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Abstract

In this paper we study the expressiveness of local queries. By locality we mean — informally —
that in order to check if a tuple belongs to the result of a query, one only has to look at a certain
predetermined portion of the input. Examples include all relational calculus queries.

We start by proving a general result describing outputs of local queries. This result leads to
many easy inexpressibility proofs for local queries. We then consider a closely related property,
namely, the bounded degree property. It describes the outputs of local queries on structures that
locally look “simple.” Every query that is local is shown to have the bounded degree property. Since
every relational calculus (first-order) query is local, the general results proved for local queries can
be viewed as “off-the-shelf” strategies for proving inexpressibility results, which are often easier
to apply than Ehrenfeucht-Fraissé games. We also show that some generalizations of the bounded
degree property that were conjectured to hold, fail for relational calculus.

We then prove that the language obtained from relational calculus by adding grouping and ag-
gregates, which is essentially plain SQL, has the bounded degree property, thus answering a ques-
tion that has been open for several years. Consequently, first-order queries with Hértig or Rescher
quantifiers also have the bounded degree property. Finally, we apply our results to incremental
maintenance of views, and show that SQL and relational calculus are incapable of maintaining the
transitive closure view even in the presence of auxiliary relations of moderate degree.

1 Introduction

One major issue in the study of database query languages is their expressive power. Given a query
language, it is important to know if the language has enough power to express certain queries. Most
database languages have limited power; for example, the relational calculus and algebra cannot express
the transitive closure of a graph or the parity test. A large number of tools have been developed for
first-order logic (or equivalently, the relational calculus); these include Ehrenfeucht-Fraissé games
[13, 17], locality [18], 0-1 laws [15], Hanf’s technique [16, 24], the bounded degree property [36], etc.
We are especially interested in local properties of queries, first introduced by Gaifman [18]. These state
that the result of a query can be determined by looking at “small neighborhoods” of its arguments.



Expressiveness of database query languages remains one of the major motivations for research in finite
model theory. However, most of those tools developed are modified Ehrenfeucht-Fraissé games, whose
application often involves a rather intricate argument. Furthermore, most current tools are applicable
only to first-order logic and some of its extensions (like fragments of second-order logic [16], infinitary
logics [4], logics with counting [23], etc.); but they do not apply to languages that resemble real query
languages, like SQL.

The goal of this paper is to give a thorough study of local properties of queries in a context that goes
beyond the pure first-order case, and then apply the resulting tools to analyze expressive power of
SQL-like languages.

Languages like SQL differ from the relational calculus in that they have grouping constructs (modeled
by the SQL GROUPBY) and aggregate functions such as COUNT and AVG. After some initial investigation
of extended relational languages was done in [29, 40], first results on expressive power appeared in [7].
However, the results of [7] were based on the assumption that the deterministic and nondeterministic
logspace are different, and thus questions on the expressive power of SQL-like languages remained
open.

In the past few years, an intimate connection was discovered between relational languages with ag-
gregate functions and languages whose main data structures are bags rather than sets. There was a
flurry of activity in studying such languages, resulting in the thorough study of interdefinability of
their primitives [3, 32, 21|, complexity [21], optimization [6], equational theories [20] and, finally, the
limitations of their expressive power [36, 35]. In particular, it was shown in [36] that the transitive clo-
sure of a graph remains inexpressible even when grouping and aggregation are added to the relational
calculus. For a survey of the results in this area, see [22].

Since there was no tool available for studying languages with aggregate functions, the technique we
tried to use in [36] was the following. We tried to find a property possessed by the queries in our
language, which is not possessed by the transitive closure of a graph. The property we have in mind
is this: Think of a query ¢ that takes a graph as an input and returns a graph. We say that it has
the (graph) bounded degree property if for any k, if all in- and out-degrees in an input graph G do not
exceed k, then the number of distinct in- and out-degrees in the output graph ¢(G) is bounded by
some constant ¢, that depends only on k£ and ¢, and not on the graph G. It is clear that the transitive
closure query violates this property: just look at the transitive closure of a chain graph.

We have been able to prove that the bounded degree property holds for every relational calculus
graph query [36]. We have also demonstrated that it is a very convenient tool for establishing bounds
on expressive power, often much easier to apply than the games or other tools. However, we were
not able to prove in [36] that it extends to languages with aggregate functions. Instead, we showed
inexpressibility of the transitive closure in such a language by a direct brute-force argument, analyzing
the properties of queries restricted to very special classes of inputs (multicycles).

The question of whether relational calculus with grouping and aggregate functions has the bounded
degree property was the main open problem left in [36]. We also mentioned a possible approach
towards solving this problem. The proof of the bounded degree property for relational calculus was
based on Gaifman’s result that first-order formulae are local, in the sense as defined in [18]. The



locality result in [18] has two parts, and only one was used in our proof in [36]. It says that in order to
determine if a formula ¢(%) is satisfied on a tuple @, one only has to look at a small neighborhood of
a of a predetermined size. (The second part deals with sentences, and is irrelevant for the discussion
here.) Thus, we thought that it is of interest to give a general study of queries that satisfy this notion
of locality and, in particular, the expressiveness issues for such queries.

The purpose of this paper is twofold. First, we give a general study of local queries, their expressive
power, and more general notions of the bounded degree property. Second, we prove locality of certain
queries in an SQL-like language and show that this is enough to confirm that it has the bounded
degree property.

Organization In the next section, we introduce the notations. We do this in such a way that the
presentation of the results about locality and bounded degree properties is language-independent, and
can thus be applied to a number of languages, including first-order logic and some of its extensions. We
give formal definitions of local queries, and generalize the definition of the bounded degree property
to arbitrary queries. We also note that every relational calculus query is local.

In Section 3 we prove the main result about expressiveness of local queries. We show that the number
of different in- and out-degrees realized in the output of a graph query on an arbitrary structure is
bounded above by the number of nonisomorphic neighborhoods realized in the input structure, such
that the radius of these neighborhoods depends only on the query. We demonstrate some expressiveness
bounds that immediately follow from this result.

The main result of Section 4 is that every local query has the bounded degree property. We also show
how this result can be used to establish expressiveness bounds in the presence of some auxiliary data.

In Section 5 we look at some expected generalizations of the bounded degree property. One of them,
saying that the output of a query ¢ cannot have more than ¢ different in- and out-degrees, provided
the input has at most k different degrees, and ¢ depends only on ¢ and k, was conjectured to be true
for first-order queries. We show that, somewhat unexpectedly, there are first-order queries that violate
this and even a slightly weaker property.

In Section 6 we introduce our theoretical SQL-like language that extends relational calculus with
grouping and aggregate functions, and prove that it is local when restricted to unordered flat relations
whose degrees are bounded by a constant. Therefore, the language has the bounded degree property
over flat relations without ordering on the domain elements. This implies that it cannot express the
transitive closure, if there is no ordering on the domain elements. It also follows that first-order
queries with Hartig and Rescher (equicardinality and majority) quantifiers [43] have the bounded
degree property.

Finally, in Section 7 we apply our results to incremental maintenance of views, and show that SQL
and relational calculus are incapable of maintaining the transitive closure view even in the presence
of certain kinds of auxiliary data.

An extended abstract of this paper appeared in Proceedings of the 6th International Conference on



Database Theory [9].

2 Notations

We study queries on finite relational structures. A relational signature 7 is a set of relation symbols
{Ry, ..., R}, with an associated arity function. In what follows, p;(> 0) denotes the arity of R;.
By 7, we mean 7 extended with n new constant symbols. We use graphs in many examples. So we
denote the signature of graphs by 7g; this signature has one binary predicate, representing edges of
the graph.

A structure will be written as A = (A, Ry,..., R;), where A is a finite nonempty set called the universe
of A, and R; is the interpretation of R;, which is a subset of APi. When it does not lead to confusion,
we will write R; in place of R;. We use the symbol 2 to denote isomorphism of structures. The class
of finite T-structures is denoted by STRUCT|7].

We would like to make our results general enough to apply to a variety of languages. To this end, we
assume that a query is a formula ¢ (z1,...,z,,), where z1, ..., x,, are free variables. We also assume
the notion of |= between structures and formulas. (You may think of ¢ as a first-order formula in the
language of 7, and |= as the usual satisfaction relation.) Associated with a query 9 (z1,...,zy) is a
mapping ¥ of structures from STRUCT[7] to STRUCT|S,,], where Sy, is a symbol of arity m, defined
by U(A) = (A, {(a1,...,am) € A™| A= ¥(a1,...,amn)}). If m =2, the output of a query is a graph,
and we speak about graph queries. For convenience, queries are denoted by lower case Greek letters;
the associated mappings of structures are denoted by the corresponding upper case Greek letters.

The following definitions are quite standard; see [12, 18]. Given a structure A, its graph G(A) is
defined as (A, E) where (a,b) is in E iff there is a tuple i € R; for some i such that both a and
b are in £. Tt is also called the Gaifman graph of a structure, cf. [16]. The distance d(a,b) is
defined as the length of the shortest path from a to b in G(A). Note that the triangle inequality
holds: d(a,c) < d(a,b) + d(b,c). Given a € A, and r > 0, the r-sphere of a, denoted by S,(a), is
{b € A|d(a,b) <r}. Note that a € S,(a). For a tuple £, S,(t) = U,;Sr(a).

Given a tuple £ = (t1,...,t,), its -neighborhood N, (%) is defined as a 7, structure
(S, (0, Ty 0 S, (57 RN Sy (B 1 )

That is, the universe of N,(f) is S, (), the interpretation of the relations in 7 is obtained by restricting
them to the universe, and the n extra constants are the elements of 7.

Given a structure A, we define an equivalence relation a ~4 b iff Ny(a) = Ng(b). Note that since
Ng(a) and Ny(b) are structures of the signature 71, any isomorphism h : Ng(a) — Ny(b) is required to
satisfy h(a) =b.

We define ntp(d,.A) to be the number of ~; equivalence classes in A. That is, ntp(d,.A) is the number
of isomorphism types of d-neighborhoods in A.



Now we can give our main definition.

Definition 2.1 Given a query ¢(x1,...,z.), its locality rank is the minimal number r € N such
that, for every A € STRUCT]|7] and for every two m-ary vectors @, b of elements of A, it is the case
that N, (@) = N,(b) implies A |= (@) iff A = 4(b). If no such r exists, the locality rank is co. A
query is local if it has a finite locality rank. A language is local if every query in it is. a

Are there any interesting examples of local queries? An answer to this is provided by Gaifman’s
locality theorem [18] which implies, in our terminology, the following fact.

