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Abstract .  We use basic results from graph theory to design two algo- 
rithms for constructing 3-dimensional, intersection-free orthogonal grid 
drawings of n vertex graphs of maximum degree 6. Our first algorithm 
gives drawings bounded by an O(x/~ ) • O(x/~ • O(v~ ) box; each edge 
route contains at most 7 bends. The best previous result generated edge 
routes containing up to 16 bends per route. Our second algorithm gives 
drawings having at most 3 bends per edge route. The drawings he in an 
O(n) • O(n) x O(n) bounding box. Together, the two algorithms initiate 
the study of bend/bounding box trade-off issues for 3-dimensional grid 
drawings. 

1 I n t r o d u c t i o n  

The 3-dimensional orthogonal grid consists of grid points whose coordinates are 
all integers, together with the axis-parallel grid lines determined by these points. 
A 3-dimensional orthogonal grid drawing of a graph G places the vertices of G 
at grid points and routes the edges of G along sequences of contiguous segments 
contained in the grid lines. Edge routes are allowed to contain bends but are 
not allowed to cross or to overlap, i.e., no internal point, not necessarily a grid 
point, of one edge route may lie in any other edge route. Throughout this paper, 
grid refers to the 3-dimensional orthogonal grid, and grid drawing refers to the 
type of 3-dimensional orthogonal grid drawing just described. Note that  because 
each grid point lies at the intersection of three grid lines, any graph that  admits 
a grid drawing necessarily has maximum vertex degree at most 6. 

Figure 1 shows a grid drawing of a graph. This particular drawing lies in a 
2 x 3 x 2 hounding box. The edge route joining the two extremal vertices in the 
Z-direction lies along the top, back and bottom faces of the box and contains 2 
bends. The edge route joining the two extremal vertices in the X-direction also 
contains 2 bends, but passes through the interior of the box. 

While the graph drawing literature has extensively investigated 2-dimensional 
grid drawings of graphs (see [7]), 3-dimensional grid drawing has been little stud- 
ied. Our research is motivated in part by recent interest in exploring the utility 
of 3-dimensional drawings of graphs for visualization purposes. It should also be 
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Fig. 1. An orthogonal grid drawing 

noted that since VLSI technology now permits the stacking of many layers, this 
work may be relevant to that application area as well. 

This paper offers two algorithms for obtaining grid drawings. Both algorithms 
use basic graph theory methods to preprocess the input graph by colouring 
its edges; then the algorithms route edges according to their colour class. One 
algorithm produces drawings with a small number of bends per edge, while the 
other algorithm produces more compact drawings, but at the cost of an increased 
number of bends per edge. This raises for 3-dimensional grid drawing the same 
kind of bend versus bounding box trade-off issues that have been studied in 
the 2-dimensional case. Our algorithmic results establish upper bounds for the 
number of bends per route on the one hand, and for various measures of the 
bounding box on the other hand. 

Since there are many measures of bounding box compactness (e.g., volume, 
maximum dimension, sum of dimensions, length of long diagonal) we simply give 
the dimensions of the bounding box of the drawings produced by our algorithms, 
and we do not define compactness precisely. Note that volume is generally not the 
most appropriate measure of bounding box suitability for 3-dimensional drawings 
to be displayed in projection on screen or paper for visualization purposes. 

Our first algorithm takes as input any n-vertex graph of maximum de- 
gree at most 6 and produces a grid drawing bounded by a box of dimensions 
O(x/-n ) • O(v~ ) x O(v~ ). Each edge route has length O(v~ ) and contains at 
most 7 bends. This improves the best previously known result [9] of 16 bends 
maximum per edge route, described further below. Komolgorov and Bardzin 
([16]; see also [9]) showed that no algorithm can produce asymptotically more 
compact drawings; hence we refer to our first algorithm as the compact drawing 
algorithm. 
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Our second algorithm produces drawings having only 3 bends maximum per 
edge route. However, the bounding box of the drawing increases to one of dimen- 
sions O(n) x O(n) x O(n). We refer to this algorithm as the 3-bends algorithm. 
The maximum of 3 bends per route exhibited by the 3-bends algorithm may be 
best possible; we conjecture the existence of a graph of maximum degree at most 
6 that cannot be embedded in the grid with a maximum of 2 bends per edge 
route. However, the compact drawing algorithm suggests that the bounding box 
can be reduced in size, at least if more bends per route are admitted. 

