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Abstract .  The pagenumber of a series-parallel planar P is at most two. We present 
an O(n 3) algorithm to construct a two-page embedding in the case that it is a lattice. 
One consequence of independent interest, is a characterization of series-parallel planar 
ordered sets. 

1 Introduct ion  

A book embedding of a graph G consists of an embedding of its nodes along the 
spine of a book (i.e., a linear ordering of the nodes), and an embedding of its 
edges on pages so that  edges embedded on the same page do not intersect. In a 
book embedding for an ordered set P the vertices of P on the spine form a linear 
extension (a total  order L = {xl < x2 < ' . .  < x~} of the elements of P is a 
linear extension if x < y in L whenever x < y in P).  

We say a covers b (or b covered by a) in the ordered set P,  and write a ~ b 
(or b -< a), if whenever a > c > b then c = b. Also, we say a is an upper cover 
of b, or b is a lower cover of a, or (a, b) is an edge in P.  We say a is a minimal 
(respectively, maxima 0 element of P if a has no lower covers (respectively, a has 
no upper covers). We denote the set of all minimals (respectively, maximals) 
of P ,  rain(P) (respectively, max(P)) .  The covering graph of P,  coy(P),  is the 
graph whose vertices are the elements of P, and the pair {a, b} forms an edge 
in coy(P) if a ~ b or a -~ b. It  is possible to orient cov(P) in such a way the 
y-coordinate of a is less than the y-coordinate of b if a -~ b and the edge (a, b) 
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does not pass through any other element of P .  We call such drawing an upward 
drawing of P. 

The pagenumber in both cases (page(G), respectively page(P)) is the min- 
imum number of pages needed taken over all linear layouts for graphs and all 
linear extensions for an ordered set. For instance, page(P) = 2 for the ordered 
set illustrated in Figure 1, while page(coy(P)) = 1. On the other hand the pla- 
nar lattice in Figure 2 required three pages (this example is due to J. Czyzowicz 
[7]). 

The pagenumber was first defined for graphs by Bernhart and Kainen [1], 
who conjectured that planar graphs may require an arbitrary large number of 
pages. In a series of attempts, it was finally established by Yannakakis [11], 
that page(G) < 4 for every planar graph G, and this upper bound is achieved. 
Fraysseix, Mendez and Pach [4] have shown that the pagenumber of any planar 
graph with quadrilateral faces is at most two. 

The page number for ordered sets has been introduced by Nowakowski and 
Parker [7], who show that page(P) = 1 if and only if car(P) is a forest. Also, 
they derive a general lower bound on the page number of ordered sets and upper 
bounds for special classes of ordered sets. Hung [3] shows that there exists a 
48-element planar ordered set which needs four pages (see Figure 3). Moreover, 
no planar ordered set with pagenumber five is known. Sysio [9] provides a lower 
bound on the page number in terms of its bump number. He also shows that, 
page(P) _< 2 if the jump number of P is one.  Ordered sets with jump number 
two can have an arbitrarily large page number. Later, Heath and Pemmaraju 
[8] gave a sequence of ordered sets each with planar covering graph and with 
unbounded page number. Computationally, we recently proved that finding the 
minimum number of pages required for a fixed linear extension of an ordered set 
is NP-complete. 

In section 2 we study the structure of series-parallel planar lattices. In sec- 
tion 3 we will construct, for a series-parallel planar lattice P, an O(n 3) two-page 
algorithm where n is the number of the elements of P. In section 4 we continue 
the study of the structure of series-parallel planar ordered sets. In section 5 we 
exploit the fact that the completion P of a series-parallel planar ordered set P 
is itself a series-parallel planar lattice. We use the result in section 3 to obtain a 
two-page linear extension L of P, which we transfer to a two-page linear exten- 
sion of P. In section 6 we give three open problems related to the pagenumber 
problem. 

2 Structure of series-parallel planar lattices 

The linear sum P | Q of the two disjoint ordered set P, Q is an ordered set on 
PU Q, that is, a ___ b if 

1. a K b i n P ,  or 2. a _ b i n Q ,  or 3. a E P a n d b E Q .  