Fact 2.2 Every first-order (relational calculus) query is local. a

However, even the simplest fragment of second-order logic, monadic %1, is not local. Consider a
first-order formula 1y(z) in the language of one binary relational symbol E and two unary symbols
U and X that says the following: the interpretation of U is contained in the interpretation of X, no
predecessor of an element of U (in terms of the E relation) is in X, X is closed under E-successors,
and z is in X. Let 1(x) be 3X1g(x); it defines a query on graphs with a distinguished set of nodes
U. Assume that 1 is local, and its locality rank is r. Let G be the graph of a successor relation on d
elements, where d > 4r + 5 is odd. Let a be its middle element, and let b be an element that precedes
a and is at the distance at least r + 1 from the start node and a, and let ¢ be an element that is
preceded by a and is at the distance at least » + 1 from the end node and a. If we interpret U as
{a}, then N,(b) = N,(c). At the same time, 1/(c) holds, but 1(b) does not hold, proving that ¢ is not
local.

We shall see later that there are interesting examples of local queries, though restricted to some classes
of structures. We define these restricted classes of structures below. They play a central role in the

paper.

For a graph G, its degree set deg_set(G) is the set of all possible in- and out-degrees that are realized
in G. By deg(G) we denote the cardinality of deg_set(G); that is, the number of different in- and
out-degrees realized in G. We also define similar notions for arbitrary structures. Given a relation
R; in a structure A, degreej(Ri,a) is the number of tuples in R; whose jth component is a. Then
deg_set(A) is defined as the set of all degree;(R;,a) for R; € A and a € A. Finally, deg(A) is the
cardinality of deg_set(A).

The class of T-structures A with deg_set(A) C {0,1,...,k} is denoted by STRUCT[r]. We shall see
that many queries in relational calculus augmented with grouping and arithmetic constructs (this is
essentially plain SQL) are local when restricted to inputs from STRUCTY[7], for any fixed k. We also
see from this that first-order queries with Hartig and Rescher quantifiers [43] are local when restricted
to the same structures.

As was mentioned before, a certain notion of uniform behavior of queries on STRUCT[7,] was
introduced earlier in [36]. We say that a graph query (z,y) has the graph bounded degree



property if there exists a function f : N — Nsuch that deg(¥(G)) < f(k) for any G € STRUCT},[7g,).
It was shown in [36] that every first-order graph query has the graph bounded degree property.

3 Expressiveness of Local Queries

The goal of this section is to prove a general theorem characterizing outputs of local graph queries.
Informally, our main result says that if ¢ is a local query, then the Gaifman graph of ¥(A) cannot
be much more complex than the structure A itself. We first prove a theorem that states this result
for graph queries. From this and a lemma that determines the locality rank of a query defining the
Gaifman graph, we obtain our main result.

Recall that for any structure 4, the parameter deg(.A) shows how complex the structure looks globally,
that is, how many different degrees are realized in it. The parameter ntp(d,.4), for any fixed d > 0,
shows how many distinct small neighborhoods are realized in A. The first result of this section shows
the intimate connection between the parameter ntp(d,-) on an input to a local graph query and the
parameter deg(-) on the output. It can also be interpreted as saying that output of a local graph query
cannot be much more complex than its input.

Theorem 3.1 Let ¢(x,y) be a graph query on T-structures of finite locality rank r. Then for any
A € STRUCT7],
deg(¥(A)) < 2-ntp(3r+1,A4)

In fact, the number of distinct in-degrees in V(A) is at most ntp(3r + 1,.A), and the number of distinct
out-degrees in W(A) is at most ntp(3r + 1, A).

Proof. The key to our theorem is the observation that for any m > 0, when a large neighborhood of
a fixed point a and a large neighborhood of another fixed point b are isomorphic, it is possible to find
a permutation 7 on a smaller sphere S around a and b such that the m-neighborhoods of ¢ and x and
of b and 7(z) are isomorphic for all z € S. This observation is formalized in the lemma below, whose
proof is delayed until the end of the section.

Lemma 3.2 Let r be an arbitrary positive integer, and let d > 3r + 1. Assume that a =4 b in a
T-structure A. Then there is a permutation ™ on Sy ,(a,b) such that for every x € Syq_,(a,b), it is
the case that N,(a,x) = N, (b, m(z)).

To show how lemma 3.2 implies the theorem, let G' = (V, E’) be ¥(A). Let d = 3r + 1. Let a =4 b.
For every = & Soryi(a,b), Ny(a,z) = N,(b,z), since N,(a) = N,(b) and d(a,z),d(b,z) > 2r + 1.
(This follows immediately from Claims 3.7 and 3.9 in the proof of Lemma 3.2.) Thus, (a,z) € F'
iff (b,z) € E' by locality. Furthermore, by Lemma 3.2, for every z € Sy.11(a,b), (a,z) € E" iff
(b,m(z)) € E' by locality and the property of m. Hence a and b have the same outdegrees. A similar
argument shows that a and b have the same indegrees. Thus, the number of possible indegrees of G’ is
at most ntp(d, G) and the number of possible outdegrees of G’ is at most ntp(d, G). Hence degset(G’)
has at most 2 - ntp(d, G) elements. O



Before we give the proof of Lemma 3.2, let us give two simple applications to demonstrate Theorem
3.1’s usefulness in establishing expressiveness bounds. The second of these will be generalized in the
next section into a powerful result that lets us “compile away” Ehrenfeucht-Fraissé games from many
inexpressibility proofs.

Corollary 3.3 No local query can define the transitive closure of a graph.

Proof. Suppose 9(z,y) does define the transitive closure. Consider chains, which are graphs with
the edge-set of the form C),, = {(ag,a1),...,(an—1,an)} where all a;s are distinct. Since v defines the
transitive closure, deg(¥(C,)) = n + 1. For every d > 0, there are at most 2d + 1 non-isomorphic
d-neighborhoods in a chain. Thus, if the locality rank of %) is r, we obtain from Theorem 3.1 that
deg(V(@G)) is at most 4(3r+1)+2 for any chain graph G. Thus, 1 cannot define the transitive closure.
O

Corollary 3.4 Fvery local graph query has the graph bounded degree property.

Proof. If all in- and out-degrees in G are bounded by k, then the maximum number of non-isomorphic
d-neighborhoods depends only on k and d. Combining this with Theorem 3.1, we see that there is a
bound on deg(¥(G)) that depends only on k and r, the locality rank of ¢, which implies the graph
bounded degree property. O

The statement of Theorem 3.1 is not completely satisfactory, since it only deals with graph queries.
To generalize it to arbitrary queries, we look at the Gaifman graphs of the outputs. Recall that G(.A)
denotes the Gaifman graph of A. Now we can prove the following.

Theorem 3.5 Let ¢(x1,...,2,), n > 2, be a query on T-structures of finite locality rank r > 0. Then
there is a number m that depends only on n and r such that, for any A € STRUCT[7], the number of
distinct degrees in the Gaifman graph of V(A) does not exceed ntp(m,.A). In fact,

deg(G(T(A))) < ntp(3"1r+ %(3"*1 _1),A)

Proof. We prove this theorem by reduction to graph queries. Given a query ¢(z1,...,z,), n >
2, let ¢'(z1,...,2p—1) be defined as follows. For a structure A with universe A, we let A |=
Y'(ai,...,a,_1) iff for some a € A, and for some index 0 < ¢ < n — 1, it is the case that A |
Y(ai,...,a;,a,a;41,...,an,—1). Note that i = 0 means A = ¢(a,a1,...,a,—1) and i = n — 1 means

A ): w(a‘la' . 7an717a)-

Our key lemma is:

Lemma 3.6 Let 9(x1,...,zy,) be of locality rank r > 0. Then ' (z1,...,zn_1) is of locality rank
3r+1.



We postpone the proof of this lemma until the end of the section, and now show how it implies the
theorem. First, note that if ¢(z,y) is a graph query of locality rank r, and ¥*(z,y) is such that
A = ¢*(a,b) iff AE=(a,b) or A= 1p(b,a), then 1p* also has locality rank r.

For an arbitrary query ¥ (z1,...,%,), n > 2, define 1 (21, ...,z 1) =" (21, ..., Zn-1), Y2(T1,. .., Tn_2)
= i (z1,...,Tn_2), etc., until we obtain ¢o(z,y) = Pn_2(z,y). Let A | ¢(z,y) iff A= ¢po(z,y) or
A E ¢o(y,z). Tt is easy to see that A = ¢(a,b) iff (a, b) is in the Gaifman graph of ¥(A). From
Lemma 3.6, we see that the locality rank of ¢ is 3727 + % (3" 2 —1). The observation we made above
about ¥* shows that the query returnlng the Gaifman graph of the result of an n-ary query of locality
rank r has locality rank ro = 3"~?r + (372 — 1) for any n > 2.

Now applying Theorem 3.1, we obtain that the number of different indegrees in G(¥(A)) is at most
ntp(3rg +1,.A4). Since G(V¥(A)) is undirected, we obtain from this that deg(G(¥(A))) is at most
ntp(3"'r + (3”71 — 1), A), thus proving the theorem. O

As a side remark, note that for the case n = 2, Theorem 3.5 yields deg(G(¥(A))) < ntp(3r +1,.4),
while Theorem 3.1 gives deg(¥(A)) < 2-ntp(3r+ 1,.A). The reason for losing the factor of 2 is
that in the former case we deal with undirected graphs, for which in-degree of each node equals its
out-degree.

The remainder of this section is devoted to proving Lemmas 3.2 and 3.6.

Proof of Lemma 3.2. The proof requires several steps. Let us begin with a few general observations
about neighborhoods.

Claim 3.7 Let N,,(a) and Ny, (b) be isomorphic and let h be an isomorphism between them. Then,
for 1l < m, h restricted to Si(a) is an isomorphism between Ni(a) and N;(b).

