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Abst rac t .  We consider the wiring or layer assignment problem for edge- 
disjoint layouts. The wiring problem is well understood for the case that 
the underlying layout graph is a square grid (see [8]). In this paper, 
we introduce a more general approach to this problem. For an edge- 
disjoint layout in the plane resp. in an arbitrary planar layout graph, 
we give equivalent conditions for the k-layer wirability. Based on these 
conditions, we obtain linear-time ~lgorithms to wire every layout in a tri- 
hexagonal grid, respectively every layout in a tri-square-hexagon~l grid 
using at most five layers. 

1 I n t r o d u c t i o n  

The wiring problem consists in converting a two-dimensional edge-disjoint lay- 
out into a three-dimensional vertex-disjoint layout. Wiring edge-disjoint layouts 
is a fundamental and classical problem in VLSI-design. Typically, the general 
layout problem in VLSI-design consists of two phases, the placement and the 
routing. Often, the routing phase is again divided into two steps. First, a two- 
dimensional layout is constructed satisfying certain conditions induced by the 
underlying layout model. This layout describes the course of the wires connect- 
ing the corresponding terminals. In the second step, the wiring step or layer 
assignment step, the edges of the wires are assigned to different layers to avoid 
physical contacts between different wires. The layout can be viewed as a pro- 
jection in the plane of this final three-dimensional wiring. In connection with 
graph drawing, the wiring problem is of interest as well. There, an edge-disjoint 
embedding of a graph is given. The problem consists in a visualization of the 
graph by a three-dimensional vertex-disjoint embedding whose projection in the 
plane is again the edge-disjoint embedding of the graph. 

Consider an edge-disjoint layout in the plane resp. in a planar graph. Such a 
layout may be an edge-disjoint realization of nets or an edge-disjoint embedding 
of a graph. The construction of edge-disjoint layouts is a fundamental problem. 
For an overview we refer to [3, 9, 11]. Then the wiring problem can be described as 
follows. There is a number of graphs isomorphic to the layout, called layers. Each 
path, called wire, of the layout is realized by a sequence of subpaths in different 
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layers such that two different wires are vertex-disjoint. A vertical connection 
between layers, a via, is used at each layer change. The main optimization goal 
is to minimize the number of layers. 

Several results have been obtained for the wiring problem for edge-disjoint 
layouts in regular grids, especially square grids [1, 2, 4, 5, 6, 10, 12, 15, 14, 16]. 
Most of these results are based on the combinatorial framework introduced in 
[8] which applies to edge-disjoint layouts in square grids. Moreover, only layouts 
where terminals are placed on the boundary of the layout graph are considered. 
A technique using two-colorable maps is developed, and necessary and sufficient 
conditions for the wirability in a fixed number of layers are given. For two layers 
these conditions are easy to test. On the other hand, it is AlP-complete to decide 
if a layout is three-layer wirable [7]. Every layout is wirable in four layers, and 
such a wiring can be constructed in time linear in the size of the layout [1], [14]. 
In [14], the concept of two-colorable maps is applied to octo-square grids, but no 
guarantee for the number of layers required for the wiring is given. If the layout 
graph is a tri-hexagonal grid, every edge-disjoint layout is wirable in five layers 
[13]. 

Nothing is known so far about the wiring problem for layouts in the plane 
resp. in general planar layout graphs, with arbitrary terminal positions. In this 
paper, we develop a general approach to this problem. It leads to necessary and 
sufficient conditions for k-layer wirability of edge-disjoint layouts where at most 
two different wires meet in a vertex. These conditions generalize the framework 
given in [8]. Again, two-layer wirability is easy to test. And of course, deciding 
three-layer wirability is JVP-complete as well. For layouts in special planar layout 
graphs guarantees are given for the number of layers required for the wiring. We 
prove that every layout in a tri-hexagonal grid is wirable in at most five layers. 
Moreover, every layout in a tri-square-hexagonal grid is wirable in at most five 
layers as well. In both cases, such a wiring can be constructed in time linear in 
the size of the layout. Observe that our approach for layouts in tri-hexagonal 
grids is different from the approach given in [13]. 

