9 [(hi + 1)..(k - 1)]; 
a.5) c(i,j) e A, for max{U(2), (r~ 2)} < i < DJ 1) and j �9 [k..htN-hl]; 
(see fig. 7). Finally, we consider the j - th  column, 1 < j < hi, which is ei- 
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Fig.  7. Kernel expansion and shen reduction by means of operations (2), (3) and (5) 

ther to the left of PN or belongs to it. Therefore, the ordinate dj is such that 
dj <_ vIN-hl+l and we obtain the shell reduction: 
a.3) c(i, j) f~ A, for i > vlN-hl+l and j E [1..hi]. 
We now deal with the columns that contain the foot Ps (i.e., j - th  columns, with 
rs  + hm < j < n) as we did for the columns that contain the foot PN. We 
have the lowest bound of uj (i.e., uj < U (2)) and the upmost bound of dj (i.e., 

dj > min{D~l),/9~1)}, where/~Jl) = m - v ~ s + h _ l  + vj) (see fig. 6). Moreover, 
the position n2 of PN is smaller than IN and so the cells of the first row to the 
right of IN do not belong to A. Likewise, since Sl position of Ps is greater than 
rs, we have that the cells of the m-th row to the left ofrN do not belong to A. 
Figure 7 illustrates the kernel and shell obtained by performing the partial sum 
operations on the columns. 

By symmetry, case (b) (Ps is contained in the first Is columns and PN in 
the last n - r g  - -  1 columns), is analogous to the previous one. We perform the 
partial sum operations (1), (4) and (5) by using U O) and D~ 2) (instead of U (2) 

and D)I)). 
Let us now assume that there is a set M of columns having length m. From 

Proposition 5, we deduce that if these columns are adjacent (v~ = vr+l -- . . . .  
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vl = m) and V's elements are a unimodal sequence, then M belongs to A and 
we can expand the kernel by setting a := M. Otherwise, there is no convex 
polyomino that satisfies (H, V). Therefore, we verify that  M is made up of some 
adjacent columns and V's elements are a unimodal sequence and sizes hi and 
h,~ of P2v and Ps have to be greater than the number 1 - r +  1 of M's  columns. 
We have the three cases described in Proposition 5. In the first one P2v is to the 
left of Ps or vice versa, and we know the two feet's positions. In both cases, we 
can expand the kernel by putting PN and Ps into a. Since we know positions 
nl ,  n2, Sl and s2, we can perform the partial sum operations (1)-(5). 
In case 3.6 (b) we know the positions nl and n2 of PN and so we perform the 
partial sum operations (1), (2). Foot Ps is made up of h,~ columns and so the 
j - th  column, with r -  hm + 1 _< j _< r - 1, belongs to Ps  or it is to the left of 

Ps. Therefore, dj = m or dj _> D~ 1), and so DJ ]) is the upmost bound of dj, for 

1 _< j _< r - 1. Analogously, DJ 2) is the upmost bound of dj, for l + 1 < j _ n. 
Consequently, we can perform partial sum operations (3), (4) and (5) on the 
columns not belonging to M. Case 3.6 (c) is symmetric to the previous one. 

We wish to point out that,  we have to perform some partial sum operations 
on the columns twice (except 3.6 (b) and 3.6 (c) cases): the first t ime we assume 
that  PN is to the left of Ps; the second time, we assume that  PN is to the right 
of Ps �9 We proceed in the same way for the rows and use H instead of V. From 
condition (3.2) (i.e., two pairs of consecutive feet have a non-empty intersection), 
we can deduce some limitations of feet Pw's and PE'positions, in addition to 
the ones obtained from Propositions 4 and 5. As for the columns, we have to 
perform the partial sum operations on the rows twice: the first time, we assume 
that  Pw is north of PE; the second time, we assume that  Pw is south of PE. 
Fig. 8 illustrates the kernel and shell obtained by performing the partial sum 
operations on the columns and rows, where we assume that  Pw is north of PE. 
These operations produce a kernel that  can be considered as a "spine" of the 
convex polyomino. 

