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A b s t r a c t .  Nearest neighbor (NN) queries are posed very frequently in 
spatial applications. Recently a branch-and-bound algorithm based on 
R-trees has been developed in order to answer efficiently NN queries. 
In this paper, we combine techniques that were inherently used for the 
analysis of range and spatial join queries, in order to derive measures 
regarding the performance of NN queries. We try to estimate the number 
of disk accesses introduced due to the processing of an NN query. Lower 
and upper bounds are defined estimating the performance of iNN queries 
very closely. The theoretical analysis is verified with experimental results, 
under uniform and non-uniform distributions of queries and data, in the 
~dimensional address space. 

1 I n t r o d u c t i o n  

Spatial data management is an active area of research over the past ten years 
[Same90a, Sameg0b, Laur92, Guti94]. Research interests focused mainly on the 
design of robust and efficient spatial data structures [Gutt84, Henr89, Guen89, 
Beck90, Kame94], the invention of new spatial data models [Laur92], the con- 
struction of effective query languages [Egen94] and the query processing and 
optimization of spatial queries [Oren86, Aref93, Papa95]. 

A very important research direction is the estimation of the performance 
and the selectivity of a query. Given a query, the problem is to estimate the 
response time (performance) and the t~action of the objects that fulfils the query 
versus the database population (selectivity). Evidently, we want this information 
available prior to query processing, in order for the query optimizer to determine 
an efficient access plan. 

Nearest Neighbor (NN) queries are very important in Geographic Informa- 
tion Systems [Same90b, Rous95], in Image Databases [Arya93, Nib193] as weel 
as in Multimedia Applications [Fagi96]. However, researchers working on spa- 
tial accesses methods focused mainly on range queries [Page93, Kame93, FM94, 
Theo96] and spatial join queries [Brin93, LoRa94, Belu95]. In the past the prob- 
lem of NN query processing has been addressed by examining access methods 
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based on k-d trees [Frie77] and quadtrees [Same90b]. Only recently a branch- 
and-bound algorithm based on R-trees has been developed, in order to answer 
efficiently NN queries [Rous95]. In this paper we combine techniques that were 
inherently used for the analysis of range and spatial join queries, in order to de- 
rive effective measures regarding the performance of NN queries. We give average 
lower and upper bounds for the number of leaf pages retrieved during NN query 
processing. Evidently, CPU time is also important for computationally intensive 
queries, but in general the I/O subsystem overhead dominates, specifically in 
large spatial databases. 

The rest of the article is organized as follows. In the next section we present 
the appropriate background on the R-tree family of spatial data structures and 
describe shortly the branch-and-bound algorithm of [Rous95]. Section 3 contains 
the derivation of the formulae for the upper and lower bounds towards the pre- 
diction of NN query performance. In Section 4 we give the experimental results, 
and finally in Section 5 we conclude the Paper, and motivate for future research 
in the area. 

2 B a c k g r o u n d  

2.1 R-trees 

The R-tree [Gutt84] is a hierarchical, height balanced data structure (all leaf 
nodes appear at the same level), designed for use in secondary storage, and 
it is a generalization of the B+-tree for multidimensional spaces. A sample 2- 
d dataspace with a corresponding R-tree is presented in Figure 1 below. The 

Fig. 1. R-tree example. 

structure handles objects by means of their conservative approximation. The 
most simple and fzequently used conservative approximation of an object's shape 
is the rectilinear Minimum Bounding Rectangle (MBR). Each node of the tree 
corresponds to exactly one disk page. Internal nodes contain entries of the form 
(R,child-ptr), where R is the MBR that encloses all the MBRs of its descendants 
and child-per is the pointer to the specific child node. Leaf nodes contain entries 
of the form (R, object-ptr) where R is the MBR of the object and object-ptr is 
the pointer to the objects detailed description. Since MBRs of internal nodes are 
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allowed to overlap, we may have to follow multiple paths f~om root to leaves when 
answering a range query. This inefficiency triggered the design of the R +-tree 
[Sell87] which does not permit overlapping MBRs of the nodes. 

One of the most important factors affecting the overall structure performance 
is the node split strategy used. In [Gutt84] three split policies have been reported, 
namely exponential, quadratic and linear. However, more sophisticated policies 
reducing the overlap of MBRs have been reported in [Beck90] (the R*-tree) and 
in [Kame94] (the Hilbert R-tree). 