Proof. It is enough to show that this restriction of h maps Sj(a) onto S;(b); the rest will follow from
the fact that h is an isomorphism. Let z € Sj(a); then we can find some elements zi,...,z; and
tuples ﬂ,.. tl+1 such that : < [; a,z1 € t1, T1,T2 € t2,.. 31X, T € tl+1 and each t] € R, for some
s. Applying h, we get b, h(x1) € h(£1); h(z1), h(z2) € h(f2);...;h(z;), h( ) € h(t;11). Moreover, since
h is an isomorphism between N, (a) and N, (b), we get that each h(t;) € Rs N Sy (b)Ps for some s.
From this we immediately see that h(z) € S;(b). Now, applying the same argument to h~!' we obtain
that for each y € Sj(b), h=1(y) € S(a), and thus h restricted to Sj(a) maps S;(a) onto S(b). O

Claim 3.8 Let h be an isomorphism between Np,(a) and Np,(b). Let T be a tuple from Si(a). Assume
that k +1 <m. Then h(Sk(Z)) = Sk(h(Z)). In particular, Ni(Z) and Ni(h(Z)) are isomorphic.

Proof. The proof above applies verbatim to show that for any z with d(a,z) <, the isomorphism h
maps Sk(z) onto Sk(h(z)) for K < m —I[. Thus, h maps Si(Z) onto Sk(h(Z)). Using this together with
the fact that A is an isomorphism and Si (%) C Sy, (a) and Sk (h(Z)) C S (b) we obtain as desired that
Ni(%) and Ng(h(Z)) are isomorphic. O



We now return to proving Lemma 3.2. First, note the following. Assume d(z,y) > 2r + 1. Then, for
any 7-relation in the structure N,(z,y), and any tuple ¢ in that relation, either all components of ¢
belong to S, (z), or all components of ¢ belong to S, (y). Indeed, if there is a tuple with components
a € Sy(x) and b € S,(y), then d(x,y) < d(z,a) + d(a,b) + d(b,y) < 2r + 1. In such a case (that is,
when d(z,y) > 2r + 1) we also say that N,(z,y) is the disjoint union of N,(z) and N,(y). Note that
N, (z,y) is a e-structure, but both N,.(z) and N,(y) are 7i-structures. The following claim will be
used often in the proof.

Claim 3.9 Assume that d(z,y) > 2r + 1 and d(2',y') > 2r + 1. Assume also that N,(z) = N,(z')
and N, (y) = N, (y'). Then N,(z,y) = N,.(«',y). O

Indeed, using the observation above, we can define the isomorphism component-wise.

Now, let d > 3r + 1 (so that d —r > 2r + 1) and a =4 b. Fix an isomorphism h : Ny(a) — Ng(b); in
particular h(a) = b. There are two cases.

Case 1: Sy_,(a) N Sq—r(b) = 0. Then we define 7 as follows:

r(z) = { hz)  ifz € Sq,(a)
T ] B Nz) ifz € Sy, (b)

If z € S4_r(a), then N,(a,z) C Ng(a) and hence N,(a,z) = N,.(h(a),h(z)) = N, (b,n(z)). If z €
Sq_r(b), then N,.(a,z) is the disjoint union of N, (a) and N, (z) and hence is isomorphic to the disjoint
union of N,.(b) and N,.(h~!(z)) = N,(r(z)), that is, to N,.(b,w(x)). This proves Case 1.

Case 2: Sq_r(a) N Sq_»(b) # 0. We need a few definitions first. Let N* = S; ,.(a) — Sq_(b),
= Si—r(b) — Sg—r(a), and X = str(a) N Syg—r(b). Then we define the following sets:

Ay = {ze€N®|h(z) e X}
A = h(4)) CX

By = {zeN’|h ' (z)e X}
By = h Y By CX

M® = N°®— A

Mb = N®- B,

X0 = X—(A1UBl)

It is not hard to see that these 7 sets cover Sy ,(a,b) and that in fact only A; and Bj can have
nonempty intersection.

We first note that if z € M?, then h(x) € M°. Indeed, since h(z) € Sq_,(b), we have h(z) € A;UXyU
ByUB; UM?. Since h(z) ¢ X (otherwise we would have = € Ay), we have h(z) € ByUM". Assuming
h(z) € By, we get © = h~'(h(z)) € By, which contradicts the assumption. Hence, h(z) € MP.
Similarly, if y € M?, then A~ (y) € M®.



Claim 3.10 For any © € Ay there is m > 1 such that h™(z) € By.

Proof. We have y = h(z) € A;. By the above remark, h(y) = h%(z) ¢ M. If h(y) € Aj, then
y € Ag, which is impossible since Ag N Ay = (). Thus, for y € Ay, we have h(y) € Xo U By U By; in
particular, h?(z) € Xo U By U By. If h%(z) € By, we are done; if h?(z) € By then h3(z) € By and we
are done. Otherwise we see that h3(z) € Xo U By; so again if we have h3(z) € By, then h'(z) € By.
Continuing, we see that the only possible way for A™(z) to be outside of By is if we have h’(z) € X,
for every i > 1. Since X| is finite, we have that hi(x) = h/(z) for some j > i > 1; we assume that i is
the minimal such. Then h(h*~'(z)) = h(h?~!(z)) but A~ (z) # h/~'(z), which contradict injectivity
of h. This shows that ™ (z) € By for some m. O

Claim 3.11 For any y € By there is © € Ay and m > 1 such that K™ (z) = y.

Proof. The argument is just dual to the proof above. Apply the proof above to h™! to get = € Ag
by a number of applications of A~ 1. O

Using Claims 3.10 and 3.11, we define a function p : Ay — By by letting p(z) be h™(x), where m is
the minimum such that A" (z) € By.

Claim 3.12 The function p is 1-1 and onto.

Proof. Tt follows from Claim 3.11 that p is onto. To see that it is 1-1, assume that p(z) = p(z’) for
some z,z' € Ag. Then for some m,m' > 1, p(z) = h™(z) and p(z') = K™ (2). Assume without loss
of generality that m > m/ and applying h~' m/ times, we obtain ™" () = z/. Since no h-image of
an element of Ay can be in Ay, we get m = m/ and thus z = 7’. O

Claim 3.13 For every x € Ay, Ny(z) = N,(p(x)).

Proof. Let p(z) = h™(x) for m > 1. Tt follows from the proof of Claim 3.10 that = = h%(z), h(z),...,
h™=Y(z) € Sq_r(a). Thus, for every 0 < i < m — 1, S,(h*(x)) C Sy(a) and hence h is defined on
all these spheres. Applying Claim 3.8 we see N, (h'(z)) = N,(h**'(z)) for any i < m — 1. Thus
Np(z) = Ny (h™(z)) = Np(p(z)). O

Now we define the map 7 by cases:

(7) if z € Sqg_r(a)
“z) ifze M
—z) ifz € By

w(x) =

ST

Claim 3.14 7 is a permutation on Sq_,(a,b).

Proof. It follows from the definition that = is defined everywhere on Sy_,(a,b). To see that « is
injective, note that each of its components is, so we only need to consider cases when two arguments
correspond to different cases in the definition of =.
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Now for the case where z € Sy_,(a) and y € M, we have 7(x) = h(z) € Sq_,(b) and 7(y) = h~'(y) €
M?; hence 7(z) # n(y). For the case where z € Sy ,(a) and y € By, we have again w(z) € Sy, (b)
and 7(y) = p~'(y) € Ap; hence n(x) # m(y). For the case where z € M?® and y € By, we have
m(x) € M* and 7(y) € Ap and again m(z) # 7(y).

It remains to show that 7 is onto. First, all Sq_,(b) is covered since h is an isomorphism. Let z € M?®.
Then y = h(z) € M® and = = n(y) = h~'(h(z)). Finally, if 2 € Ag, then for y = p(x) € By we have
z =n(y). 0

Claim 3.15 For any z € Sq_,(a) U Sq_,(b), Ny(a,x) = N,(b, 7(x)).

Proof. We need to consider three cases, corresponding to the definition of . The first case is
when z € Sy_,(a). Then S;(a,z) C Sy(a) and we have, by Claim 3.8, N;(a,z) = N,(h(a),h(z)) =
N, (b,7(x)). The second case is when z € M®’. Then N,(a,z) is the disjoint union of N,(a) and
N,(z). Since nn(z) = h~'(z) € M®, N, (b, m(x)) is the disjoint union of N,.(b) and N, (r(z)) and we get
Ny(a,z) = N,(b,7(x)) from N,(z) = N,(h~'(z)). The third and final case is when = € By. Here we
know that for y = p~'(z) = n(z), Ny(y) = N,(z). Thus, N,(a,z) is the disjoint union of N,(a) and
N, (z), and is thus isomorphic to the disjoint union of N, (b) and N, (y), which is N, (b, w(z)). O

This finishes the proof of Case 2, and thus the lemma.

Proof of Lemma 3.6. Fix A € STRUCT|r]. Let @ = (a1,...,an_1) and b = (by,...,b,_1) be
such that N3.;1(@) = N3,11(b). Let f be an isomorphism. To prove the lemma, we must show that

A = ' (d@) implies A = ().

Let A | 4/(@). Then A [= 1 (d’) where d@' is obtained from @ by inserting a new element a as one of
the components. Without loss of generality, we assume that A | 1 (a1,...,a,-1,a) for some a € A.
We now show that there exists b € A such that A = (by,...,bp—1,b).

First, we consider the case when d(a,a;) < 2r + 1 for some a;; that is, a € Sg,41(@). Then S;(a) C
S3,41(@), and from this we conclude that N, (a1,...,ap—1,a) = Np(b1,...,by—1, f(a)). Thus, b can be
taken to be f(a).

Now assume that d(a,a;) > 2r + 1 for alli = 1,...,n — 1. Then N,(a1,...,ap_1,a) is the disjoint
union of N, (@) and N,(a) in the same sense as defined in the proof of Lemma 3.2. Now we claim that

=

there exists a b € A such that b & So.11(b) and N,.(b) = N,(a). Note that this is sufficient to conclude

the lemma: for such an element b, we have that N,(by,...,b,_1,b) is the disjoint union of Nr(g) and
N, (b) and thus, by Claim 3.9, it is isomorphic to N;(a1,...,an—1,a). Thus, A |=¢¥(b1,...,bp_1,b).