The wiring theory presented here is restricted to layouts where at most four 
wire edges are incident to the same vertex. But it is extendable to the case that 
more than four wire edges belonging to at most two different wires are incident 
to the same vertex. The case that more than two different wires meet at a vertex 
seems to be much more involved. 

The paper is organized as follows. In Section 2, we introduce the necessary 
definitions and notations. The general approach to wiring edge-disjoint layouts 
is developed in Section 3. Finally, in Section 4 we present linear-time algorithms 
for wiring layouts in tri-hexagonal and tri-square-hexagonal grids using at most 
five layers. 

2 P r e l i m i n a r i e s  

We consider an edge-disjoint layout in the plane or in a planar layout graph. 
Such a layout in the plane consists of vertices, called terminals, in the plane and 
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pairwise edge-disjoint Steiner trees connecting specified sets of terminals, called 
wires. A specia[ case of an edge-disjoint layout is an edge-disjoint embedding of 
a graph, i. e., a mapping of the vertices of that  graph into the plane and a real- 
ization of its edges by pairwise edge-disjoint paths. Similarly, for an edge-disjoint 
layout in a planar graph consider an undirected graph G, the layout graph, with 
a fixed embedding in the plane. Then the layout consists of terminals placed on 
vertices of G and pairwise edge-disjoint Steiner trees connecting specified sets 
of terminals, respectively pairwise edge-disjoint paths realizing edges of the em- 
bedded graph. A layout in the plane, respectively the vertices and edges of the 
layout graph G occupied by a layout, induce a planar embedded graph. In the 
following, we identify a layout L with this induced graph. 

A conducting layer, or simply layer is a graph isomorphic to the layout L. 
Conducting layers L 0 , . . . ,  L~_l are assumed to be stacked on top of each other, 
with Lo on the bot tom and Lk-1 on the top. A contact between two layers, 
called a via, can be placed only at a vertex of a layer. 

A correct layer assignment or wiring W(L) of a given layout L is a mapping 
of each edge of L to a layer such that: 

1. No two different wires share a vertex on the same layer. 
2. If adjacent edges of a wire are assigned to different layers, a via is established 

between these layers at their common vertex. 
3. If a via connects Lh and Lj (h <~ j ) ,  then layers Li, h < i < j,  are not used 

at that  vertex by any other wire. 

Note that  a correct wiring can be interpreted as a three-dimensional config- 
uration of vertex-disjoint wires. In the following, we restrict to layouts where at 
most two different Steiner trees meet at the same vertex. The case that  more 
than two different wires meet at a vertex seems to be much more involved. Be- 
cause of lack of space, the wiring theory presented here is formulated only for 
layouts where at most four wire edges are incident to the same vertex. But it is 
extendable to the case that  more than four wire edges belonging to at most two 
different wires are incident to the same vertex. To determine a correct wiring of 
a layout L, only those vertices where two different wires meet are of relevance. In 
the following we call these vertices non-trivial vertices of the layout. In Figure 1, 
all possibilities of non-trivial vertices where at most four wire edges meet are 
shown. 

D e f i n i t i o n  1. The subgraph of L induced by all non-trivial vertices and all edges 
incident to at least one non-trivial vertex of L is called the core of L, denoted 
core(L). 

The following lemma shows that  we can restrict to the core of a layout L. In 
[8], it is proved for layouts in grids, where different wires may cross or both bend 
at the same vertex, but  do not meet at terminals. But the proof of the lemma 
applies to the more general layouts we consider here as well. 

L e m m a  2. [8] A layout L is wirable in k layers i/ and only if each connected 
component o] core(L) is. 
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a) b) c) d) 

Fig. 1. The different possibilities of non-trivial vertices. Each of the two wires may end 
at a terminal in that vertex. Possibility c) occurs when one wire ends at a terminal 
and d) occurs when both wires end at a terminal in that vertex. 

Proof. In order to prove the non-trivial part  of the lemma, consider a k-layer 
wiring W of the core core(L). All edges of L -  core(L) are assigned to an arbitrary 
layer, say L0. If necessary, a via is established on a trivial vertex connecting the 
wires incident to that  vertex. 