If we eliminate the third condition of the definition of linear sum, we will 
have the disjoint sum P + Q of P, Q. 
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An ordered set P is series-parallel if P can be constructed from singletons 
using only the constructions of disjoint sum + and linear sum @. In other words, 
P can be decomposed into singletons using only disjoint sum and linear sum. For 
instance, the the series-parallel lattice illustrated in Figure 4 can be decomposed 
into 

1 | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  

For a ~ b in the ordered set P we say a is comparable to b if either a < b 
or a > b. Otherwise, a is noncomparable to b, write a II b. An antiehain is 
a subset A of an ordered set P such that  any two distinct elements of A are 
noncomparable. Dually, a chain of P is a subset C of P where, each pair of C 
are comparable. 

A four-element subset {a, b, c, d} of an ordered set P forms an N if the only 
comparabilities among them in P are a < c, b < c and b < d. It is known that  
an ordered set is a series-parallel if and only if it contains no such N [10]. 

Fix a planar embedding of P,  and let C = {xl < x2 < ... < x~} be the left 
boundary chain. For each x E P - C define the interval I(x) = (xi ,xj) ,  where 

x i =  m a x { x > x k }  xj = rain { x < x k }  
l~k<n l<k~n 

Of course, j _> i + 1. Notice that,  j > i + 1 because if j = i �9 1 then the edge 
(x~+~, x~) will not be an essential edge. (An edge (a, b) is not essential if there 
is c such that  a < c < b.) 

Notice that ,  every pair of these intervals is either disjoint or one contains the 
other. Hence the set of intervals ordered by inclusion is a forest (an ordered set 
P is a forest if the graph coy(P) is a forest). For y, z E P - C, say y ,-, z if 
I(y) = I(z). It is clear that  this relation is an equivalence relation. Call the 
equivalence classes components. 

For example, the components of the series-parallel order in Figure 4 are: 
C1 = {7, 8, 9, 10, 11, 12, 13} which corresponds to the interval (3,5); 
C2 = {6} which corresponds to the interval (1,3); 
Ca = {14, 15, 16, 17} which corresponds to the interval (1,5). 
The forest obtained by ordering the intervals by inclusion is shown in Figure 6. 
We can show that  there are no edges between the components. 

Here are a few elementary terms. Fix a lattice P and fix a planar upward 
drawing of it. For noncomparable element a, b E P such that  a >- c and b ~- c, 
we say a is left of b if any horizontal segment (moving from left to right) which 
cuts both edges, always cuts the edge (c, a) before the edge (c, b). For arbi trary 
noncomparable elements a and b (a II b) in P say that  a is left of b, denoted 
aAb, i f a '  is left orb ' ,  where a > a' >- in f ({a ,b})  and b >_ b' ~- inf({a,b}) .  An 
element a, which does not belong to the maximal chain C is left of C if there 
is b E C such that  aAb. In fact, a is left of b if a is left to any maximal chain 
containing b. (Of course, all of these ideas are ambidextrous. If a is left of b 
then b is right of a, etc.)(For details see [5].) 

Once equipped with the equality relation, A becomes an order relation on 
P,  denoted P~. (This result is due to J. Zilber see [2] page 32, ex. 7(c).) For 



14 

example, the ordered set in Figure 5 is P~ where P is the planar lattice in 
Figure 4. 
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For a series-parallel planar lattice P,  fix a planar upward drawing of P,  and 
define the sequence of peels of P as follows: 
L0 = {x E P : x belongs to the left boundary}. 
L1 = {x E P -  Lo : if y lies to the left of x, then y E L0}. 
L2 = {x E P - (L0 U L1) : if y lies to the left of x, theny E L0 U L1 }. 

Lt = {x E P - ( L o U L I U . . . U L t - 1 )  : if y lies to the left o fx ,  t h e n y  E LoU 
L~ U . . . U  L~_~}. 