For two dimensions, the problem of producing compact orthogonal grid draw- 
ings with few bends has received much attention. Several methods for obtaining 
crossing-free drawings in area 0(n) x O(n) with O(1) bends per edge are avail- 
able, e.g. [3, 4, 11, 15, 21, 23, 24, 25, 17]. Some recent research aims at reducing 
the number of bends while allowing crossings between edges, e.g. [5]. 

Not surprisingly, problems that are seemingly computationally intractable 
arise in both 2-dimensional and 3-dimensional grid drawing. For example, in 
two dimensions, minimizing the number of bends is NP-complete [12], but can 
be solved in polynomial time for any fixed planar embedding [22]. Eades, Stirk 
and Whitesides [9] have shown how to generalize various 2-dimensional NP- 
completeness results such as minimizing the number of bends, the volume of 
the drawing, and the maximum individual edge route length [12, 8, 2] to 3 
dimensions. 

As cited above, [9] provided an algorithm, based on the technique of Ko- 
molgorov and Bardzin [16], for obtaining 3-dimensional orthogonal grid draw- 
ings. The algorithm produces drawings for n-vertex, maximum degree at most 
6 graphs in which each edge route has at most 16 bends and has O(v~)  length. 
The drawing lies in an O(v/-~) x O(x/~ ) x O(x/~ ) bounding box. Thus the com- 
pact drawing algorithm we present here reduces the number of bends per edge 
route to a maximum of 7 while still achieving the bounding box dimensions and 
maximum edge route length obtained by [9]. 

Biedl (private communication) has shown that drawings with similar bounds 
on the edge length and bounding box dimensions can be obtained by using the 
techniques of 3-dimensional VLSI layout from the early 1980's [18, 19, 20]. 

The rest of this paper is organized as follows. Section 2 gives the simple graph 
theoretic methods that our two algorithms use to preprocess the input graph. 
Sections 3 and 4 present and analyse the compact drawing algorithm and the 
3-bends algorithm, respectively. Section 5 concludes. 

2 P r e l i m i n a r i e s  

This section gives the preprocessing step, based on elementary graph theoretic 
methods, that both the compact drawing algorithm and the 3-bends algorithm 
employ. First we recall a definition from graph theory. 

Def in i t ion l .  A cycle cover of a directed graph is a spanning subgraph that 
consists of directed cycles. 
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Fig.  2. A decomposition of a 4-regular undirected graph into 2 cycle covers. 

T h e o r e m  2. Suppose that G = (V, E) is an undirected graph of maximum degree 
at most 5. Then there is a directed graph G I = (V ~, E ~) on the same set of vertices 
V = V ~ such that 

- each vertex of G I has indegree at most 3 and outdegree at most 3; 
- G is a subgraph of the underlying undirected graph of GI; and 
- the arcs of G I can be partitioned into three edge disjoint cycle covers. 

Furthermore, given G -- (V, E), the directed graph G t and its three cycle 
covers can be computed in O ( n  3/2) time, where n is the number of vertices. 

Pro@ Pair the odd degree vertices of G and add a new edge for each pair. This 
can be done since the number of vertices of odd degree in any graph is even. 
After the addition of these new edges, each vertex has even degree at most  6. 
Add one self-loop (v, v) to each v E V of degree 4, and add two self-loops to 
each vertex of degree 2 to create a regular graph (with self-loops and multiple 
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edges allowed) of degree 6. This graph is Eulerian, since each of its vertices has 
even degree. Direct its edges by following an Eulerian circuit to obtain a directed 
graph G' with indegree 3 and outdegree 3 at each node. Clearly these operations 
can be performed in O(]VI) time. 

Now from G ~, construct an undirected bipartite graph G" = (Vo~,~ t2 Vi,~, E')  
by taking Volt = {Vo,,t Iv C V}, V/~ = {vi~ I v E V}, and E"  = {(Uo~t, vin) [(u, v) C 
E'}. Note that  G" is 3-regular and bipartite. By Hall's Theorem [13][10, p. 138] 
G" contains a perfect matching; colour its edges red and remove them. The re- 
maining graph is bipartite and 2-regular, so it again contains a perfect matching. 
Colour its edges green and remove them. The remaining edges form a perfect 
matching; colour them blue. 