3 A c h a r a c t e r i z a t i o n  o f  k - l a y e r  w i r a b i l i t y  

In this section, we develop a complete characterization of k-layer wirability of 
planar layouts. First, we observe that  we can restrict to the 2-edge-connected 
components of a layout core. 

L e m m a 3 .  A layout L is wirable in k layers if and only if each 2-edge-connected 
component o/ core(L) is wirable in k layers. 

Proo/. In order to prove the non-trivial part  of the lemma, consider a decompo- 
sition of core(L) into its 2-edge-connected components. These 2-edge-connected 
components can be ordered topologically. Let W be a k-layer wiring of the 2- 
edge-connected components, and P be a wire going through different compo- 
nents. Then there is an edge {u, v} on P such that  u and v belong to different 
components~ say C(u) and C(v). Assume w.l.o.g, that  C(u) is before C(v) in the 
topological ordering. 

Now, a correct k-layer wiring W* of the subgraph of core(L) induced by 
C(u), {u, v} and C(v) is constructed as follows. In case the wirings of C(u) and 
C(v) are compatible, i. e., P is wired both times above (resp. below) the wire it 
meets in u and in v, the wiring of C(v) and C(u) remains fixed, {u, v} is wired in 
the same layer as P in u, and an appropriate via is placed on v. Otherwise, only 
the wiring of C(u) remains fixed and the wiring of C(v) is flipped. Tha t  is, if an 
edge of C(v) belongs to layer Li, 0 < i < k - 1 in W, then this edge is assigned 
to layer Lk-i in W*. Then again, (u, v} is wired in the same layer as P in u, and 
an appropriate via is placed on v. Finally, a sequence of flippings according to 
an arbitrary linear extension of the topological ordering of the 2-edge-connected 
components of core(L) induces a correct layer assignment of L in k layers. 
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In the following, we assume that  core(L) is 2-edge-connected. The dual graph 
of a planar graph with respect to a fixed combinatorial embedding is defined as 
follows. For each face of the graph there is a dual vertex, and there is an edge 
connecting two dual vertices if and only if their faces are incident with a common 
primal edge. The subgraph of the dual graph of L corresponding to core(L) is 
denoted by core(L) d. That  is, core(L) d is the graph induced by all edges dual 
to edges of core(L). Since core(L) is 2-edge-connected, core(L) 4 contains no 
loops. The edges of core(L) ~ that  are dual to edges of core(L) incident to a 
trivial vertex are called the boundary edges of core(L) d, or just the boundary of 
core(L) d. Vertices of core(L) ~ incident to boundary edges are called boundary 
vertices, all other vertices of core(L) d are called inner vertices. See Figure 3. 
Obviously, a vertex is an inner vertex if and only if it is dual to a face of core(L) 
that contains only non-trivial vertices. 

Fig. 2. Diagonals (thin) corresponding to a pair of neighbored edges of core(L) that 
belong to the same wire. 

We first give a characterization of two-layer wirable layouts which is of fun- 
damental importance for what follows. It is based on the dual of the layout core. 
Let us call two layout edges that  are incident to the same vertex and have a 
common face neighbored. For a layout L, define diagonal edges connecting cer- 
tain vertices of core(L) with vertices of core(L) d. Precisely, for every pair of 
neighbored edges that  belong to the same wire and whose common vertex is 
non-trivial, a diagonal edge is introduced conncting that  common non-trivial 
vertex and the vertex of core(L) d corresponding to the common face. See Fig- 
ure 2 and Figure 3. For a vertex v E core(L) d denote diag(v) the number of 
diagonals incident to v. Then the extended degree of v, exdeg(v), is the sum of 
the degree of v (denoted deg(v)), and the number of diagonal edges incident to 
v, i. e., exdeg(v) := deg(v) + diag(v). Now, deg(v) is equal to the number of 
edges on the face F v dual to v, which is again equal to the number of vertices 
on F v. Thus, exdeg(v) = lEVI + diag(v), h vertex v E core(L) d is called even if 
exdeg(v) is an even number, otherwise v is called odd. 