Finally, some R-tree variants have been reported to support a static or a 
nearly static database. If the objects composing the dataspace are known in 
advance, we can apply several packing techniques, with respect to the spatial 
proximity of the objects, in order to design a more efficient data structure, with 
increased initial overhead. Packing techniques have been reported in [Rous85, 
Kame93]. 

In this paper, we base our work on the packed R-tree of Kamel and Faloutsos 
[Kame93]. In this variant, the Hilbert value of each data object is calculated and 
then the whole dataset is sorted. Next, the leaf level of the tree is formulated 
by taking consecutive objects (with respect to the Hilbert order) and storing 
them in one data page. The same process is repeated for the upper levels of 
the structure. The derived R-tree has little overlap and square-like MBRs, both 
being reasonable properties of a "good" R-tree [Kame93, Fa194, Theo96]. 

2.2 The B r a n c h - a n d - B o u n d  Algor i thm 

In [Rous95] an efficient branch-and-bound R-tree traversal algorithm is reported, 
that answers NN and k-NN queries. It is a modification of the algorithm report- 
ed in [Frie77] for k-d-trees. In order to find the nearest neighbor of a point, the 
algorithm starts form the root of the R-tree and proceeds downwards. The key 
idea of the algorithm is that many branches of the tree can be discarded accord- 
ing to some rules. Two basic distances are defined in n - d  space, between a point 
P with co-ordinates (Pl ,P2, ...,Pn) and a rectangle R with corners (sl, s~, ..., sn) 
and (tl, t2, ..., t,~) (bottom-left and top-right respectively). Two definitions follow 
[Rous95]: 

Definit ion 1 
The distance M I N D I S T ( P ,  R) of a point P from a rectangle R,  is defined as 
follows: 

M I N D I S T ( P ,  R) = ~ IPj - rj 12 
j=l 

where: 

I s j ,  pj < sj 
rj = t j ,  pj > tj 

I, Pj, otherwise 
[] 
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Definit ion 2 
The distance M I N  M A X  D I S T (  P, R) of a point P from a rectangle R,  is defined 
as follows: 

I 
M I N M A X D I S T ( P , R )  = ~ l ~ i ~  (Ipk - 

where: 

rm l Ip -rM I 2 ) 
l_< j _< n , j ~ Ik 

f Sk, Pk < sk+tk 
- -  2 

rmk ---- ( t k ,  otherwise 

rMj  = t j ,  otherwise 

O 
Clearly the M I N D I S T  is the optimistic metric, since it is the minimum pos- 

sible distance that the NN of the query point P can reside in the corresponding 
data page. On the other hand, M I N M A X D I S T  is the pessimistic metric since 
it is the furthest possible distance where the NN of P can reside in the current 
data page. Therefore, the latter metric guarantees that the NN of P lies in a 
distance _< M I N M A X D I S T .  The above definitions are shown graphically in 
Figure 2. 

MINDIST p 

MINMAXDIST . . . . . . .  .~ 

Rt  

P 

R2 

" ° + . . . . .  

Fig. 2. MINDIST and MINMAXDIST between a point P and two rectangles R1 and 
R2. 

The three basic rules used for pruning the search in the R-tree during traver- 
sal follow. Notice that these rules are applied only if one nearest neighbor is 
required. 

Rule 1 
I f  an MBR R has M I N D I S T ( P ,  R) greater than the M I N M A X D I S T ( P ,  R I) 
of another MBR R ~, then  /t /s discarded because it cannot enclose the nearest 
neighbor of P.  D 
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Rule  2 
If an actual distance d from P to a given object, is greater than the M I N M A X -  
DIST(P ,  R) of P to an MBR R, t h e n  d is replaced with M I N M A X D I S T ( P ,  R) 
because R contains an object which is closer to P.  [] 

Rule  3 
If d is the current minimum distance, t h e n  all MBRs Rj with M I N D I ST(  P, Rj ) 
> d are discarded, because they vannot enclose the nearest neighbor of P.  [] 

Upon visiting an internal node of the tree, Rules (1) and (2) are used in 
order to discard irrelevant branches. Then, a branch is selected according to a 
priority order. Roussopoulos et al. suggest that  when the overlap is small, the 
M I N D I S T  order should be used since it would discard more candidates.  This 
is also verified in the experimental  reSults of their work. Therefore, the branch 
which correspond to the minimum M I N D I S T  among all node entries is chosen. 
Upon returning t~om the processing of the subtree, Rule (3) is applied in order to 
discard other candidates (if there are any). Due to limited space, we are not going 
into more details of the branch-and-bound algorithm. The reader is p rompted  
to reference [Rous95]. 