Now colour each directed arc (u, v) of G' with the colour given to (uo~t, vi~) 
of G ' .  This gives each node of G ~ exactly one incoming and one outgoing arc 
of each of the three colours. Hence the arcs of G t are partitioned into three 
coloured subgraphs Cr~d, Car~,~,Cbl,~, each of which is a cycle cover for G'. 
Since a maximum matching in an arbitrary bipartite graph with n vertices and 
m edges can be computed in O(mv/-ff) [14], and since for G" we have n = 2]V] 
and m = 31V[, the computation of the three cycle covers can be done in O(]V] 3/2) 
time, including the time used to compute G ~ from G. 

Figure 2 shows the analogous process of partitioning the edges of a 4-regular 
undirected graph into two cycle covers. 

P r e p r o c e s s i n g  A l g o r i t h m :  We call the algorithm contained in the proof of the 
previous theorem the preprocessing algorithm. To summarize, the preprocessing 
algorithm takes as input an undirected graph G of maximum degree 6 and com- 
putes as output a directed graph G ~ whose underlying undirected graph contains 
G; the preprocessing algorithm also computes a partition of the arcs of G ~ into 
three edge disjoint cycle covers, denoted Cred, Cgre~,~, Cbl,~. The algorithm runs 
in O(IVI 3/2) time. 

Both the compact drawing algorithm and the 3-bends algorithm specify arc 
routes for the three cycle covers of G ~. To obtain a drawing for G, the algorithms 
route the undirected edges of G according to the routes for the corresponding 
directed arcs of G ~. Self-loops and arcs of G I that  do not arise from edges of G 
are simply not drawn. 

In the following sections, it is helpful to keep in mind that  each node of G ~ 
has exactly one incoming and exactly one outgoing arc of each colour. 

3 C o m p a c t  D r a w i n g  

This section gives our compact drawing algorithm, which takes an input a graph 
G = (V, E) of maximum degree at most 6 and produces as output a grid draw- 
ing for G having at most 7 bends per edge, maximum edge length 12x/'n , and 
bounding box dimensions (3[v/~ ] + 2) • 5[v/-ff ] • 4[v/~] ,  where IV I = n. 
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Fig. 3. The layout of the vertices of G and the routing of edges in cycle cover 
C r e d  �9 

Overview of the compact drawing algorithm: 
The compact drawing algorithm has the following basic steps, the first of which 
has already been described and the rest of which are described in detail in 
subsequent subsections. 

1. Run the preproeessing algorithm of Section 2 to construct directed graph 
G ~ and to obtain a partition of its arcs into three arc disjoint coloured cycle 
covers, denoted Cred, Cblue, and Cg~e~n. 

2. Use cycle cover Cred to place the nodes V ~ -- V on the Z = 0 plane; design 
routes for the arcs in C~d that do not leave this plane and that have at most 
7 bends per route. 

3. Design routes for the arcs in cycle cover C b ~  that lie on and above the Z 
= 0 plane and that  have at most 7 bends per route. 

4. Design routes for the arcs in cycle cover Cgree,~ that  lie on and below the Z 
--= 0 plane and that have at most 7 bends per route. 

5. Draw the routes for the arcs of G I that  arise from edges of G. 
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3.1 P r o c e s s i n g  Cr~d 

Suppose cycle cover C~ed consists of k directed cycles cl, c2 , . . . ,  ck, and use these 
cycles to order the nodes of G ~ as follows. Arbitrarily choose a starting node from 
ct, and order the remaining nodes of Cl by following the cycle; then order the 
nodes of the remaining cycles in similar fashion, ordering the the nodes of ci 
before those of cj if i < j .  

Next, define a square array of special grid points Pi,j in the Z = 0 plane as 
follows. For 0 ~ i, j < [V/-~ ], pi,j = (5i + 3, 5j + 3, 0). 

Rather than give explicit formulas for node placement and arc routing, we 
illustrate this in the context of a specific example from which the reader can 
easily infer the general rules. 

Consider the following cycle cover Cr~d: cl = (vl, v2, va), c2 = (v4, . . . ,  vs}, 
c3 = (vg, . . . ,  v17), c4 = (vls, v19), and c5 = (v20). 

Using the order just obtained from cycle cover Cred, assign the nodes of G / 
to grid points Pi,j in the snake-like fashion illustrated in Fig. 3. Then route the 
arcs of the cycles as shown in the figure. In particular, the figure shows how to 
handle cycles whose nodes lie within one row of special grid points, cycles whose 
nodes lie in parts of two neighboring rows, and cycles whose nodes occupy more 
than one row. 