To prove the existence of b, first notice that if a & S2r+1(5), then we can just take b to be a. Thus,
we assume a € Sg,;1(b). Therefore, S,(a) C S3,41(b), and thus for by = f~'(a) we have N,(by) =
N,.(a). Notice that by € Sa,41(a@) since f~! is the isomorphism of N3, y1(b) and N3, 1(a@). Now, if

=

by & Sor+1(b), then we are done.
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Assume by € Sor41(b) and define by = f~'(by). As before, N, (bg) = N, (b;) (and thus N, (by) = N, (b)
and by € Sopy1(@). If by & SQ,«_H((;), we are done; otherwise we continue this process by constructing
by = f~1(b1),b3 = f~(by), etc. One possibility is that this process never ends, that is, for each i and
b; € Sor41(@) N Sar11(b) we have that by = f(b;) is again in Sy, 1(b) (and also in S, 11 (@)). Since
Sor41(@) N SQT+1(5) is finite, we can find the lexicographically minimal pair (7, 7) with j > i such that
bj = b;. If i =0, then a = f(by) = f(b;) = bj—1 € Sor41(d), which contradicts a & Sor41(d). If i > 0,

then b;_1 = f(b;) = f(b;) = bj_1, contradicting the minimality of (4, j).

Thus, the process of constructing the sequence by, by, ... eventually stops when we have b; € Sy, 11(@)N
SQT+1(b) such that bi+1 = f_l(bz) Q SQT+1(b). Since Nr(bi+1) = Nr(bz) =...= Nr(bo) = Nr(a), we

=

find an element b = b; ;1 such that b & So,11(b) and N, (b) = N,.(a). This concludes the proof. a

4 Bounded Degree Property

A very convenient form of the locality property is called the bounded degree property. It says that for
structures from STRUCT[7] (that is, 7-structures in which no degree exceeds k), there is an upper
bound on deg(¥(A)) that depends only on 1 and k. A special case of this property is the graph
bounded degree property mentioned in Section 2. This special case was established for all first-order
queries from graphs to graphs in [36] (see also Corollary 3.4).

Definition 4.1 A query 9 (z1,...,zy,) is said to have the bounded degree property, or BDP, if
there is a function fy : N — N such that deg(¥(A)) < fy(k) for every A € STRUCT,[7]. O

This property can be used as an easy-to-apply tool for establishing expressiveness bounds of queries.
Assume that it is known that every query in a language £ has the BDP. To show that some query g is
not definable in £, one has to find a number k and a class C of input structures in STRUCT[7] such
that ¢(A) can realize arbitrarily large sets of degrees on structures A from C. This is exactly the idea
of the proof of Corollary 3.3.

The usefulness of BDP as a tool for proving expressiveness bounds on first-order graph queries was
demonstrated in [36]. In this section we prove that every local query has the BDP. From this we
can derive generalizations of the result of [36]. For instance, we show that we can use essentially the
technique outlined above in the presence of some auxiliary relations, such as the successor relation, or
relations of moderate degree [16].

Theorem 4.2 Ewvery local query has the bounded degree property.

The proof of this result, which is a generalization of Corollary 3.4, is delayed until the end of the
section. For now let us discuss some implications of this result. As a start, we note that the graph
bounded degree property result from [36] applies only to queries from graphs to graphs. One may
ask what happens in the presence of auxiliary information, such as the successor relation. Since the
successor relation only adds 0 and 1 to the degree set, we obtain immediately
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Corollary 4.3 The graph bounded degree property of first-order queries continues to hold in the pres-
ence of a successor relation. O

But what happens if relations more complex than the successor are allowed? For instance, what
happens if we allow auxiliary relations whose degrees are not bounded by any constant, but are still
not very large? We can answer this question by using the (slightly modified) notion of moderate degree
from [16].

Consider a class of structures C C STRUCT]|r] for some relational vocabulary 7. Define a function
s¢ : N = N by letting s¢(n) be the maximal possible in- or out-degree in some n-element structure
A € C. Given an increasing function g : N — R such that g is not bounded by any constant, we
say that C is of g-moderate degree if sc(n) < log?") g(n) for all n. That is, we have a function
§ : N — N such that lim,_,0 8(n) = 0 and sc(n) < log®™ g(n). When ¢ is the identity, we have the
definition of moderate degree of [16].

Proposition 4.4 Let ¢ be a local query. Let C be a class of structures of g-moderate degree. Then
there is N € N such that for any A € C with card(A) =n > N, we have

deg(V(A)) < g(n).

Proof. According to the proof of Theorem 4.2 to be presented shortly, for any A € C of cardinality
n, and for appropriately chosen constants ¢ and d,

deg(T(A)) < 2oscm)!

(n)—1

Since g(n) is not bounded by any constant, for each pair of constants C',D > 0, we have log? 0 g(n) <

C for large enough n. Applying this to D = d and C = 1/c we get, for large enough n,
1
Ve
Hence, log?™ g(n) < % -logé g(n), which implies s¢(n) < % -logé g(n). It follows that csc(n)? <
log g(n) and hence 2¢5¢(M" < g(n). Then deg(T(A)) < 2¢5¢™” implies deg(T(A)) < g(n). O

{/log®(m)—1 g(n) <

The transitive closure of a chain has as many distinct degrees as there are links in the chain. Tt is thus
not definable by a local query even when auxiliary data of moderate degree are available. We thus
have an example of a problem complete for DLOGSPACE [28] that cannot be definable by a local
query even in the presence of relations of moderate degree.

More applications of the BDP in the presence of auxiliary relations are given in Section 7. For now,
let us provide the proof of Theorem 4.2. We need to show that given a local query ¥ (x1,...,2Zpn),
there is a function fy : N — N such that deg(¥(A)) < fy(k) for every A € STRUCT[7].

Fix a STRUCT[7] structure A. Fix a local query ¢(xi,...,zy). Assume m > 1; otherwise the
output is a unary relation and deg(¥(A)) is at most 2. Assume that each relation symbol R; in 7 has
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arity p;, 1 <14 <I[. Let p =, pi. Let r be the locality rank of ¢ (z1,...,%s). Assume without loss of
generality that » > 0. Let s4(d) be the maximum size of Sy(a) for a € A. Let degree;(x) be the ith
degree of = in the output of ¢). Under these assumptions, we claim

Lemma 4.5 Let d = (2m — 2)(2r + 1). Suppose a =4 b and Sy(a) N Sy(b) = 0. Then |degree,(a) —
degreeq (b)| < (25.4(d))™ ',

Proof. We define a permutation « on the set of (m — 1)-vectors ¢ from A™ ! — S;(a,b)™ ! such that
A = tp(a,t) iff A= (b, 7(t). By ¢(a,t), where t = (t1,...,tym 1), we mean ¢(a,ty, ..., ty_1). If we
can find such 7, then the maximal difference between degree,(a) and degree, (b) is the maximal number
of (m — 1)-tuples having all their components in Sy(a,b). Such a number is at most (2s4(d))™ .

To define such a map 7, we have to partition each vector ¢ = (t1,...,t;m—1) that does not belong to
S4(a,b)™ ! into two subvectors, whose respective 2r + 1-spheres do not intersect. This will allow us
to give a definition by cases. The partition is achieved by means of the following construction that
uses a sequence of embedded spheres within Sy(a,b).

Let h : Ng(a) — Ng(b) be an isomorphism. We define the map h* : Sy(a,b) — Sy(a,b) by letting
h*(z) = z for z € Sy(a) and h*(z) = h~!(x) for z € Sy(b) (recall that Sy(a) N Sy(b) = 0). Next, define
Sl to be Sopy1(z), and let S% = Sicar+1) (%) — Si—1)(2r41)(z) for i > 1.

First we consider the case when S! = () for some i < 2m — 2. If this is so, then S(i_l)(2r+1)(a)
is the set of nodes of a connected component in G(A). From this and a ~4 b we conclude that
S(i—1)(2r+1)(D) is the set of nodes of a connected component in G(A), and S(;_1)(2,41)(a) = S (a) and
S(i—1)(2r+1)(b) = Sg (b) for any d' > (i — 1)(2r + 1). Let t be any vector not contained in Sy(a,b)™ .
Let , denote the components of # that belong to Sy(a), #, denote the components of  that belong to
Sq(b), and to denote the remaining components. Then we see that Sgr+1(fa), 527-+1(E;)) and SQT+1(EE])
are pairwise disjoint. Thus, for each such #, we define 7(¢) by applying h* on the components of 7,
and t;, and the identity function on #y. It is easy to see that « is a permutation, and it follows from
Claim 3.9 that N,(a,f) = N, (b, 7(t)).

Now we consider the case when none of S! and Sg is empty for i < 2m — 2. We claim that for any
vector £ = (t1,...,tm—1) that does not belong to Sg(a,b)™ !, there exists i < 2m — 2 such that no t;
is in S’ U S.. Indeed, since t & Sy(a,b)™ !, we have that at most m — 2 of its components belong to
Sa(a) U Sq(b). Since Sy(a) is the disjoint union ;<92 SJ and similarly Sy(b) is the disjoint union
Uj<am-—2 Sg, we see that at least m of SJ’s do not contain any element of #, and at least m of Sg’s do
not contain any element of . Thus, there is a j such that neither SJ nor S’Z contains an element of .
So we define the set Ir= {j < 2m —2 | #N(SJUSJ)) = 0}. Since Iy # 0, define iz as the minimum
element of this set.

For any vector £, we define #; as its subvector consisting of those components that belong to [J j <Z~E(Sg U

S7), and t) as the vector containing the remaining components of . Note that for any £ & Sy(a,b)™ *,
t) is nonempty.

We are now ready to define the map w. Given a vector #, if iy = 1, then W(f) is defined to be f.
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Otherwise, W(f) is obtained by applying h* to each component of #y, and leaving #; intact. It is easy
to see that on vectors with some components not in Sy(a,b)™ !, the mapping 7 is injective. Since h
is an isomorphism and Sg(a) N S4(b) = (), there exists an inverse to h*. This shows that 7 is onto: for
any t = to U t;, apply the inverse of h* to f to obtain a new vector . Then § = 5, U {; is mapped
by 7 onto £. Indeed, since A is an isomorphism, iy = ip, and thus 7(5) = t.