3 Analytical Considerations 

3.1 P r e l i m i n a r i e s  

S y m b o l  
S 
N 
n 

(T 

Do 
D~ 
Cmax 
Ca,,9 
U~,,, g 
dnn 
dm 

q 
L(q) 
Lbound 
Ubound 

Desc r ip t ion  
!a set of 2-d points 
population of the indexed dataset 
space dimensionallty 
side of the square-like data page MBR 
Hausdor~ i~actal dimension 
correlation fractal dimension 
maximum number of objects per node 
average number of objects per node 
average space utilization 
distance between a query point and its NN point 
distance i~om a query point to the M I N M A X D I S T  vertex 
of the first retrieved data page 
query window side 
number of leaf accesses for a window query of side q 
lower bound for the number of leaf accesses 
upper bound for the number of leaf accesses 

Table 1. Basic notations used throughout the analysis. 
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In this section, we derive lower and upper bounds for the performance of the 
branch-and-bound algorithm. We are interested in the estimation of the number 
of disk accesses to R-tree leaf pages, because in general the upper levels occupy 
small space in comparison to the leaf level, and therefore can fit in main memory. 
The basic notations are presented in Table 1. 

Assume the dataspace is composed of a set of points S in the 2-d space. The 
problem is, given a point P(p l ,  P2) E S, to find its NN point Q(ql, q2). Let dnn 
be the actual Euclidean distance between the points P and Q. The following 
propositions hold: 

Proposition 1 
The minimum number of leaf pages touched is the number of leaf pages inter- 
sected by the circle Ct with center P and radius dun. 

Proof 
The distance dnn is not known in advance. Therefore, even if the nearest neigh- 
bor of the query point is found, the algorithm does not stop until all candidates 
are examined. As a consequence, all data pages Xi with M I N D I S T ( P ,  Xi)  < 
dan must be searched. [] 

Before stating Proposition 2, we introduce the following basic assumption which 
is a reasonable property of the algorithm, when the tree nodes have no or very 
little empty space: 

Basic Assumption 
The first data page that the algorithm visits, is the data page with the minimum 
M I N D I S T  among all data pages. [] 

Proposition 2 
The maximum number off leaf pages touched is the number of leaf pages that the 
circle C2 with center P and radius dm intersects, where dm is the M I N M A X -  
D I S T  between P and the first touched leaf page. 

Proof 
Let R denote the first visited data page MBR. Clearly, the distance M I N M A X -  
DIST(P,  R) is the maximum possible "safe" distance where a nearest neighbor 
can be found in this data page. Moreover, it is possible that all data pages Xi 
with M I N D I S T ( P , X ~ )  < M I N M A X D I S T ( P , R )  will be visited, if a parti- 
cular visiting sequence occurs. [] 

In Figure 3a an example is illustrated for Proposition 1. The arrow points 
to the NN of the query point P.  Even if the algorithm reaches this point, it is 
not known that this is the NN of P,  until data pages 1 and 2 are examined. In 
Figure 3b Proposition 2 is explained. Page i is the first visited data page. In the 
worst case the NN of P,  in this page, resides in M I N M A X D I S T ( P ,  1) i~om P.  



400 

I nearest neighbor of P 

,t ............... / ,  
!""i 1%1 ~%. [ (query point) " / 

(a) 

MINDIST(P,O • 1 [ ~a~rUAXn~src~ , ) -- -- . 

.. .............. [ ' " - @  

(b) 

Fig. 8. (a): example of Proposition 1, (b): example of Proposition 2 

However, it is not guaranteed that pages 2 and 3 will be visited. This will occur 
in the worst case only, and depends on the visiting sequence and the location of 
the "temporary" NN point in each data page. 