By Sq(i, j)  we refer to the set of grid points within the square of side length 
4 centered at special grid point Pi,d. That  is, Sq(i, j )  = {5i + k, 5j + l, 0) [ 1 _~ 
k,l< 5}. 

The squares themselves form a square array, so we speak of the squares of 
row i (rows are parallel to the X-axis) and the squares of column j (columns are 
parallel to the Y-axis). 

Now we make two observations for future reference. These will be used in 
proving that  no two arc routes intersect illegally. 

O b s e r v a t i o n  1 The routes for red arcs satisfy the following properties: 
i) The edge routes for arcs in Cred have at most 5 bends per route. 
ii) The grid points having Y-coordinate one greater or less than the Y-coordinate 
of a special grid point pi,j lie in no red arc routes. 
iii) The grid points contained in routes connecting nodes in the same cycle of 
Cred are entirely contained in the squares to which those nodes are assigned. 

O b s e r v a t i o n  2 Consider the positive length segments parallel to the Y-axis that 
are contained in routes for red arcs. Except for segments intersecting the first 
or last column of squares, these segments contain no grid points that differ by 
exactly 2 in X-coordinate from the X-coordinate of a special grid point Pl,j. 

3.2 R o u t i n g  Cblue a n d  Caree N 

Here we describe how to route the arcs in cycle cover Cbl~e. The arcs of Cgr~r 
are routed similarly, but on the other side of the Z=0  plane. 

The route of an arbitrary arc (v, w) of Cbl~e is illustrated in Fig. 4, where 
vi,j denotes the vertex placed at pi,j . 



146 

segment-3 

segment-2 

segment-1 

. . . . . . . ,  

segment-7 - . ~  

segment-6 ~" I i 
segment-5 ~ /  [ j 

segment-4 
/ 

( 
i 
! 

I 

t 

., : . . . .  ] 1 . . . ' . ,  . .  

. . . . . . . . . . . . . . . . . . . .  [.........::. ;. 

. . . . .  '.' ' f  i_ '  . . . . . . . .  

. . . .  y 

.. ~ X  

Fig. 4. The route of arc (v, w) of ~r2 with 7 bends. 

Let vertices v and w be assigned to special grid points having coordinates 
(x,,  y~, 0) and (x~, y~, 0), respectively. Then the route for arc (v, w) consists of 
the 7 segments described in the table and shown in the figure. Here we defer 
until later the specification of the value zvw in the table, noting for the moment 
that  for all v, w, the value of z ~  will be an odd integer. 

Segment Start point -* finish point 
1 (x~,y~,0) --* (x~,y~ + 1,0) 
2 (x~,y~ + 1, 0) ---*(x~,y~+l,z~w) 

4 (~ ,y~  + 2, z ~ )  ~(x~+l,y~+2,  z~) 

7 (z~ + 1 , y ~ , z ~  + 1) ----~(x~,yw,z~+l) 
8 (x~,y~,z~+l) ~(xw,y~,O) 

3.3 P r o o f  of  C o r r e c t n e s s  

Now we prove that  the routes of any two arcs do not intersect illegally. 
Note that  if a unit length segment contains an intersection point not located 

at a special grid point pl,j, then one of its adjacent segments (of length > 1) also 
contains this intersection point. Thus, we need only consider the possibility of 



147 

intersections of segments longer than 1, i.e, intersections among even-numbered 
segments. 

Observe that  the routing of segment-4 for every arc route takes place in plane 
(*, 5j + 5, *), 0 _< j < rv/~ ], and that  the routing of segment-6 for every arc 
route takes place in plane (5i + 4 , . ,  *), 0 < i < [v/-~ ]. This implies that  these 
segments cannot intersect with any segment numbered 2 or 8 from any arc route. 
Also, note that  segment-2 obviously cannot intersect segment-8. 

Observe that  it is not possible for any segment-4 to intersect any segment-6. 
This is because the two segments are routed on parallel planes, one with even 
Z-coordinate, one with odd Z-coordinate. Hence the only possible intersections 
are between the segment-4's of two different routes or between the segment-6's 
of two different routes. 

Finally we explain how to choose the values for zvw. This is done by using the 
method of [9]. Consider arc (v, w). The route for this arc can intersect only with 
the arc routes with origin in the row of squares in which vertex v is placed and 
the arc routes with destination in the same column of squares in which vertex 
w is placed. 