L e m m a  4. A layout L is two-layer wirable i /and only i/ 

1. /or each inner vertex o] core(L) d the extended degree is even, and 
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Fig. 3. Part of a layout core (bold), its dual and its diagonals (thin); the dashed edges 
are the boundary edges of the dual; inner vertices of the dual are black. 

2. for each connected component of the boundary of core(L) d the sum of the 
extended degrees of the boundary vertices minus the number of boundary 
edges is even. 

Proof. (Ske tch)  In a two-layer wiring, two neighbored edges incident to a com- 
mon non-trivial vertex are assigned to different layers if and only if they belong 
to different wires. Thus, core(L) is two-layer wirable if and only if for every 
face of core(L) the number of vertices on that  face incident to neighbored edges 
belonging to different wires is even. 

For the first part  of the proof, consider an inner vertex v E core(L) d dual to 
face F v of core(L). Let re(v) denote the number of vertices on F v incident to 
neighbored edges on F v belonging to different wires. Since an inner vertex v is 
dual to a face F v containing only non-trivial vertices, F v is two-layer wirable if 
and only if re(v) is even. Thus F v is two-layer wirable if and only if exdeg(v) = 
IFVl + diag(v) = re(v) + 2diag(v) is even. The proof of the second part  is similar, 
but  more technical. It is omitted because of lack of space. 

The general wiring theory developed now relies on the construction of an 
appropriate set of wire edges whose removal leaves a two-layer wirable layout. 
The declaration what "appropriate" means is our goal now. More precisely, for 
a k-layer wirable layout we give an equivalent characterization of a set of wire 
edges whose removal leaves a two-layer wirable layout. This characterization of 
a set of wire edges consists in giving forbidden patterns for its dual edges. 

D e f i n i t i o n  5. Consider a subset R of wire edges of core(L). R is called a removal 
set of core(L) if its removal leaves a two-layer wirable layout. The elements of 
R are also called removal edges. Denote R d the set dual edges of R. A removal 
set R is called legal if R d contains no cycle and no path connecting two vertices 
of the same connected component of the boundary of core(L) d. 
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a) 

I 
I 

b) 

Fig. 4. a) The layout L from Figure 3. Edge e forms a legal removal set (thin). b) A 
two-layer wiring of L - {e} 

Consider a legal removal set R of core(L). If core(L) is 2-edge-connected, the 
graph induced by core(L) - R is connected. Thus it has a two-layer wiring that  
is unique up to the choice of the layers, say in layer bottom and layer top. Such 
a two-layer wiring induces a type classification of vertices u and v with respect 
to {u, v}, for every edge {u, v} C R. 

1 if {u,v} is incident in v to a wire edge 
type{u,v}(V) := of the same wire in the top layer, or 

of a different wire in the bottom layer; 
2 otherwise. 

Obviously, this classification is well defined. Observe, that  for a vertex v 
incident to edges (u, v}, {w, v} C R that  belong to different wires, type{u,v} (v) 
type(u,v} (v). Lemma 4 implies the following corollary. 

C o r o l l a r y  6. For a legal removal set R, the edges o] R a /orm paths connect- 
ing odd vertices o] core(L) d, respectively an odd vertex to a boundary vertex o/ 
core(L) d. 

Since R is legal, these paths form trees whose leaves are odd, respectively lie 
on the boundary. Note that  two different paths containing a vertex of the same 
boundary component are considered to belong to the same tree. 

L e m m a T .  Let R be a legal removal set o/ core(L). For a type classification 
induced by a two-layer wiring of core(L) - R, type{u,v}(v) # type{u,v}(u) ]or 
every edge {u,v} E R. 

Proo/. (Sketch)  A tree T of edges of R d induces a cycle of wire edges not in R, 
i. e., the cycle of edges of core(L) around T. More precisely, every inner vertex 
of core(L) belonging to T corresponds to its dual cycle in core(L), and every 
boundary vertex of core(L) belonging to T corresponds to the cycle in core(L) 
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around the corresponding boundary component. Then the union of these cycles 
minus the edges of R form the cycle induced by T. 