We call any Li a peel of P. Actually, the peels of a planar lattice P are the 
levels of P~, where P~ the underlying set P ordered by A. 
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{-i L Thus, Li = min(P~ - (Uj=0 y, 0 _< j _< t) 
Of course, t is equal the height of P~, where the height of an ordered set is 

less one than the maximum number of elements of a chain. 
For example, in the series-parallel ordered set P with respect to the upward 

drawing shown in Figure 4 
L0 = {1,2,3,4,5} L1 = {6,7,8,9} L2 -- {10,11} L3 = {12} 
L4 = {13} L~ = {14, 15, 16} L6 = {17} 

L e m m a  1 Let P be a series-parallel planar lattice. I / 0  < i < t, then 

1. for any x �9 L~, i > O, there exist y �9 Li-1 such that x lies to the right of 

Y, 

2. the peel Li forms a chain, 

3. the number of peels equals width(P)-I (width(P) is the maximum size of 
antichain in P ). 

Call a chain C in P is saturated if all of its covering relations, are covering 
relations in P. Each chain decomposes into its (maximal) saturated chains. 

In a series-parMlel planar lattice f each peel L~ can be decomposed into 
maximal saturated subchains Cil, C~2,... , C~,~ called the clamped chains for P. 

For a clamped chain Cij �9 Li, i > 1 define: 

l(Ciy) = {y e Lo U L1 U. . .  U L~-I : inf(Ciy) >.- y} 

~t(Cij) = {y �9 Lo U L1 U . .. U Li-1 : sgp(ei j)  -.< y} 

For example the table below shows the clamped chains in the series parallel 
planar lattice in Figure 4. 
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Clamped chain Cij l(Cij) u(Cij) (1,5) 
Co = {1,2,3,4,5} - 
C l l  ~- {6} '1 3 
C~2 = {7, 8, 9} 3 5 
C21 = .{10, 11} 7 9 
C31 = {12} 7 11 
c~ : {13} 7 9 
C~1 = {14,15,16} 1 5 (1,3) (3,5) 
c~ = {17} 

Figure 6 

L e m m a  2 Let Cij be a clamped chain in a series-parallel planar lattice P. 

1. Each l(C~j) and u(C~j) is unique. 

2. Each x E Cij - {infC~y, supC~y} has neither lower covers nor upper covers 
in Lo U L1 U. . . U Li_l.  Also, if in fC~j ~= supC~j then in fC~j (respectively, 
sup( C~2 ) ) has no lower (respectively, upper) covers in Lo U L1 U . . . U Li-1, 

3. I f  u(Cij) e Ck,~, then l(C~j) E C~,~ U {l(Ck,~)}. 

~. in fC~j (respectively, supC~j) has a unique lower (respectively, upper) cover 
in P. 

3 T w o  p a g e s  a r e  e n o u g h  

In this section we will give an O(n 3) two-page algorithm for a series-parallel 
planar lattice P, where n is the number of elements of P. 

To obtain a two-page linear extension of a series-parallel planar lattice P 

(i) Fix a planar upward drawing for P. 

(ii) List the clamped chains of P in the following order 
C0, Ca,  C12, . . . ,  C1~1, C21, C~2,... , C 2 ~ , . . .  , C~1, C22,.. �9 , C~ .... . 
We will process chain by chain according to the above order. 

(iii) Put Co on the spine of the book. Draw the bottom edge on the right page 
and draw all other edges on the left page. 

(iv) Suppose two pages are enough up to C~j-1. For C~j put all the elements of 
C~j right below u(C~j). Draw the edge (inf(C~j), l(C~y)) on the right page 
and draw all C~j edges and the edge (u(Cij), sup(Cij)) on the left page. 