We construct a graph H whose vertex set is the arc set of cycle cover Cbl~. 
An edge is inserted between two vertices in the graph H whenever the vertices 
correspond to arcs with start nodes in the same row or end nodes in the same 
column. H has maximum degree 2([v/'~ ] - 1 )  and thus it has a vertex colouring 
by 2 r v ~  ] - 1 colours, which can be obtained in O(nv/'n) t ime by a greedy 
algorithm [6, Brook's Theorem].  Say that  colour c, 1 _< c < 2[v/'~ ] - 1, has 
been assigned to the vertex of H that  corresponds to blue arc (v, w). Then set 
zvw = 2e - 1. 

Now we give the main result of Section 2. 

T h e o r e m 3 .  Every n-vertex maximum degree 6 graph G has a 3-dimensional, 
intersection-free orthogonal drawing with the following characteristics: i) at most 
7 bends per edge route, ii) (16[x/~ ] - 7) maximum edge length, and iii) a 
bounding box of dimensions (3 [v/~ ] + 2) • 5 [x/~ ] • (8 [v/~ ] - 6). Moreover, 
the drawing can be obtained in O(n 3/~) time. 

Proof. Except for their endpoints, green arc routes lie below the Z = 0 plane 
and obviously do not intersect blue arc routes illegally. Based on Observation 1 
and the fact that  the red arc routes lie in the Z = 0 plane, we conclude that  they 
do not intersect blue or green arc routes illegally. Thus, the drawing obtained 
by routing edges of a graph G according to the routes for their corresponding 
directed arcs in G ~ gives a proper grid drawing. 

The fact that  there are at most 7 bends per edge route can be seen by 
inspection. The drawing fits in an axis-aligned box of dimensions 5[x/~ ] • 
5Iv/~ ] • ( 8 r v ~  ] - 6). The maximum possible edge route length corresponds 
either to a blue arc route starting from Sq(1, [x/~ ]) and going to Sq([v/-n ], 1) 
through the top of the box, or to its green counterpart directed in the opposite 
direction. The length of such a route is at most (18rx/~ ] _ 9) units. 
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The maximum edge route length and the volume of the drawing can be im- 
proved by a constant factor. Based on Observation 2, each 5 x 5 square except 
the ones in the first and last column of squares can be replaced by a 3 x 5 rectan- 
gle. As a result of this change, the modified drawing fits in a box of dimensions 
(3 [v/-~ ] + 2) x 5 [v/-~ ] x (8 [x/~ ] - 6) and the maximum length of a route is 
(16[,fff ] - 7) units. 

The time consuming parts of the compact drawing algorithm are the partit ion 
of the arcs of the 6-regular directed graph G ~ graph into red, green and blue cycle 
covers and the vertex colouring used in the routing of the blue and green arcs. 
Both of these operations can be completed in O(n 3/2) time. 

4 T h e  3 - B e n d s  A l g o r i t h m  

In this section we present an algorithm for constructing an orthogonal drawing 
of a graph G = (V, E) of maximum degree at most 6 with at most 3 bends per 
edge. This is a substantial reduction in the number of bends from Section 3. The 
cost of the decrease in the number of bends is that  the bounding box dimensions 
increase to O(n) x O(n) x O(n), where n = IVI. 

The 3-bends algorithm uses the preprocessing algorithm of Section 2 to obtain 
a 6-regular directed graph G ~ together with arc disjoint cycle covers Cred, C a ~  
and Cbz~ for Gq However, it places the vertices of G (nodes of G I) on the diagonal 
of a 3n x 3n x 3n cube. More precisely, it arbitrarily assigns numbers 1, 2 , . . . ,  n 
to the vertices and places vertex a E {1, 2 , . . . ,  n} at location pa = (3a, 3a, 3a). 

Each pair a, b of nodes in G ~ determines an isothetic cube C(a, b) with pa and 
pb at opposite corners. For the purpose of defining routes for possible coloured 
arcs of the form (a, b), we first define red, green and blue paths between Pa and 
pb along the edges of the cube C(a, b) as illustrated in Fig. 5. Each path of cube 
edges has only 2 bends. 

Later, we are going to route a coloured arc (a, b) of G ~ close to the coloured 
path of cube edges of the same colour on C(a, b), so that no point on the actual 
route for (a, b) is more than one unit away from some point on the corresponding 
coloured path of cube edges on C(a, b). The following easy lemma shows that  by 
doing this, we guarantee that routes for arcs that  are not incident to a common 
node of G ~ do not intersect. 