5 T h e  r e c o n s t r u c t i o n  a l g o r i t h m  

In [1], we defined an algorithm that establishes the existence of a convex poly- 
omino A satisfying a pair of assigned vectors (H, V), with H E ~VV "~ and V E / V "  . 
The number of possible positions of the four feet is (n - hi + 1)(n - hm + 1)(m - 
vl + 1)(m - vn + 1) _< n2m 2. For each, the algorithm attempts to construct a 
convex polyomino A satisfying (H, V) by means of a procedure that  performs 
some operations (called filling operations) and then links our problem to the 
2-SATISFIABILITY problem [2], which can be solved in linear time. The pro- 
cedure's complexity is less than O(n~m 2) and, since we perform it for each of 
possible feet's positions, we can deduce that the algorithm's complexity is less 
than O(n4m4). In this section, we define a variant of this algorithm by means 
of the partial sum operations. We start out by performing the partial sum op- 
erations on the columns and rows and then apply the previous construction 
procedure to the kernel and shell obtained by our partial sum operations. The 
new algorithm's main steps are the following: 
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Fig. 8. The kernel and shell obtained by performing the partial sum operations on the 
columns and rows. 

1. We check to see if (H, V) verifies the conditions (2.1). 

2. We calculate the partial sums Hi, V d for i = 1 , . . . , m  and j = 1 , . . . , n .  

3. We determine the feet's limitations ( denoted by ltr ls, r N  and rs for PN 
and Ps,). 

4. If Y's elements satisfy the 3.6 (b) or 3.6 (c) condition of Proposition 5 we 
perform the partial sum operations on the columns. Otherwise, we perform 
the following two steps: in the first, PN is assumed to be to the left of Ps; in 
the second, PN to the right of Ps. We perform the partial sum operations 
on the columns in both cases and we proceed as follows: 

4.1 if H ' s  elements satisfy the same conditions 3.6 (b) or 3.6 (c), we perform 
the partial sum operations on the rows and use the "old" algorithm's con- 
struction procedure. If these conditions do not hold, in the first, we assume 
that  Pw is north of PE, in the second we assume that  Pw is south of P~. 
We deduce some other limitations of these two feet by also using condition 
(3.2). For each substep, we perform the partial sum operations on the rows 
and use the "old" construction procedure. 

Therefore, the feet have a maximum of four combinations and we perform the 
partial sum operations on the columns and rows for each; then we apply the 
construction procedure of the "old" algorithm. Performing the partial sums on 
the columns and rows involves a computational cost of O(n m), while the com- 
plexity of the construction procedure is less than O(n2m2). Consequently, new 
algorithm's complexity is less than O(n~m2). 
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6 C o n c l u s i o n s  

In this paper, we defined a new algorithm that establishes the existence of a 
convex polyomino A satisfying a pair of assigned vectors (H, V). The algorithm's 
first step consists of performing the partial sum operations on the feet's four 
combinations. For each combination, these operations reduce shell/3 and expand 
kernel a (see fig. 8). We obtain a convex polyomino "spine". By performing the 
filling operations on this "spine" we further reduce fl and expand a. For instance, 
by performing the filling operations on the "spine" illustrated in fig. 8 we obtain 

=/3  = A. From the "old" algorithm's results (see [1]), it follows: 
- if a and/3 produced by the filling operations are such that  a ~/3,  then there 
is no convex polyomino A that satisfies (H, V). 
- If we obtain a and fl such that a = fl and c~ is a convex polyomino, then a = A; 
that  is, there is at least one convex polyomino that  satisfies (H, V) and we have 
reconstructed one of them. 
- If we obtain a and/3 such that  a and/3 are two convex polyominoes, with ~ C/3, 
and the length of the j - th  column (the i-th row) is equal to, or smaller than, 2vj 
(2h/) for all j E [1..n] (i E [1..m]), then we can refer to the 2-SATISFIABILITY 
problem, that  can be solved in linear time. 

In [1] we proved that  the "old" algorithm always produces (~ and/3 that  ver- 
ify one of the preceeding conditions, whereas we only have some experimental 
evidence that  the new algorithm produces these results. We ran it up to thou- 
sands of cases and found that  for each of them, the a and/3  produced by the 
partial sum and filling operations verify one of the three conditions. Moreover, 
this algorithm is much faster than the old one and allows us to reduce the feet 
combinations to be examined down to four (with the "old" algorithm, we have 
to examine all the positions of the four feet (i.e., O(n2m 2) positions). We wish 
to point out that,  if polyomino A is "oblong", that  is the length of its columns 
and rows are small with the respect to m and n, then the partial sum operations 
produce a good expansion of the kernel, that  is a big "spine" of the polyomino. 
On the contrary, if there are some columns and rows of A having length about 
equal to m and n, then the partial sum operations determine a small "spine" of 
the polyomino. But, in this case the filling operations produce a good expansion 
of the kernel and a good reduction of the shell. 
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