The above propositions give a lower bound (Proposition 1) and an upper 
bound (Proposition 2) for the number of leaf nodes touched by the algorithm, on 
the average. We note the importance of the distance dnn, which is the expected 
distance from P to its nearest neighbor. Therefore, if we had an estimation for 
d,,~, we could provide estimations for the best and worst performance of NN 
queries. The following subsection deals with the estimation of d,,~ and din. 

3.2 Es t imat ion  of dnn and dm 

We are interested in the estimation of dnn for arbitrary object distributions. 
Real datasets show a dear divergence from the uniformity and independence 
assumption [Fa194] and, therefore, it is better to consider uniformity as a special 
case. In [Belu95] a formula has been reported that estimates the average number 
of neighbors nb(c, shape )  of a point P within distance c from P, using the concept 
of the  correlat ion fractal dimension of the point set: 

( v o l u m e ( e ,  shape )  ) D2/n 
nb(c, shape )  = k. ~ _ • ( N  - 1). 2 D: .c D~ (1) 

where N is the population of the dataset, D2 is the correlation fractal dimen- 
sion, n is the dimensionality of the dataspace (2 in our case), and shape  is the  
shape that has its center of gravity on a point P of the dataset. Since we are 
interested in NN queries with respect to the Euclidean distance, it is sufficient 
to set shape  = circ le .  Making the appropriate modifications in Equation (1) we 
get: 

nb(c, circ e) = \4e  2 )  . ( N - 1 ) - 2  D2 "c D~ 

By simplifying we get: 

nb(c, c i rc le )  = ( V ~  D~ • ( N  - 1). e D~ (2) 
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We can use Equation (2) to estimate the average distance (dnu) of a point 
P to its nearest neighbor. We are searching for an e such that nb(c, circle) ~- 1. 
After substitution in Equation (2) and algebraic manipulations we reach: 

1 
dun = c = v f~" D ~ / ~  _ 1) (3) 

The above equation holds for an arbitrary dataset, when we allow queries to 
land only on data points. The uniformity case is derived by setting D2 = 2. 

Let us now try to estimate the distance din, which is the minimum M I N -  
M A X D I S T  between the query point P and the first visited data page. We 
assume that the MBRs of the data pages are squares with side o'. The following 
proposition holds: 

Proposition 3 
The mazimum possible di~erence between M I N  M A X D I S T ( P ,  R) and M I N -  
D I S T ( P ,  R) from a query point P to an MBI~ R is o'. 

P r o o f  
This happens when the query point P coincides with a vertex of the MBR R. This 
is demonstrated in Figure 4. As we can seer when the query point P approaches 
the bottom-right vertex of the MBR, the difference between M I N M A X D I S T  
and M I N D I S T  increases. D 

R 

o 

V 

"°', 
• ., MINMAXDIST 

P 

MINDIST 

Fig. 4. When the query point P coincides with a vertex of the MBR, then the maximum 
difference (o') between M I N D I S T  and M I N M A X D I S T  is obtained. 

Assuming that the NN of a query point lies in the half distance (on the 
average) between the difference of M I N D I S T  and M I N M A X D I S T ,  we need 
only to augment dun by o'/2 in order to reach the M I N M A X D I S T .  Therefore, 
we conclude that the distance dm which gives the upper bound of Proposition 2 
is calculated by the following Equation: 
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1 t7 
= + (4) 

~/(/v - 1) 

3.3 P e r f o r m a n c e  E s t i m a t i o n  

Let S be a set of N data points distributed in the unit square address space. We 
are interested in estimating the number of data pages retrieved, when the NN is 
requested for any point P E S. Given a query window q x q the number of leaf 
nodes L(q) retrieved is given by a formula reported in [Fa194], which assumes 
that queries are distributed uniformly on the address space i.e. each portion of 
the dataspace has the same probability to be requested: 

+ L(q) : Ca,~g o=( )1,oo 
Cat, g = Cm~= • Ua,g 

(5) 

where N is the population of the dataset, Do is the Hausdorff (box counting) 
~acta l  dimension of the underlying point dataset, Cma= is the maximum node 
capacity and Ua~g is the average space utilization of the R-tree nodes. 