Finally, we show that for any ¢ & Sy(a,b)™ ', N,(a,t) is isomorphic to N,(b,n(Z)). From this by
locality we obtain A k= t(a,t) iff A |= 4(b, 7(f)). By definition of #, and #;, their components are at
least at the distance 2r+1, and hence N, (a, ) is the disjoint union of N, (a, to) and N, (f). Since h is an
isomorphism, every element of S = Uj<z~€(Sg U S}) is mapped onto an element of S. Hence, N, (b, n(t))
is the disjoint union of N, (b, h*(ty)) and N, (). Let #y; denote the components of #y in Sy(a), and %oy
denote the components of Zy in Sy(b). Then N, (a,ty) is the disjoint union of N, (@,%o;) and N, (fp2),
and N, (b, h* (%)) is the disjoint union of N, (b, h(fo1)) and Ny (h~*(fg2)). Since N, (a,ty) = N, (b, h(io1))
and N, (fo2) = N,(h~'(fo2)), we obtain that N, (a,fy) = N, (b, h*(fy)) and thus N, (a,t) is isomorphic
to N, (b, 7 (t)). O

Under the same assumptions as Lemma 4.5, we claim

Proposition 4.6 Let s = s4((4m — 4)(2r +1)). Then deg(¥(A)) < m - s™ - 21+m+Is”,

Proof. Let d = (2m — 2)(2r + 1). It follows from Lemma 4.5 that for any a € A,
card({degree, (b) | brqa}) < 2(2s4(d)™ ! + 1+ s4(2d).

Indeed, for any b ~; a such that b € Ss4(a), we have Sy(a) N Sy(b) = 0, and thus by Lemma 4.5
the difference between degree, (a) and degree, (b) is at most (2s.4(d))™ '. Hence, elements outside of
Soq(a) contribute at most 2(254(d))™ " + 1 elements to the set {degree,(b) | b ~4 a}, from which
the observation follows. Multiplying this by m, we obtain the number of different degrees for each
isomorphism type of d-neighborhoods. Thus,

deg(U(A)) < m-ntp(d, A) - (2(254(d)™ " + 1+ s4(2d))

The number ntp(d,.A) is bounded above by the number of nonisomorphic structures of signature 7y
that have at most s4(d) elements. That is, ntp(d, A) < s4(d) [T'e; 2°4D" < s4(d) - 254D7 | Let
s = 54(2d). Since s4(d) < s and s > 1 (because A # ), we obtain deg(¥(A)) < ms2!*" (2(2s)™ 1 +
1+ 5) < ms2ls” (2mHlgm=1) = . gm . QlFmAls?, 0

Finally, we can complete the proof of Theorem 4.2. By assumption, deg_set(A) C {0,...,k}. Thus
S_A(d) < (mkp + 1)d. Let f¢(l§) = m - (mkp + 1)(4m74)(2r+1)m . 21+m+l(mkp+1)P(4m—4)(2r+1)
apply Proposition 4.6 and conclude deg(V(A)) < f, (k) as desired.

. Then we

Thus, all local queries have the bounded degree property. However, the converse is not true. That is,
there is a non-local query that has the bounded degree property. Indeed, let 1(z,y) be a graph query

15



defined as follows. If G is the union of disjoint chains having a unique longest chain, then G |= ¥ (z, y)
iff (z,y) is an edge in the unique longest chain in G; otherwise, G [~ ¢(z,y) for all z,y. It is clear
that 1 has the bounded degree property but violates locality. Nevertheless, it should be pointed out
that adding this v to first-order logic destoys the bounded degree property of the latter.

5 Stronger Bounded Degree Properties

The astute reader may have noticed a certain asymmetry in the statement of the bounded degree
property: We make an assumption about the degree set deg_set(A), and give a conclusion that there
is an upper bound on the degree count deg(V(A)). So, the question arises: Can the bounded degree
property be strengthened? In what follows, we present two most obvious attempts to strengthen it.
It was conjectured that both of them hold for first-order logic, but we show that this is not the case.
Consequently, not all local queries possess these stronger properties.

Definition 5.1 A query v has the strong bounded degree property, or SBDP, if there exists a
function fy : N = N such that deg(¥(A)) < fy(deg(A)) for any structure A. O

Definition 5.2 A query 9 has the interval bounded degree property, or IBDP, if there exists
a function fy, : N — N such that deg(¥(A)) < fy(k) for any structure A with max deg_set(A) —
min deg_set(A) < k. O

It is easy to see that the SBDP implies the IBDP and the IBDP implies the BDP. It turns out
somewhat unexpectedly that there are first-order graph queries that do not have them.

Theorem 5.3 There are first-order graph queries that do not have the interval bounded degree prop-
erty. Consequently, they do not have the strong bounded degree property either.

Thus, in contrast to Theorem 4.2, we conclude that

Corollary 5.4 There are local queries that do not possess the interval or the strong bounded degree
properties. O

The remainder of this section is devoted to proving Theorem 5.3. We need to construct a first-order
graph query that does not have the IBDP. First fix n > 3, four disjoint sets X = {z1,...,z,},
Y ={y1,...,yn}, C={c1,...,cn}, D ={dy,...,d,}, and a permutation 7 : {1,...,n} — {1,...,n}.
Define the graph G as follows. Its set of nodes N is X UY UC U D U{a,b,c}. Its edges are given as
follows:

e There are loops (a,a), (b,b), (¢,c) and also edges (b, c) and (c, b).
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For each i < n, there are edges (z;, ;1) and (y;, yi+1)-

For each i < n, there is an edge (7, Yr(i))-

For each 7 < n, there are edges (aaxi)a (xiaa)a (ba yi)a (yia b)a (Ca yi)a (yia C)'

For each ¢ <n and j < n, there are edges (z;,¢;), (¢j,vi), (vi,d;), (dj, z;).

There are no other edges.

It follows straightforwardly from the construction that deg_set(G,) = {n,n+ 1,n+2,n+ 3,n + 4}.

There is a first order formula A(-) in the language of graphs, which has only a binary predicate E(-, ),
that is true in G only for the node a: This is so because a is the only node with loop that does not
have an edge to another node with loop. Looking for other nodes with loops we get that there is a
formula BC(-) that is only true of b and ¢. From this we conclude that there are formulae X (-) true
only of x;’s (these have edges to and from a) and Y'(-) true only of y;’s (these have edges to and from
b and c¢). Note that the edges of the graph of the function m are the only edges between z’s and y’s.

Define the graph G, as the disjoint union of G for all permutations 7. That is, G, has n! connected
components and (4n + 3) - n! nodes.

For any finite number of variables 21, ..., 2, there is a formula same,, (21, . .., zp,) true only if z;’s are
in the same component: This is true because the transitive-symmetric closure of GG;, can be constructed
in 4 iterations.

Now define the v (z,y) as follows:
A(2) NY (y)A
(Fz32' 3y . sames (z,y, z, 2",y ) AN X () AN X (") NY (YA
E(z,z") N E(y,y')A
E(z,y) N E(z',y))
and finally define the first-order graph query ¥ as U(G) = {(z,v) | G = ¢¥(z,v)}. The two claims

below give us a family of graphs G, such that each G, has a degree set consisting of 5 consecutive
integers, but deg(¥(G)) > n — 3. The theorem follows immediately.

Claim 5.5 deg_set(G,) = {n,n+1,n+2,n+3,n+4}

Proof. Immediate by construction, because taking disjoint union of G;’s we cannot introduce more
in- and out-degrees. a

Claim 5.6 For any i <n —2, i € deg_set(¥(G)).

Proof. For each i < n — 2, consider a permutation 7 that does the following: for every 7 <14+ 1,
7(7) = j, and for every j > i+ 1, m(j) =n — j + i+ 2. Then on the nodes of G, with such a m, we
get that exactly the pairs (a,y;), where j < ¢, can satisfy ¢. So in ¥(G,,) for this 7 the node a has
outdegree ¢. This finishes the claim and thus the theorem. O
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As a closing remark, note that if we only want to show that there are first-order queries that do not
have the SBDP, we can simplify the construction above. Instead of G, consider G!. with X UY U{a}
as the set of nodes and edges (zi, Zi+1), (i, yi+1) for i <n, (a,z;) and (74, yr(;)) for i <n, and (a, a).
Define G/, as the disjoint union of G,s. We can still test for the a, z or y nodes, and if a number
of nodes are in the same component. Now we see that deg_set(G) = {0,1,2,n}, but again for each
i <n—2 we get that i € deg_set(¥(G],)) for the same 1) as before.

6 Aggregation, SQL, and the Bounded Degree Property

In this section, we investigate locality and the bounded degree property in the context of SQL-like
languages. We start by briefly describing the syntax and semantics of the theoretical SQL-like language
to be analyzed. Two main features that distinguish (plain) SQL from the relational calculus are
grouping (the SQL GROUPBY operator) and aggregate functions (such as COUNT and AVG). Our languages
incorporate these features in a clean analyzable way. We then show how the notions of locality
and bounded degree extend to queries in our language. The main result is that queries naturally
representing those on STRUCT[7] are local for every fixed k. Consequently, such queries have the
BDP, and thus many inexpressibility proofs carry over from the first-order case to SQL.

Let us start with the syntax and semantics of our SQL-like language. The data types that can be
manipulated in the language are given by the grammar:

su=b|B| Qs X+ Xsy,|{s}

Elements of the base type b are drawn from an unspecified infinite domain. The type B contains
the two Boolean objects true and false. The type Q contains the rational numbers. Elements of the
product type s1 X - -+ X 8, are n-tuples whose ith component is of type s;. Finally, elements of the set
type {s} are finite sets whose elements are of type s.

We present the language incrementally. We start from N'RC(=), which is equivalent to the usual
nested relational algebra [2, 5]. To obtain our SQL-like language we add arithmetic and a summation
operation to model aggregation. The syntax and typing rules of N'RC(=) is given below, using the
standard notations of programming language theory [19].

z5:s c:Q
e1:B ex:s e3:s e1:8 €2:8
true : B false : B if e1 then e else ez : s e1 —e: B
€:81 X+ X S8p €1 81 €n : Sp
me:S; (e1y...,6n) 181 X -+ X 8p

e:s e1:{s} ex:{s} er: {t} ex:{s}
{3 {sk e} :{s} e1Ues : {s} Ufer | 2° € ea} : {t}
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We often omit the type superscripts as they can be inferred. Let us briefly recall the semantics, cf. [5].
Variables z° are available for each type s. Every rational constant is available. The operations for
Booleans, tupling, and projections are standard. {} forms the empty set. {e} forms the singleton set
containing e. e; Uey unions the two sets e; and e2. Finally, [J{e1 | € e2} maps the function f = Az.e;
over all elements in ey and then returns the union of the results; thus if e, is the set {o1,...,0,}, the
result of this operation would be f(01) U--- U f(o0,). For example, U{{(z,z)} | x € {1,2}} evaluates

to {(1,1),(2,2)}.