In a two-layer wiring of core(L) - R, such a cycle must contain an even 
number of layer changes. Now, consider an edge {u, v} E R dual to an edge of 
T. Assume type{~,v}(V) = type{u,v}(U). Then for all edges {x, y} E R dual to an 
edge of T we have type{~,y}(x) = type{x,y}(y ). But for an edge of R dual to an 
edge incident to a leaf of T,  the type of the two end vertices must be different 
with respect to that  edge. This is a contradiction. 

Lemma 7 guarantees that we can define an orientation on the edges of R. 

A 

a) b) 

Fig. 5. Removal sets that do not induce 3-layer wirability and the corresponding forbid- 
den patterns, a) Pattern corresponding to neigboring edges, b) Pattern corresponding 
to edges of the same face that are not neigboring and are both incident to a diagonal 
ending at the same vertex. 

D e f i n i t i o n S .  An edge {u,v} E R is oriented from u -+ v if type{u,v}(U) = 1 
and type{u,v}(v) = 2. Let R -+ denote the directed graph, called layer graph, 
induced by R and this orientation. 

Obviously, two adjacent arcs of R -~ that  belong to the same wire are oriented 
towards each other. So, two subsequent edges on a directed path in R -~ must 
belong to different wires. The length of a directed path is defined as the number 
of edges on that  path. Now we are ready to prove the main theorem of this 
section. 

T h e o r e m  9. A layout L is wirable in k layers if and only if there exists a legal 
removal set R such that the length of any directed path in R ~ is at most k - 2. 

Proo]. "==~" Consider a wiring of core(L) in layer Li, 0 < i < k - 1. Let R be the 
set of all wire edges wired in layer Li ,0 < i < k - 1, and R -~ the corresponding 
directed layer graph. For a directed path in R ~ ,  two subsequent arcs (u,v) 
and (v,w) belong to different wires and thus must be wired in different layers. 
Because of the orientation, the layer of (u, v) must be below the layer of (v, w). 
Consequently, the length of any directed path in R -~ is at most k - 2. 
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a) 

b) 

Fig. 6. a) Combinations of forbidden patterns for 3-layer wirability that lead to for- 
bidden patterns for 5-layer wirability; b) examples of forbidden patterns for 5-layer 
wirability . 

" ~ "  Assume there exists a legal removal set R such that  the length of every 
directed path in R ~ is at most k - 2. For an edge (u,v)  E R -~ denote Imax(u, v) 
the maximum length of a directed path in R -~ terminating with (u, v). A wiring 
of core(L) in k layers Li, 0 < i < k - 1, is constructed as follows. 

layer(u,v)  = { Lo resp. Lk-1,  if (u,v) ~ R-~; 
ni, 1 < i < k - 2, if (u, v) E R -~ and lma~(U, V ) = i - 1. 

The assignment of (u, v) to L0 resp. Lk-1 is according to a fixed two-layer wiring 
of core(L) - R. 

R e m a r k  The proof of Theorem 9 induces an algorithm to construct a k-layer 
wiring from a legal removal set R where the length of any directed path in R -~ 
is at most k - 2. This algorithm can be easily implemented to run in time linear 
in the size of the layout. 

A characterization of k-layer wirability for k > 2 in terms of forbidden pat- 
terns in the dual R d of a legal removal set R is now easily derived from Theo- 
rem 9. 

L e m m a  10. A layout L is wirable in three layers if and only if there exists a 
legal removal set R such that R d contains none of the patterns shown in Figure 5. 

Proof. core(L) is wirable in three layers if and only if there exists a legal removal 
set R such that  R -~ contains no directed path of length two. For a directed path 
in R -~ two subsequent edges must belong to different wires. These two edges meet 
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at a non-trivial vertex, say v. In case the two corresponding dual edges in R a 
are neigboring in v, they form a pattern of type a) shown in Figure 5. Otherwise 
they form a pattern of type b) shown in Figure 5, i. e., the two corresponding 
dual edges in R d belong to the same face, but are not neigboring in v and are 
each incident to a diagonal ending at v. 