However, in our case we cannot use Equation (5). This is because, the queries 
can land only on (existing) data points and therefore at least one leaf access will 
occur. In other words, in our case the query model assumes that the query 
distribution follows the data distribution (i.e. each data object has the same 
probability of retrieval [Page93]). To the best of the authors '  knowledge no dosed 
formula has been reported to estimate the number of leaf accesses in this query 
model. Therefore, we must derive a formula that obeys the h t t e r  query model. 

• O  

I • I W~ • 

a • q 

0 ~  

. . . . . . . . . . . . .  . . . . . . . . . . . . .  I 

Fig. 5. Example of an enlarged data page. 
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Assume we have a q x q window and we have to perform a range query Q over 
the underlying address space. We know that the average size of each data page 
MBR is o" x o'. We are interested in calculating the probability P/etch that a data 
page will be fetched due to the execution of Q. A data page will be fetched only 
if the centroid of the window q x q falls in the area surrounded by the dashed 
line of Figure 5. Note however, that the centroid of the query window can only 
coincide with an existing data point (according to the query model considered 
in this paper). Therefore, the probability Pyetch can be defined as: 

GoodPoin t s  
P f e t c h -  A l l P o i n t s  (6) 

where GoodPoin t s  is the number of points enclosed by the enlarged (o" + q) x 
(o" + q) window, and A l l P o i n t s  is the population, N, of the indexed dataset. 
However, we have the appropriate mathematical tools to calculate GoodPoin t s .  
We can me Equation (1) setting 1 shape = r e c t  and ¢ = a+q. Therefore, we have: 

GoodPoin t s  = (N  - 1). (o" + q)D2 (7) 

From Equations (6) and (7) we get: 

N - 1  . (w + q)D2 (8) 
Pletch = N 

Our next step is to calculate the average number of data page accesses. We 
know that the total number of data pages is N C~9. Therefore: 

L(q) = - ~ -  . PJet¢h ~ L(q) -- N - 1 . (or + q)D2 (9) 
Co.g Caw. 

In order to get the lower and upper bounds for the number of leaf accesses, 
we must substitute q in Equation (9), with 2. d,m from Equation (3), and 2. dm 
from Equation (4), respectively. Therefore, we have: 

N -  1 . (o" + 2-dun)  D2 (10) 
ibound ---- Cavg 

Ubou,~d = N - 1 . (~r + 2 .  din) D~ (11) 
Ca,g 

Equations (10) and (11) include uniformity as a special case. Clearly, for uniform 
point sets Do ~ 2 mad D2 ~ 2, so we can use the above equations for any kind of 
point set. Also, we note that Lbound and Ubound are bounds on the average case 
and not absolute ones. This means that during NN query processing, the lower 
bound may be higher than the leaf pages touched. However, we are interested 
on the average case, and exceptional cases do not harm the generality. 

t This requires an optimistic assumption iLhat we can always find a data point on the 
centroid of the data page MBR. 
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4 Experimental Results 

4.1 Pre l iminar ies  

We implemented the branch-and-bound algorithm [Rous95] and the Hilbert- 
packed R-tree ~Kame93] in the C programming language under UNIX, and ran 
the experiments on a DEC Alpha 3000 workstation. We used randomly (almost 
uniform) generated as well as real-life points, in order to verify the theoretical 
aspects. The datasets used are depicted in Figure 6. The real-life points are 9,552 
road intersections of the Montgomery County, Maryland. For uniform point sets 
we have Do ~ 2 and D2 ~ 2, whereas for the MG points Do ~ 1.719 and 
D:  ~ 1.518 [Belu95]. 

i 
Random points MG points 

Fig. 6. Datasets used in the experiments. 

4.2 E x p e r i m e n t a t i o n  

In all experimental series, for each dataset, the average number of leaf accesses 
was determined by issuing an NN query for each existing data point. Also, the 
lower and upper bounds for the average number of leaf accesses were calculated. 
The measured average number of leaf accesses is shown in the last column of 
each subsequent table. 

E x p e r i m e n t  1 
The dataset is composed of a number of uniformly distributed points. The 
maximum R-tree node capacity was set to 50 objects. In Table 2 we present 
the results for uniform data of various populations. 

E x p e r i m e n t  2 
The dataset is composed of uniformly distributed points. Here we keep the 
population of the dataset constant at 50,000 and vary the maximum fanout 
of the tree t~om 10 to 200. The results are shown in Table 3. 