Given a type s, the height of s is defined as the nesting depth of set brackets in s. For example, the
usual flat relations (sets of tuples of base types) have height 1. Given an expression e, the height of
e is defined as the maximal height of all types that appear in the typing derivation of e. For example,
U{U{{(z,y)} | * € R} | y € S} is an expression of height 1 if both R and S are flat relations. It
is known [41, 44] that when restricted to expressions of height 1, N'RC(=) is equivalent to the usual
relational algebra. We also write N'RC(=;) when the equality test is restricted to base types b, B, and
Q. We sometimes list the free variables in an expression in brackets like: e(R, z).

As was mentioned, the practical database language SQL extends the relational calculus by having
arithmetic operations, a group-by operation, and various aggregate functions such as AVG, COUNT, SUM,
MIN, and MAX. It is known [5] that the group-by operator can already be simulated in N'RC(=). The
others need to be added. The arithmetic operators are the standard ones: +, —, -, and <+ of type
Q X Q — Q. Note that as we consider only well-defined queries, we will not encounter the situation
of dividing by zero using +. We also add the order on the rationals: <g: Q x Q — B. As to aggregate
functions, we add just the following construct

e1:Q eg:{s}
X{ler | 2® €ealt: Q

The semantics is this: map the function f = Ax.e; over all elements of eo and then add up the results.
Thus, if ey is the set {o1,...,0,}, it returns f(o1) +--- + f(op). For example, > {1 | z € X|} returns
the cardinality of X. Note that this is different from adding up the values in {f(01),..., f(on)}; in
the example above, doing so yields 1 as no duplicates are kept. To emphasize that duplicate values of
f are being added up, we use bag (multiset) brackets { [} in this construct.

We denote this theoretical reconstruction of SQL by N'RC?88". That is, N'RC?*$8" has all the constructs
of NRC(=), the arithmetic operations +, —, - and <+, the summation construct Y and the linear order
on the rationals.

Let us provide two examples to demonstrate how typical SQL queries involving aggregate functions
can be implemented in NRC?8". For the first example, consider the query that computes the to-
tal expenditure on male employees in various departments in a company. Let EMP : {name X
salary x sex X dept} be a relation that tabulates the name, salary, sex, and department of employ-
ees. The query in SQL is SELECT dept, SUM(salary) FROM EMP WHERE sex = ’male’ GROUP BY
dept. It can be expressed in NRC*®8 as U{{(Taept =, D {if Taept © = Taept y then if Tgeq y =
'male’ then Tgiary y else 0 else 0 | y € EMPJ})} | © € EMP}. For the second example, consider
the query that computes the number of distinct salaries of male employees in various departments in
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the same company. The query in SQL is SELECT dept, COUNT(distinct salary) FROM EMP WHERE
sex = ’male’ GROUP BY dept. Note that in this query, duplicate salary figures in a department are
eliminated before counting. It can be expressed in NRC*5" as U{{(7gept , D {1 | y € U{if Toept z =
Tgept T then if ey z = "male’ then {msqiary 2} else {} else {} | z € EMP}})} | ¢ € EMP}.

In fact, it was shown in [33, 36] that all (nested) applications of SQL aggregate functions mentioned
above can be implemented in NRC?8". Tt is also known [33, 36] that NRC?8" has the conservative
extension property. A language is said to have the conservative extension property if its expressive
power depends only on the height of input and output and is independent of the height of intermediate
data. Since N'RC?®8" has this nice property, to conform to SQL, it suffices to restrict our input and
output to height at most one.

Before, we assumed queries to be formulae ¢(z1,...,z,,), mapping structures of some relational
vocabulary 7 into m-ary relations, defined by U(A) = (4,{(a1,...,am) | a1,...,a; € AA |
Y(ai,...,am)}). Now we have to show how NRC?*$& -expressions correspond to queries. After this,
we shall be able to transfer the notions of locality and bounded degree to NRC?88",

First, we model 7-structures as tuples of objects of types of the form {b x ... x b}, with the arities
corresponding to those of the symbols in 7. We shall abbreviate b x ... X b, m times, as 0. A
relational query over STRUCT[r] in N'RC?88" is an N'RC*88" expression e of type {b™}, whose
free variables have types {b'},...,{bP'}, where p; is the arity of the ith symbol in 7. Given such an
expression, which we write as e(Ry,..., R;) or e(ﬁ), it can be considered as a query . as follows. We
let, for a 7-structure A over the domain of type b,

A |: d)e(ala' o 7am) iff (ala' o 7am) € 6("4)

In other words, the ¥, corresponding to the query v, is precisely e. (This is true because (ay,...,ay) €
e(A) implies that all a;s are in the universe of A.)

Now, for each relational query e, we say that it is local if ¢, is, and e’s locality rank is that of ..
Similarly, we define the bounded degree property of relational queries in N'RC*8". Finally, we say
that a query is local on a class of structures C C STRUCT]7] if the condition in the definition of
locality is satisfied on every structure from C (but not necessarily on every structure in STRUCT|7]).

Our main result is:

Theorem 6.1 For any fized k, every relational query in NRC*8" is local on STRUCT[7].

From here, applying verbatim the proof of Theorem 4.2, we conclude

Corollary 6.2 Relational queries in N'RC*®8" have the bounded degree property. a

Before we prove Theorem 6.1, let us state some corollaries. We immediately conclude from Corollary
6.2 that
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Corollary 6.3 (cf. [36]) N'RC*8" cannot express the following queries: (deterministic) transitive clo-
sure of a graph, connectivity test, testing for a (binary, ternary, etc.) tree. This continues to hold
when a built-in successor relation or any other built-in relations whose degrees do not exceed a fized
number k are available on the nodes. a

Recall that Hértig and Rescher quantifiers [43] are two generalized quantifiers for equal cardinality
and bigger cardinality respectively. Since these tests can be done in N'RC®*8", and also since every
first-order query is N'RC?##'-definable, we obtain:

Corollary 6.4 FEvery first-order query with Hdartig and Rescher quantifiers has the bounded degree
property. O

In the rest of the section we prove Theorem 6.1. We fix a vocabulary 7, and use R to denote a
T-structure, that is, a vector of relations of type of the form {b x --- x b}, with the ith one having
arity p;. We first give some technical definitions. Then we develop a normal form result from which
the desired theorem drops out readily.

6.1 New definitions

It is a fact that all first-order logic formulas can be rephrased as expressions of N'RC*88". So for the
sake of convenience, in the definitions below we will mix notations from N'RC?8" and first-order logic,
with the understanding that the first-order logic formulas in such mixed notations can be replaced by
equivalent expressions of NRC?88". Also, recall that in an N RC*8" expression such as J{e; | =z € R},
the variable z ranges over objects in R. Thus, if R is a relation of arity p, then x ranges over the tuples
of arity p in R. That is, N'RC?8" uses tuple variables. Note that individual components of tuples can
be accessed in N'RC?8" by using the projection operation. For example, the ith component of a tuple
t can be obtained as m; t. For consistency sake, we will also use tuple variables in our first-order logic
formulas below.

Definition 6.5 Let R denote a vector of relations of type of the form {bx --- xb}. Let Z denote a
vector of tuples of type of the form b x - - - X b appearing in these relations. A neighborhood formula
is an expression M (ﬁ, 7) : B of N'RC?#" that is equivalent to a first-order formula of the form given
below and moreover it must be satisfiable in the sense that there are sets & and tuples 7 such that
M (R, Z) is true and each tuple in Z is in some set amongst R.

e UR. ¥
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where all of the following must be satisfied.

e U(Z,y) is a quantifier-free formula that specifies the exact connections between the components
in tuples in Z and §. In other words, W (Z, ) specifies the equality type of tuples in Z# and .

That is, ¥(Z, ) is a conjunction: For each tuple ¢ in Z or ¥, for each tuple ¢’ in Z or ¢, for each
component z in ¢, and for each component 2’ in ¢, either z = 2’ is a conjunct of U(Z, %) or z # 2’
is a conjunct of ¥(Z, 7). Moreover, ¥(Z, i) has no other conjunct. (In the notations of N'RC?88",
the test z = 2’ can be written as m;t = 7;t', assuming that z is the ith component of ¢ and 2’ is
the i'th component of #'. The test z # 2’ can be similarly expressed.)

. Q(ﬁ, Z,7) is a quantifier-free formula that specifies exactly which tuples in # and ¢ are in which
of R; each of Z and ¢ must be in some R.

That is, Q(ﬁ, Z,9y) is a conjunction: For each tuple ¢ in & or ¢, and for each relation R in R,

either R(t) is a conjunct of Q(R, Z,7) , or =R(t) is a conjunct of Q(R, Z,7); and for each t in Z
or 7, there is a R in R such that R(t) is a conjunct of Q(R, Z, 7).

. A(ﬁ, Z,7) is a formula that specifies the degrees of the components of # and ¥ in R.

That is, the following must be specified for each tuple ¢ amongst ¥ and ¢, for each component
z of t, and for each possible combination of positions ps: the number of tuples ¢’ in # such that
t' is equal to z at every position listed in ps, the number of tuples ¢ in ¢ such that ' is equal
to z at every position listed in ps, and for each relation R, the number of tuples ¢’ in R that is
equal to z at every position listed in ps. That is, A(ﬁ, Z,7) is concerned only with the number
oj connections that the components of Z and 4 can have; it does not care about other tuples in
R.

e O(Z,7) is a quantifier-free formula that says tuples in ¢ are distinct and that they are distinct
from those in 7.

e O(,7,2) is a quantifier-free formula that says z has a component different from all components
of # and ¥ whenever z is not equal to any of these tuples. In other words, if z is not equal to
any tuple in Z and ¢/, then z must contain a component that is “new.” O

A neighborhood formula M (R, #) can be thought of as a complete description (diagram) of a small
neighborhood of Z in R. The “completeness” of the description is provided by the © part of the formula
M(R, ). The components that are “new” in the z in © are those objects not in the neighborhood.