L e m m a 4 .  Suppose that a, b, e, d E V are distinct nodes of G'. Suppose that p is 
a point on a cube edge of C(a,b) and that q is a point on a cube edge of C(c,d) .  
Then the Euclidean distance between p and q is at leas~ 3. 

The above lemma, together with the fact that  coloured paths of cube edges 
on the same cube get close to one another only in the vicinity of the ends of 
the paths, suggests that  the main difficulty will be to ensure that  routes do not 
intersect in the vicinity of their endpoints. 

Given this intuition about the routing strategy, we first give an overview of 
the 3-bends algorithm and then give the routing details. 
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Fig. 5. Disjoint paths 

Overview of the 3-bends algorithm: 
The 3-bends algorithm has the following basic steps. 

1. Use the preprocessing algorithm of Section 2 to compute the 6-regular di- 
rected graph G ~ and its three cycle covers C~ed, Cg~e~ and Cbl~r 

2. Arbitrarily number the nodes V' = V of G' 1 to n = IVI; for 1 _< a < n, 
place node a at p~. 

3. Design the routes for each coloured arc (a, b) of G ~ as described in detail 
below. 

4. For each undirected edge of G, draw the route of the corresponding coloured, 
directed are of G ~. 

To specify the arc routes in detail, it is helpful first to introduce the concept 
of a local minimum or maximum of a coloured cycle. Suppose, for example, that  
Ul ~ u2 --* . . .  -~ uk -~ Ul is the red cycle through some node b of G t. Hence b 
= ui for some 1 < i < k, and each uj on the cycle is a number in the range 1 
to n. The successor Ui+l of b=ui may be a larger or a smaller number than ui. 
Hence as one moves along the red cycle, the coordinate values associated with 
the nodes on the cycle are sometimes increasing, sometimes decreasing. This 
motivates the following definition. 

D e f i n i t i o n 5 .  A node ui is a local maximum with respect to a coloured cycle 
Ul, �9 -., uk if its value is greater than that of both its predecessor and its successor, 
i.e, if ui-1 < ui and Ui+l < ui, where subscript arithmetic is modulo k. 
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A local m i n i m u m  is defined analogously.  An arc (ui, u i+l)  is said to be in- 
creasing or decreasing if ui < ~ti+l or u i > Ui+l, respectively. The  route for a 
coloured arc (ui, u i+ l )  will depend on whether  the arc is increasing or decreas- 
ing and also, on whether  ui+l  is a local m i n i m u m ,  a local m a x i m u m ,  or nei ther  
for t ha t  colour. Note, for example ,  tha t  a node m a y  be a local m a x i m u m  with  
respect  to one colour and a local m i n i m u m  with  respect  to another  colour. 

We define four categories of arcs: 

- normal increasing arcs: arcs (ui, ui+l) with ui < ui+l and ui+l < ui+2. 
- normal decreasing arcs: arcs (ul, ui+l) with ul > ui+l and ui+l > ui+2. 
- arcs entering a local minimum: arcs (u i ,u i+l )  with ui > ui+l and ui+l < 

ui+2. 
- arcs entering a local maximum: arcs (u~:,ui+l) with ui < ui+l and ui+l > 

Ui+2. 

The  categories are i l lustrated in Fig. 6 for a cycle t ha t  passes th rough  nodes 
numbered  1 to 9 wi th  no omissions. 

~ 9 

Fig.  6. Categories 

In the cycle 1 --+ 3 --+ 6 --+ 9 -+ 4 --+ 7 --+ 8 --+ 5 -+ 2 --+ 1, arcs (1, 3), (3, 6) 
and (4, 7) are normal  increasing, arcs (8, 5) and (5, 2) are no rma l  decreasing, arcs 
(9, 4) and (2, 1) enter a local m i n i m u m ,  and arcs (6, 9) and (7, S) enter  a local 

m a x i m u m .  
A red no rma l  arc (u~, Ui+l) (increasing or decreasing) is routed along the  red 

pa th  of cube edges of the cube C(ui ,  ui+l) .  T h a t  is, the routes  for red no rma l  
a r c s  3 , r e :  

- normal increasing red arc: (3ui, 3ul, 3ul) --~ (3ui+l, 3ui, 3ui) --+ (3u~+1,3ui+l, 3ui) 
--~ (3ui+l,3ui+l, 3ui+1) and 

- normal decreasing red arc: (3ui, 3ui, 3u~) -+ (3ui, 3u~, 3ui+i) --+ (3ui, 3ui+1,3ui+l) 
(3ui+1,3u~+1,3ui+l). 