E x p e r i m e n t  3 
The dataset is composed of the ~ 9,000 MG points. Again, we vary the fanout 
of the tree t~om 10 to 200 as in Experiment 2. The results are presented in 
Table 4. 
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P o p u l a t i o n  Lower  U p p e r l  M e a s u r e d  
1,000 1.34 4.66 1 .63  
2,000 1.34 4.66 1.58 
10,000 1.34 4.66 1.70 
20,000 1.34 4.66 1.80 
50,000 1.34 4.66 2.04 

100,000 1.34 4.66 1.88 
200,000 1.34 4.66 2.28 
500,000 1.34 4.66 1.97 

Table  2. Leaf accesses versus data population. Da ta :Uni form,  Fanout--50. 

F a n o u t  Lower  U p p e r  l Measured 
5 2.26 6.27 3.02 
10 1.84 5.55 2.68 
20 1.56 5.07 2.19 
50 1.34 4.66 2.03 

100 1.23 4.46 1.90 
200 1.16 4.32 1.82 

Table  3. Leaf accesses versus fanout. Data=Uniform, Population=50,000. 

F a n o u t  I Lower  I U p p e r  M e a s u r e d  
5 3 . 2 2  7.99 4.13 
10 2.70 i 7.01 3.06 
20 2.33 6.24 2.36 
50 1.98 5.44 2.27 

100 1.77 4.94 1.89 
200 1.61 4.52 1.81 

Table  4. Leaf accesses versus fanout. Da ta=MG points, Population ,~ 9,000. 

4.3 R e s u l t  I n t e r p r e t a t i o n  

From these tables  it is evident  tha t  the lower and upper  bounds  enclose very 
well the measured  average number  of leaf accesses. Therefore,  one could use 
the simple Formulae  (10) and (11) in order to es t imate  the per formance  of an 
NN query. We observe tha t  the measured  number  of leaf accesses is general ly  
closer to the lower bound  than  the upper  bound.  This  gives us a s t rong ind ica t ion  
tha t  the b r a n c h - a n d - b o u n d  a lgor i thm with the M I N D I S T  cr i ter ion exploi ts  the 
"goodness"  p rope r ty  of the packed R-tree very effectively. Lower bound  gives an 
opt imis t ic  metr ic  and upper  bound  a pessimist ic  metr ic  and are bo th  valuable  in 
query processing and opt imiza t ion .  Ano the r  observat ion  is tha t  when the d a t a  
(and hence the query)  d i s t r ibu t ion  is tmiform, the bounds  do not  depend  on the 
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population of the dataset. This can be verified by substituting the appropriate 
values for o', d,,~ and dm in Equations (10) and (11), and is illustrated in Table 
2. 

5 Conclusions and Future Work 

In this paper we have focused on the performance estimation of NN queries in 
spatial data structures and particularly in R-trees. The (rely known algorithm 
for NN queries in R-trees is the branch-and-bound algorithm of Roussopoulos 
et al. [Rous95], to the best of the authors' knowledge. We have shown that the 
actual distance between a point and its NN plays a very important role for the 
performance estimation of NN queries. Experiments based on synthetic and real- 
life data have shown that the derived bounds enclose very closely the number 
of leaf accesses introduced during the processing of an NN query. In fact, the 
performance of the branch-and-bound algorithm is closer to the lower bound, 
and therefore is very efficient. This estimation could be exploited by a query 
optimizer, to derive an efficient query processing plan. However, more work is 
needed, since this field is yet unexplored. Future work in the area may include: 

- modification of the Formulae (10) and (11), in order to estimate the perfor- 
inance of arbitrary k-NN queries, 

- derivation of a formula for the exact performance prediction of NN query 
processing (not just lower and upper bounds), 

- the relaxation of the basic assumption (Section 3), 
- generalization for non-point objects, 
- consideration of complex queries with several constraints (e.g. find the NN 

of the point P,  such that the distance is ~ d). 
- consideration of the case where we request the NN for a point P that does 

not belong to the data set. 
- examination of the case where the R-tree is not that "good" as the packed 

R-tree (e.g. Guttman's  R-tree). 

We are currently working on the performance estimation of general k-NN 
queries (k > 1) in high dimensional address spaces (d > 2). Also, we consider 
more real datasets in order to justify the usefulness of the analytical results in 
the prediction of NN query performance. 
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