Lemma l0 can be easily extended to giving forbidden patterns for wirability 
in k > 4 layers. From the patterns shown in Figure 5 we just have to generate 
patterns dual to directed paths of length k - 1 in the layer graph. Forbidden 
patterns for wirability in four layers are all possible combinations of two for- 
bidden patterns for wirability in three layers,where two patterns are combined 
by identifying two edges. Accordingly, forbidden patterns for wirability in five 
layers are all possible combinations of three forbidden patterns for wirability in 
three layers. See Figure 6. 

4 A l g o r i t h m s  

In this section we prove that every layout in a tri-hexagonal grid and every layout 
in a tri-square-hexagonal grid is wirable in five layers. We present algorithms that 
construct a removal set for such a layout satisfying Theorem 9 for k = 5. That 
is, the dual R d corresponding to the constructed removal set R contains none of 
the patterns illustrated in Figure 6. 

4.1 Layouts in Tri-Hexagonal Grid Graphs 

A tri-hexagonal grid graph is a grid consisting of grid lines of three different 
directions, the horizontal direction and two diagonal directions. In every grid 
point, lines of two different directions meet, either one horizontal and one diag- 
onal line, or two diagonal lines. Consequently, every vertex has degree four. See 
Figure 7 a) for a tri-hexagonal grid and its dual. 

The algorithm to construct a legal removal set R for a layout L in a tri- 
hexagonM grid works as follows. Firstly, all vertices of the layout are considered 
to be non-trivial. Then obviously, 5-layer wirability of this layout induces 5-layer 
wirability of the original layout. The dual of the layout is scanned "row-wise" 
from bottom to top, and from left to right. For every vertex of the dual of the 
layout, its extended degree and its vertex class is considered. That is, the vertex 
set of the grid dual to a tri-hexagonal grid is partitioned into three different 
classes: vertices of degree six (class 1), vertices of degree three incident to an 
up-going vertical edge and two diagonal edges (class 2), and vertices of degree 
three incident to an down-going vertical edge and two diagonal edges (class 3). 
See Figure 8. Now alternatingly, in every second row only vertices of class 1 and 
class 2 are visited, or only vertices of class 3. Depending on the extended degree 
and the class of the visited vertex, an incident edge is added to R ~ in such a way, 
that e x d e g ( v )  is even for all vertices v C L d - R d, and R d contains no forbidden 
pattern for 5-layer wirability. 
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a) 

b) 

Fig. 7. a) A tri-hexagonal grid graph (dashed) and its dual graph (bold). b) Dual edges 
that might be added to R d by the algorithm (bold). 

A l g o r i t h m  1 T r i - H e x a  

I n p u t :  The dual L d of a layout L zn a tri-hexagonal grid. 

O u t p u t :  A subset  R d of L d such that exdeg(v)  is even for  all vertices v E L d - R  d 
and R d contains no forbidden pattern ]or 5-1ayer wirability. 

b e g i n  

R d : = r  
for  all rows do  

for all vertices v of one row do 

i f  exdeg(v)  is odd in L d and v 

R d + eright~ 
belongs to class 2, t h e n  R d := R d + eup 

belongs to class i ,  t h e n  R d := R d + e~p 

belongs to class 3, t h e n  R d := R d + eright 
L d := L d _ R d 

end  

i f  right successor is odd; 
otherwise. 



282 

ucce  
1) 2) 3) 

Fig. 8. The three different classes of vertices in the grid dual to a tri-hexagonal grid. 

It is easy to prove that  Algorithm 1 considers only those edges of L d shown 
in Figure 7 b). Then the following theorem can be proved by a detailed case 
analysis. 

T h e o r e m  11. For a layout L in a tri-hexagonal grid, Algorithm I constructs a 
subset R d of L d that contains no forbidden pattern for 5-layer wirability, The 
running time is linear in the size of the layout, 

P r o o f  is omitted. 
From a legal removal set determined by Algorithm 1, a 5-layer wiring of a 

layout in a tri-hexagonal grid can be constructed in linear time as well according 
to Theorem 9. 

I'-" 

I I 
a) b) 

Fig. 9. a) A tri-square-hexagonal grid graph (dashed) and its dual graph (bold). b) 
Dual edges that might be added to R d by the algorithm (bold). 