Call this algorithm the two-page algorithm. 
Figure 7, illustrates the steps of the two-page algorithm applied on the series- 

parallel planar lattice P in Figure 4. 
A greedy linear extension of an ordered set P is a linear extension Xl < 

x2 < "." < x~ of P such that  xl e rain(P) and, for i > 1,x~+1 E m i n ( P  - 
{ x l , x2 , . . .  ,x~}) and, if possible, xj+l > xj.  Thus, a greedy linear extension 
obtained by following "the rule climb as heigh as you can". 
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A left greedy linear extension of P is that  greedy linear extension whose 
the i th element xi+l is the (unique) left-most element belonging to m i n ( P  - 
{Xl,X2, ' ' '  ,Xi}) 

~ 4 7 

( : ) 
7 

Die 

1 
Figure 7 

L e m m a  3 Let P be a series-parallel planar lattice. I f  L is the permutation 
obtained by the two-page algorithm, then 
1. L is a linear extension of P, 
2.if x [[ y in P, and y lies to the left of x, then y < x in L. (i.e., L is a left greedy 
linear extension). 

T h e o r e m  4 The two-page algorithm for an n-element series-parallel planar lat- 
tice produces a two-page linear extension L in O(n 3) time. 

For the complexity, we can find the peel Co by checking for each x E P if there 
is y ~ P - ( x }  such that  y II x and y lies to the left ofx.  Thus, we need at most n 3 
comparison operations to obtain the peels of P. To obtain the clamped chains of 
a certain peel we need first to sort it in O(n logn) comparisons, then determine 
the covering relations in this peel and that can be done in O(n - 1) comparisons. 
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Therefore, we can find all clamped chains in O(n 2 logn) comparisons. For each 
clamped chain C~j we can find u(C~j) by find the element in L~-l which covers 
inf(C~j) and this can be done in O(n) comparisons. Thus, we can find u(Cr 
and l(C~j) for all clamped chains C~j in O(n '2) comparisons. For the distribution 
of the edges among the two pages we process each edge just one time; thus, 
we can decide the page for each edge in O(n '2) comparisons. Thus, the whole 
algorithm can be done in O(n 3) comparisons. 

4 Structure of series-parallel planar ordered sets 

The completion of an ordered set P is the smallest lattice P contains P as 
suborder. Notice that T exists and called MacNeille completion (cf. [6].) 

First, we will show that the completion P of series-parallel ordered set is 
series-parallel planar lattice. 

The question may arise now whether we can transfer the two-page linear 
extension L of P (obtained by Theorem 4) to a two-page linear extension L of 
P ?  

For example, we consider the series-parallel planar ordered set P and its 
completion P in Figure 8. In Figure 9, L is the two-page linear extension of P 
obtained by the two-page algorithm for series-parallel planar lattice. Let L be 
the linear extension obtained from ~ by removing the elements in P'--P. Notice 
that, the linear extension L needs at least three pages. 

c 
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oq 

T 

c 

b 

-( 
o 

• 

Figure 8 Figure 9 

But if we redraw P in a different planar embedding as it is in Figure 12, 
then using the two-page algorithm for series-parallel lattices we will obtain the 
two-page embedding L as it illstrates in Figure 10. In Figure 10, we also, see 
that the linear extension L of P induced by L is a two-page linear extension. 

This leads us to this question, whether we can always find a planar embedding 
of the completion P of the series-parallel planar ordered which can lead finally 
to a two-page linear extension of the ordered set ? The answer is yes. 
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L e m m a  5 I f  P is a series-parallel planar ordered set and P its completion then, 

(i) P is series-parallel, (ii) P is a planar lattice. 

We say the ordered set P contains K . . . .  m , n  > 2 if it contains a subset 
{a l , a2 , . . .  ,a ,~ ,b l , ,b2 , . . .  ,b~} satisfying ai -~ bj for i = 1 ,2 , . . .  ,m  and j = 
1 ,2 , . . .  , n. (See Figure 11). Notice that,  if P contains I/-,~,~, m, n > 2 then, the 
sets {al, a2, ' .  ' , am} and {bl, b2,.. .  , b~} are antichins. 