Definition 6.6 A neighborhood formula M (ﬁ, %) is said to have radius r if the following two con-
ditions hold:

e All components of tuples in ¢ are at most r connections away from some components of tuples
in Z. The formula that expresses this fact is implied by the ¥(Z, ) part of M (R, ). Note that
the components of tuples in 7 are not required to be close to the same tuple in #. (A component
of a tuple ¢; is said to be r connections away from a component of a tuple ¢, if there are tuples
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ta, ..., t, such that each pair of tuples ¢; and ¢;,1 have a common component, for 1 < ¢ < r. This
is a straightforward generalization of the notion of path length of between nodes in a graph. For
this reason, we use the term “endpoint” to mean the same thing as a “component” of a tuple.)

e All components of tuples in Z and ¥ that are less than r connections away from any endpoints
of Z must have as many connections in W(Z, ) as their degrees specified by the A(R, Z, ) part
of M (ﬁ, #). This condition ensures that every object within r connections away from Z appears
within (%, 7). O

Here are a few facts about neighborhood formulas. These facts are used implicitly in the rewriting
required in Theorem 6.11.

e If each relation in E has degree at most k, then for any vector of tuples Z and for any r, the
number of possible (non-equivalent) neighborhood formulas of these tuples having radius r is
bounded.

e If two neighborhood formulas of the same tuples # in R have the same radius r and are consistent
with each other, then they are equivalent. (Two such formulas are consistent with each other if
they can be satisfied by the same Z and R.)

e If two neighborhood formulas of the same tuples in R have different radii but are consistent with
each other, then the one with the longer radius implies the one with the shorter radius.

Now we define topological parameters of multiple relations. These are defined in terms of the relations
and do not refer to any particular tuples. Note that they can be expressed in N'RC88".

Definition 6.7 A topological parameter of a relation R in R with respect to a neighborhood
formula M (R, z) having radius r is the number of = in R satisfying M (R, z). It is a number expressed
in NRC*8" as Y {|if M(R,z) then 1 else 0 | x € R]}. 0

Definition 6.8 A topological polynomial Q(ﬁ) is a “polynomial” defined in terms of topological
parameters of the R’s in R. That is, it is built up from numeric constants, topological parameters
fi(R), and arithmetic operators 4+, —, and -. For example, Q(R) can be 2- f1(R)- f1(R)+3- f2(R) +4.
O

—

Definition 6.9 A topological predicate P(R) is a Boolean combination of polynomial (in)equations
defined in terms of topological parameters of the R’s in R. For example, P(R) can be 2- f1(R)- f1(R)+

-

3-f2(R)+4<0. O

6.2 Normal form for relational queries in N'RC*#"

In this subsection we develop a normal form for SQL-like queries on unordered structures whose
degrees are bounded by a constant k. Using this normal form, we transfer many powerful results
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on relational calculus to SQL-like languages. In particular, N'RC?*$8" is shown to be local on these
structures and to possess the bounded degree property. To simplify the presentation, we look at the
situation of having multiple unordered input relations of arbitrary fixed arity. (The results generalize
easily to the situation where the relations are of different arities.)

The normal form to be developed shortly basically says that nested use of aggregate functions can be
eliminated from all queries provided the input structure has low degree. Thus to develop this normal
form, we need a technique for eliminating the nested use of aggregate functions. The essence of this
technique is captured by the following result.

Lemma 6.10 Let e( ,T) : Q be an expression of N'RC*8E" of the form

Sl if M(R,z,%) A P(R) then Q(R) else 0| z € R|}

where R is one of the relation in R, M(R,x,a‘c’) 18 a neighborhood formula having radius r, 73(15;) is
a topological predicate, and Q(R _’) s a topological polynomial. Let every relation in R be of degree at
most k and & be restricted to tuples in these relations. Suppose M'(R 7) is a nezghborhood formula
having radius v’ > 2-r that is consistent with M(R z,%). That is, there are sets R, tuples  in sets R,
and tuple = in the set R such that both M(R,x,x) and M’ (R,x) are true. Then there is a topological
polynomial Q'(R) such that e(R,Z) is equivalent to Q'(R) - Q(R) whenever M'(R, &) and P(R) hold.

Proof. The Q’(R) that we need to construct is simply the number of tuples z in R that satisfy
M(R, z,%), given that M'(R, %) and P(R) hold. There are four cases to consider.

The first case is when M (R, x, T) specifies that z is not in R. Since x comes from R by definition, this
case is never true. Then necessarily Q'(R) = 0. For the remaining cases, we assume that M (R, z, T)
specifies that x is in R.

The second case is when M (ﬁ,x,f) specifies that = is equal to one of the elements of Z. Then
Q'(R) =1 is forced.

The third case is when M (ﬁ, x, T) specifies that x is different from all of Z but is at most r connections
away from some of 7. Let M’ (R, %) be 3§.A. Suppose the vector ¢ consists of these tuple variables:
t1,...,tm. Then z can be instantiated to any ¢; such that 7.4 A M(ﬁ, t;,Z) A R(t;) is consistent.
Then Q' (ﬁ) is the number of such ¢;, which we can easily read off from the given neighborhood
formulas.

The fourth case is when M (ﬁ,x,f) specifies that z is different from all of # and is not within r

-

connections of any Z. Since M(R,z,¥) is a neighborhood formula of radius r, we can derive from
it a neighborhood formula M"(R, ) of  in R having radius ~. This can be done by deleting from
M (ﬁ, x, Z) all subformulas involving # and all subformulas involving elements of ¢ that are not within
r connections of z. Let f(R) = S{ if M"(R,w) then 1 else 0| w € R[}; that is, f(R) is the topological
parameter of R that tells us how many w in R satisfy the neighborhood formula M" (ﬁ, w) of radius
r. These w’s have neighborhoods identical to that specified for z and are thus potential candidates
for . Note that some of these w’s may turn out to be “bad” candidates because they are within r

connections of some elements of Z. Thus we cannot take Q'(R) to be f(R). We must first subtract
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from f(ﬁ) the number of those w’s that are bad. In order to compute the number of such bad w’s,
we do the following. Let M’(ﬁ, %) be 7. A. Let X C ¥ denote a maximal subset of ¥ satisfying the
following two conditions. First, for each tuple ¢ in X, M’ (ﬁ, Z) says that ¢ is in R. Second, for any two
syntactically distinct tuples ¢t and ¢’ in X, M’ (ﬁ, ¥) says that they disagree on at least one component.
Let Y C ¢ denote the subset of i that M’(ﬁ, Z) specifies to be in R. Let D denote the number of
w € X U Y such that 3g.A A M”(ﬁ, w) is consistent and that w is within r connections of some Z.
The check on w above is possible because M’(ﬁ, 7) has radius ' > 2 -r. These w’s are those tuples
in R that z is not allowed to take. Note that D can be easily read off from the given neighborhood

formulas. Then Q'(R) = f(R) — D. This completes the proof. 0

We can now provide a normal form result: A query in NRC?%8" on a structure whose degree is bounded
by k can always be rewritten to a form consisting of a chain of if-then-else statements where each
condition is a topological predicate and each branch is a relational calculus expression. Thus all uses
of aggregate functions are at the outermost level of the normal form.

Theorem 6.11 Let R denote a vector of relations of degree at most k. Let e(ﬁ) : s be an expression
of NRC?8" with s a type of height at most 1. Then e(R) is equivalent to an expression of the form

if Pi(R) then ei(R) ... else if Py4(R) then eq(R) else eqi1(R), where each Pj(R) is a topological
predicate, each e; (R) is in NRC(=p), and d depends only on k and e.

Proof sketch. Let E denote a structure of degree at most k. Let e(ﬁ) : s be an arbitrary query
in N'RC?88" with type s of height at most 1. We know that NRC?88" has the conservative extension
property [33]. So we can assume that e(R) is a normal form with respect to the rewriting done in
the proof of the conservative extension property [33]. Thus it does not use nested sets and that all
summations in it have the form > {le’ | y € mi(R)[} and all big unions in it have the form U{e' | y €
mi(R)}

-

So we can use Lemma 6.10 to remove summation operation from e(R). This removal can be achieved
by applying the lemma starting from summations that are innermost in e(ﬁ) and working outwards.
Note that some tedious but straightforward rewriting, similar to those used in the proof of the finite-
cofiniteness of N'RC*8" on multicycles [36], might be necessary before each application of Lemma
6.10. Those facts about neighborhood formulas given in Section 6 are used to justify the rewriting

here. The above is done by repeating the main steps below until all summations have been eliminated.

Step 1. We need to prepare, if necessary, the innermost summation in our expression so that it has
the form required by Lemma 6.10. For example, the else-branch may not be 0. In this case we can
use the identity:

e > {|lif C then Ej else Es | x € R[} = Y {lif C then Ey else 0|z € R} +> {|if =C then Es else 0 |z €
RJ}.

Another possibility is that the then-branch may not be a topological polynomial. In this case, the
then-branch must have a subexpression involving an if-then-else. We need to push it as far out as
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k)

possible so that it can be absorbed using the identity given above. To do this “pushing,” we can apply

identities such as:

e if Ey then (if Es then Es else Ey) else E5 = if E1 N\ Ey then Es else (if E1 A —Es then Ey else Es).
e Ey op (if Ey then Es else Ey) = if Ey then Ey op Es else Ey op E4, where op € {4+, —,-, +}.
e (if Ey then Es else Ey) op Ey = if Ey then E3 op Ey else Ey op Eq, where op € {4+, —,-, +}.

A final possibility is that the condition of the if-then-else of our innermost summation may not be of
the form M (R,z,Z) A P(R). Using standard identities of logical connectives, we can assume without
loss of generality that the condition is of the form C' A P(ﬁ) We can exploit the fact that the
summation is innermost and thus C' must be a Boolean combination whose literals are either equality
or inequality tests of the components of z and Z. Such a C is equivalent to a finite disjunction of
mutually exclusive neighborhood formulas M (ﬁ,x,f), veny Mn(ﬁ,x,a_:') of a sufficiently large radius.
A simple upper bound for the radius is the number of symbols in C. Thus we can use the following
identity to deal with the problem:

e Y{if C A P(R) then E else 0 | x € Rt = YAlif M (R,z,&) A P(R) then E else 0 | = €
R} +--- +X{if My(R,z,2) A P(R) then E else 0 | z € R[}.