Note t ha t  each route for a no rma l  red arc has two bends.  
The  other  red arcs are routed near  the red pa th  of cube edges, but  sl ightly 

offset, as described below: 
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- red arcs entering a local min imum:  

(3ui, 3ui, 3ui) ~ (3ui, 3ui, 3ui+1-1) --* (3ui, 3ui+1,3ui+1-1) --+ (3u~+1,3ui+1, 3ui+1- 
1) --, (3u i+ l ,  3u i+ l ,  3 u i + 0 .  
This route is illustrated in Fig. 7. 

- red ares entering a local maximum:  

(3nl, 3ul, 3ui) --+ (3Ui+l + 1, 3hi, 3ui) -+ (3ui+1 + 1, 3hi+l, 3ui) -+ (3ui+1 + 
1, 3Ui+1,3Ui+1) --+ (3Ui+l, 3Ui+1,3Ui+1). 
This route is illustrated in Fig. 8. 

Note that  each of these red arc routes has 3 bends. 

U . 
1 

z 

a ~ / 
X ~ i + l  i 

> w : !  

Fig. 7. Red route into a local minimum 

The blue and green arcs are routed similarly. 

T h e o r e m  6. Every  n-ver tex  graph G of m a x i m u m  degree at most  5 has an or- 
thogonal grid drawing with the following characteristics: i) at most  3 bends per  
edge, ii) m a x i m u m  edge length 9 ( n - 1 ) + 2 ,  and iii) a bounding box of  dimensions 
(3n - 2) • (3n - 3) • (3n - 2). Moreover, the drawing can be obtained in O(n 3/2) 
t ime.  

Proof. Observe that  each segment of each arc route lies in at least one plane that  
is parallel to one of the coordinate planes and that  contains some vertex position 
pa = (3a, 3a, 3a). Thus i fa  pair of routes intersect, they have an intersection point 
in such a plane. For a give generic vertex position Pa = (3a, 3a, 3a), it is easy to 
determine the places on each of the planes X = 3a, Y =  3a and Z = 3a where 
route segments could possibly lie or pass through. One can exploit the similarity 
of the construction for routes of different colours to further simplify the task. It 
is straightforward to check that  no illegal intersection of routes can occur. 
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u i + l  

/ 
u i 

7, ! 

Fig. 8. Red route into a local maximum 

The slow part of the running time is the time required to compute the cycle 
covers, which is O(n a/2. The longest possible edge route would be the one con- 
necting the extreme vertices on the diagonal. The length of this edge and the 
bounding box dimensions are evident. 

Finally, we observe that the technique of the previous theorem can be ex- 
tended in a simple manner to give a result for orthogonal grid drawing in arbi- 
trary dimension d > 3. 

Theorem 7. Suppose G is a graph of maximum degree at most 2d. Then there 
is an orthogonal grid drawing of G in dimension d with at most d bends per edge. 

5 C o n c l u s i o n s  

We have presented two algorithms for producing grid drawings of n-vertex graphs 
of maximum degree 6. Both of algorithms compute an associated 6-regular di- 
rected graph G I from the input graph G together with three edge disjoint cycle 
covers for G/. 

We note that applying this cycle cover decomposition to the algorithm of 
[9] eliminates the need for the dummy vertices that algorithm introduces and 
immediately reduces the number of bends produced from a maximum of 16 per 
edge route to a maximum of 8 per route. Our first algorithm further reduces this 
number to 7, and our second algorithm reduces it to 3, at the expense in the 
latter case of increased bounding box dimensions. 

Our results suggest the study of trade-offs between the number of bends in 
routes and the dimensions of the drawing, and they contribute upper bounds for 
such a study. 
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It would be interesting to know whether a maximum of 3 bends per edge 
route is best possible. Note, however, that KT, the 6-regular complete graph on 
7 points, does have a grid drawing with at most 2 bends per edge [26]. 

A c k n o w l e d g m e n t  We thank David Wood for showing us tha t  K7 has a grid 
embedding with at most 2 bends per edge route; we had originally conjectured 
t h a t / ( 7  requires at least 3 bends on some edge route. 
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