We say K,~,~ = {a l , a2 , . . .  ,a ,~ ,b l , ,b2 , . . .  ,b~} is maximal in P if there is 
neither a,~+l ~ ai, 1 < i < m satisfying a,~+l --~ bj for every 1 _< j < n, nor 
b~+l ~ bj,1 ~ j _< n satisfying a~ -~ b~+l for every 1 < i < m. I f a p l a n a r  
ordered set contains I4,~,~, m, n > 2, then either m = 2 or n = 2. 

After series of Lemma's, we conclude that  if the series-parallel planar ordered 
set P is not a lattice, then the only obstacle to be a lattice (except the top ~nd 
the bottom) is existing the ma• of K2,~ and/or  K,~,2,m,n >_ 2. 

T 

f 

• a 

L 
Figure 10 

d 1 d 2 d 3 drn 

a b 

Figure 11 K2,,~ 

d~ 

dm_l 

d2 

dl 

Figure 12 Figure 13 

L e m m a  6 I f  the ordered set P contains K2,,~ = {a,b, d l , . . .  , d ~ } , m  > 2, and 
if P satisfies one of the following conditions, then P is not planar. 

i) There is an upper bound of some three-element subset of ( d l , . . .  ,din}. 
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ii) a and b have a common lower bound and some two-element subset of 
{ d l , . . . ,  d,~} has a common upper bound. 

iii) There are two different two-element subsets of {d l , . . .  ~d~} each of 
which has an upper bound. 

As we indicate in the beginning of this section, obtaining the two-page linear 
extension for P depends on the planar embedding of the completion P of P.  
The next lemma describe such planar embedding. 

L e m m a  7 Let P be a series-parallel planar ordered set. For each maximal 
h'2,,~ = {a,b, d l , . . .  ,d ,~},m >__ 3 and each maximal I~,2 = {d~, . ,d~} ,n  >_ 3 
such that {dl, dR} has a minimal upper bound d and { d~ , d~ ) has a maximal lower 
bound d ~, there is a planar upward drawing of the completion lattice P of P in 
which d lies to the right of d3, d4, . . .  , d,~ and d ~ lies to the left of d3,~ d'4,'"l ,d~.r 

5 The  Main  result  

In this section we will prove our main resul t .  We will first prove that  two pages 
are enough for a series-parallel planar ordered set. As a consequence, we will 
give a characterization of series-parallel planar ordered sets. 

T h e o r e m  8 If  P is series-parallel planar ordered set then, page(P) ~ 2. 

T h e  t r a n s f o r m a t i o n  a l g o r i t h m  Let P be the completion of P. By Lemma 5, 
T is series-parallel planar lattice. Fix a planar embedding of T satisfying 
1. Whenever P contains a maximal I42,~ = {a, b, d l , . . .  , d,~}, m >_ 3, such that  
d is an upper bound of {d,~-l, d,~} then, d lies to the right of {d3, . . .  ,d,~}. 
2. Whenever P contains a maximal K,~,2 = {d l , . . .  , din, a, b}, m > 3, such that  
d is a lower bound of {dl, d.~} then d lies to the left of {d3, . . .  , d,~}. 

This is possible according to Lemma 7. If P contains either a maximal K2,,~ 
or a maximal K,~,2,m >_ 2, we may assume that  a lies to the left of b and di lies 
to the left of d~+l for 1 < i < m - 1, in P. 

Notice that ,  if P contains a maximal K%,~, m >_ 2, then the set of the upper 
covers of a is {d l , . . .  , din} which also is the set of the upper covers of b. Also, 
the set of the lower covers of di is {a, b} for each i = 1 , . . .  ,m. Dually for K,~,~. 

Since T is a series-parallel parallel planar lattice, by Theorem 4 there exists 
a two-page linear extension ~ of P .  We will transfer it to a two-page linear 
extension L for P.  
For a four-cycle C = {a < c > b < d > a} in an ordered set, a splitting element 
x satisfying a, b < x < c, d. 

If P contains a maximal I ~ , ~  = {a, b, dl , .  �9 �9 , d,~}, m > 2, such that  x is the 
splitting element of K2,~,. in P,  then we have a < b < x < dl < d~ < . . .  < 
d,~ in T and the edges distributed as in Figure 13. 