Step 2. Having made the preparation in Step 1, we can assume that we now have a a summation
E(R,Z) in e(R) that has the form Y {if M(R,z,Z) A P(R) then Q(R) else 0 | z € R[}, where
M(R,z, %) is a neighborhood formula having radius r, P(R) is a topological predicate, and Q(R)
is a topological polynomial. Let M; (ﬁ, ), ey Mn(ﬁ, Z) be all the neighborhood formulas of radius
2r + 1 that are consistent with M (R, z,Z). There is only a finite number of such (non-equivalent)
neighborhood formulas. By Lemma 6.10, we know that for each M; (ﬁ Z), there is a topological
polynomial Q;(R ) such that E(R,7) is equivalent to Q;(R R) - Q(R) whenever M;(R,z) and P(R) both
hold. Thus E(R ) is equivalent to E'(R, ), which is the following expression: if M (R,Z) A
P(R) then Qi(R) - Q(R) else ... else if M,(R,Z) A P(R) then Qu(R)- Q(R) else 0.

Step 8. The application of Step 2 produces a chain of if-then-else statements in E’(R, %), which is
not in a form to which Lemma 6.10 is applicable. Fortunately, the following identity can be used to
rewrite the expression into the appropriate form:

o > {lif Cy then E else ... else Cy then E, else 0 | z € R} = > {|if C1 then E) else 0 | z €
R} +---+ 3> Alif Cy then E, else 0| z € R}, if C1, ..., Cp, are mutually exclusive conditions.

This identity is applicable because the Mz(ﬁ, Z)’s above are mutually exclusive.

Step 4. The above rewritings will eventually lead to summations having the form S{lif M (R,z) A
P(R) then Q(R) else 0 | z € R}, where the neighborhood formula M (R, z) does not mention any
additional fixed tuples. Such a summation can be rewritten immediately to if P(R) then Q'(R) -
Q(R) else 0, where '(R) is the topological parameter defined as " {if M (R, z) then 1 else 0 | z € R]}.
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The above 4-step process is repeated until all summations are replaced by topological parameters.
The result of rewriting is an expression €’ (ﬁ) of N'RC?88" that does not use the Y operator, except in
the implementation of topological parameters of R. Note that all these topological parameters must
appear inside some topological predicates. We can move all topological predicates in ¢’ (ﬁ) as far out
as possible using the identity: E|(R) = if P(R) then Ey(R) else Es3(R), where Ey(R) and Es(R) are
obtained from E;(R) by replacing all occurrences of the topological predicate P(R) with true and
false respectively.

The result of these moves is an expression e’ (R) of NRC*8" of the form if Py(R) then e (R) ... else
if Pa(R) then eq(R) else eqi1(R), where each P;(R) is a topological predicate and each e;(R) is in
NTRC(=p). Note that d does not depend on the value of R. The theorem is thus proved. O

As an illustration of the proof of this theorem, let us consider the query Q(R) = U{if indeg(z,R) =
outdeg(z, R) then {z} else {} | © € R}, where indeg(z, R) = > {|if ma(y) = m1(z) then 1 else 0 | y € R}
and outdeg(z, R) = > {|if m1(y) = m2(z) then 1 else 0 | y € R[}. This query returns those edges in
the graph R whose in-degrees equal their out-degrees. We demonstrate the theorem on the small-
est interesting bound on the degree of R, namely £ = 1. According to the proof, we begin on one
of the innermost summation, indeg(z, R). This first step is to put it into a form so that Lemma
6.10 applies. It is straightforward to see that indeg(x, R) = S {if M{(R,y,z) then 1 else 0 | y €
R} + - + X{if M} (R,y,x) then 1 else 0 | y € R[}, where M|, are the finite number
of neighbourhood formula of radius 1 and each of them specifies that mo(y) = mi(z) and that
every node in R has degree at most £ = 1. The second step is to apply Lemma 6.10 to each
SA{lif M}(R,y,x) then 1 else 0 | y € R[} above. Let M?;(R,z) denote a neighbourhood formula of
radius 3 that is consistent with M, (R,y,z) and Q; j(R) be the topological polynomial corresponding
to Q'(R) given by Lemma 6.10. Since R has degree at most 1 and M} (R, y, x) specifies ma(y) = m1(z),
it follows that Q'(R) and thus Q; ;(R) equals 1. So each Y_{if M (R,y, ) then 1 else 0 | y € R[} above
is replaced by (if Mi?:l(R,x) then 1 else 0)+- - -+ (if M;’:ml (R, ) then 1 else 0), where Mi:’:1<j<mi (R, x)
are all the mutually exclusive neighbourhood formula of radius 3 that are consistent with Mil_(R, Y, T).
Thus indeg(x, R) = (if M} (R,z) then 1 else 0) 4 --- 4+ if M} . (R,z) then 1 else 0). Note that
indeg(z, R) now does not contain any summation. Applying similar transformations, outdeg(z, R) is
also reduced to an expression that contains no summation. We can stop at this point, as Step 3 and
Step 4 of the proof of the theorem are not needed for this example: Q(R) is already in a form that
uses no summation and is in N'RC(=).

This normal form theorem gets complicated aggregate functions out of the way. Using it, we can now
prove Theorem 6.1.

Proof of Theorem 6.1. Let B denote a structure in STRUCT}, [7] whose elements are of base type
b. Let e(R) be a relational query in NRC*¢". By Theorem 6.11, we can assume that e(R) has the
form if Pi(R) then e\ (R) ... else if Pa(R) then eq(R) else eq1(R), where each P;(R) is a topological
predicate and each e;(R) is in NRC(=;). Since NRC(=) enjoys the conservative extension property
[44], each e; can be defined in relational algebra. Hence, by Fact 2.2, every 1), is local and has some
finite locality rank r;. From this we immediately conclude that 1. has locality rank max;r;, thus

proving the theorem. a
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7 Applications to Incremental Recomputation

Since relational calculus has a limited expressive power and cannot compute queries such as transitive
closure, one often stores the results of these queries as materialized database views. Once the under-
lying database changes, the changes must be propagated to the views as well. In the case when a view
is defined in relational calculus, or at least in the same language in which update propagations are
specified, the problem of incremental maintenance has been studied thoroughly. However, few papers
[10, 8, 11, 42] addressed the issue of maintaining queries such as the transitive closure in first-order or
NRC?8E",

It was shown [8] that, in the absence of auxiliary data, recursive queries such as transitive closure and
same generation cannot be maintained in relational calculus or even in SQL. It was conjectured in
[8, 11] that this continues to be true in the presence of auxiliary data. Using the results developed in
previous sections, we can address this question partially. In particular, we now show that maintenance
of some recursive queries remains impossible even if auxiliary data of moderate or low degree are
available.

In addition to the transitive closure query, we also consider the same-generation query over a graph
having two label symbols A and B. Such a graph can be conveniently represented by two relations,
one for edges labeled A and the other for B, which need not be disjoint. We use A and B to name
these two relations. Then z and y are in the same generation with respect to A and B iff there is a z
such that there is a walk from z to z in A and a walk from z to y in B that are equal in length.

Theorem 7.1 Neither transitive closure nor same-generation can be maintained in the relational
calculus when auziliary data of moderate degree are available.

Proof sketch. The main idea of the proof of non-maintainability of both transitive closure and
same-generation [8] is essentially this: Suppose there is an expression g(I,I",t) that, given an input
I, the result of a query (transitive closure or same-generation) I™ on I, and a tuple ¢ in I, produces
the output of the query on I — {¢}. (In the case of same-generation, one tuple is removed from A and
one from B.) Then both proofs in [8] show how to use this assumption to produce an expression in
first-order plus g that computes the transitive closure of a chain. Since the construction of [8] does
not assume any auxiliary data, we can apply it here to obtain that, if either transitive closure or
same-generation is maintainable in first-order in the presence of auxiliary data of moderate degree,
then with such auxiliary data the transitive closure of a chain is computable. However, this contradicts
the remark made after the proof of Proposition 4.4. a

Using essentially the same argument, but employing Corollary 6.3 we can also prove that

Corollary 7.2 Neither transitive closure nor same-generation can be maintained in N'RC*88" in the
presence of auziliary data whose degrees are bounded by a constant. O
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8 Conclusion

In the past several years, a number of papers dealing with locality in finite-model theory answered
most of the questions raised by the conference version of this paper. Thus, in this concluding section,
we briefly describe the problems posed by the ICDT’97 version of this paper [9], and give pointers to
solutions.

One of the problems posed by [9] was the following: extend results that describe outputs of local
queries in terms of ntp(d,.A) from graph queries to arbitrary ones. In this paper, the only extension
of this kind was for the Gaifman graph of the output. It turns out that an analog of Theorem 3.1
can be proved for queries of arbitrary arity, with d depending on both locality rank and the arity. For
details, see [31].

Another problem mentioned in [9] was to develop techniques for proving languages local. One such
technique was proposed in [30] which showed that queries in any reasonable logic that satisfies an
analog of Hanf’s theorem [24, 16] are local. Using this, and results of [25, 38], the paper [30] showed
that first-order logic extended with unary generalized quantifiers is local. In [31], a technique was
presented that allows one to prove locality without a recourse to Hanf’s theorem. The same paper
showed a version of infinitary logic that can define every numerical property, but expresses only local
queries when restricted to finite relational structures.

Two problems related to aggregate query languages were posed by [9]. The first one was to prove that
every relational query in NRC*8" is local. This was done in [37] by using the following technique. For
every relational query Q in N'RC?%8", [37] shows how to construct another query Q" with the following
two properties: (1) @ is local iff @' is local, and (2) @' can be defined in first-order logic extended
with counting quantifiers. Since the latter only expresses local queries, as shown in [30], the locality
of relational queries in N'RC?*88" follows.

The previous results do not seem to apply to ordered structures: indeed, by taking any input and
returning the graph of the underlying linear order, we violate the bounded degree property. Thus, it
does not hold in N'RC?8"(<;), which is N'RC?#" augmented with a linear order on type b. It was
conjectured by [9] that the bounded degree property can be partially recovered for this language. That
is, the conjecture of [9] was that every relational query in N'RC?8"(<;) that is order-independent has
the bounded degree property. This conjecture was recently disproved by L. Hella; the proof can be
found in [26].
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