Also, if P has a maximM K,~,e = {d l , . . .  ,d ,~ ,a ,b} ,m > 2 such that  x is the 
splitting element of K,~,2 in P,  then we have dl < d2 < . . .  < d,~ < x < a < 
b in L and the edges distributed as in Figure 14. 
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Since P is planar, by Lemma 6, if {a, b} has a lower (respectivelY , an upper) 
bound of K2,m (respectively, K,~,2) in P,  then there is no subset of two elements 
or more of the set {dx,. . .  , din} which has an upper (respectively, a lower) bound. 

To obtain a two-page linear extension L of P from L 
1. Remove the set P - P from L and all edges connected to its vertcies. 
2. For each maximal K2,m = {a, b, d l , . . .  , d,~}, rn k 2, in P 

i) / f  {a, b} has a lower bound in P draw the edges (a, di) on the left page and 
the edges (b, dr) on the right page (see Figure 15). 

ii) / f  {din-l, d,~_l } has an upper bound in P draw the edges {(b, dl), (a, dr) : 
1 < i < m - 1} on the left page and draw the edges {(a, d,~), (b, d~) : 2 <_ 
i < m} on the right page for each 1 < i < m (see Figure 16). 

i 
d ~  

-1 

1 

Figure 14 Figure 15 Figure 16 
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t 
Figure 17 Figure 18 

3. For each maximal I4,~,2 = {d l , . . .  , d,~, a, b}, m k 2, in P 

i) If  {dl, d2} has a lower bound in P draw the edges {(dl, b), (di, a) : 1 < i < 
m - 1} on the left page and draw the edges {(d,~, a), (di, b) : 2 < i < m} 
on the right page (see Figure 17). 

ii) I f  {a, b} has an upper bound in P draw the edges {(d~, a) : 1 < i < m} 
on the left page and the edges {(d~, b) : 1 < i < m} on the right page (see 
Figure 18). 
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Figure 19 Simple castles. 

By Lemma 3, L is greedy linear extension of P. We will show that adding the 
edges of the maximals K2,,~ and K,~,2, m > 2, do not create crossing in the same 
page first for K2,,~ then for I~/,~,2. 

A simple castle is a covering four-cycle with the top or bottom. (The top, 
or bottom, need not be in a cover relation with the covering four-cycle.)(See 
Figure 19) A castle is any union of simple castles, which preserves the covering 
relations of each simple castle. An ordered set P contains a castle C ff C is 
a subset of P and P preserves the covering relations of its simple castles.(See 
Figure 20) 

Corol lary  9 Let P be a series-parallel planar ordered set. Then P is planar if 
and only P contains no K3,3 and P contains no nonplanar castle. 

Figure 21 illustrates nonplanar ordered sets each of which contains neither K3,3 
nor a nonplanar castle. In fact, non is series-parallel. 

6 Open problems 

1. Is the pagenumber for planar ordered sets bounded? 

This question was first asked by Nowakowski and Parker [7]. Hung [3] gave 
a 48-element planar ordered set which requires four pages (see Figure 44). 
No planar ordered set required five pages is known. 

2. We proved that two pages are enough to embed a series-parallel planar 
ordered set. Series-parallel ordered sets have dimension two. Is there a 
positive integer k, such that page(P) <_ k, for each planar ordered set of 
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dimension two? (k >_ 3 because, page(P) = 3 for the planar lattice P in 
Figure 2). What about planar lattices? 

3. Can we extend our result to (nonplanar) series-parallel ordered set? 

What is an upper bound for the (nonplanar) series-parallel ordered set P, 
depending on the maximal I~.~,~ 's in P. 

For positive integers m,n is there a function f(m, n) such that for any 
series-parallel ordered set P 
page(P) ~ max ( f (m,n)  : h'~,~ is a maximal in P,m,n >_ 2}. 

In particular, is there a positive integer k such that 
f(m, n) ~ rain{m, n} + k for every maximal I~/,~,~ in P? 
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