4.2 L a you t s  in T r i - S q u a r e - H e x a g o n a l  Gr id  G r a p h s  

A tri-square-hexagonal grid graph is the dual graph of the union of two grids, a 
hexagonal grid and the dual of a hexagonal grid. Thus it contains only vertices 
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of degree four. Its faces are triangles, squares and hexagons. See Figure 9 for a 
tri-square-hexagonal grid and its dual. 

The algorithm to construct a legal removal set R for a layout L in a tri-square- 
hexagonal grid again scans the dual of the layout "row-wise" from bottom to 
top and from left to right. The vertices of the grid dual to a tri-square-hexagonal 
grid are partitioned into six different classes: vertices of degree six (class 1), three 
different classes of vertices of degree four (class 2, 3 and 4), and two different 
classes of vertices of degree three (class 5 and 6). See Figure 10. 

Alternatingly, in every second row only vertices of class 1 and class 2 are 
visited, or only vertices of class 3, 4, 5 and 6. Depending on the extended degree 
and the class of the visited vertex, an edge is added to R d in such a way that 
exdeg(v)  is even for all vertices v E L d - R d, and R d contains no forbidden 
pattern for 5-layer wirability. 

A lgor i thm 2 Tr i -Square -Hexa  

Input :  The dual L d of a layout L in a tri-square-hexagonal grid. 

Outpu t :  A subset  R d of L d such that exdeg(v)  is even for  all vertices v E 
L d - R d, and R d contains no forbidden pat tern for  5-1ayer wirability. 

begin  
Rd := 

for all rows do 
for all vertices v of one row do 

if exdeg(v)  is odd in L d and v 

R d + eright, 
belongs to class 1, t hen  R d := R d +eup  

belongs to class 2, t hen  R d := R d + eup 

belongs to class 3, t hen  R d :--- R d 4- eright-up 

belongs to class 4, t hen  R d :--- R d 4- eright-up 
belongs to class 5, t hen  R d := R d + eright 

R d 4- eright, belongs to class 6, t hen  R d :-- R d + eup 

L d := L d _ R d 

end 

i f  right successor is odd; 
otherwise. 

i f  right successor is odd; 
otherwise. 

It can be shown that Algorithm 2 considers only those edges of L d shown 
in Figure 9 b). Then by a detailed case analysis, the following theorem can be 
proved. 

T h e o r e m  12. For a layout L in a tri-square-hexagonal grid Algor i thm 2 con- 
structs a subset  R d of L d that contains no forbidden patterns for  5-1ayer wirabil- 
ity. The running t ime is linear in the size of the layout. 
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eright-up +eup 

eright 0 right successor 2) 

ght 
3) 4) 5) 6) right successor 

Fig. 1(}. The six different classes of vertices in the grid dual to a tri-square-hexagonal 
grid. 

Proof  is omitted. 
From a legal removal set determined by Algorithm 2, a 5-layer wiring of a 

layout in a tri-square-hexagonal grid can be constructed in linear time as well 
according to Theorem 9. 

5 C o n c l u d i n g  R e m a r k s  

We presented a general approach to the problem of wiring edge-disjoint layouts. 
Equivalent conditions for the k-layer wirability of an edge-disjoint layout where 
at most two wires meet in a vertex are given. Based on these conditions, we 
obtain linear-time algorithms to wire every layout in a tri-hexagonal grid and 
every layout in a tri-square-hexagonal grid using at most five layers. Our ap- 
proach generalizes the framework introduced in [8]. There, equivalent conditions 
for the k-layer wirability of an edge-disjoint layout in a square grid are given. 
These conditions are based on a legal partition of the layout grid into a two- 
colorable map. A legal partition is characterized by "forbidden patterns" for 
the partition lines. The two color regions of the partition correspond to regions 
where horizontal edges are wired above vertical edges, resp. to regions where 
vertical edges are wired above horizontal edges. This framework is not applica- 
ble to more general grids resp. planar layout graphs, since there we can have 
layout edges of more than two different directions. The equivalent conditions for 
k-layer wirabflity developed in this paper are based on the characterization of 
legal removal sets. This leads to "forbidden pattern" as well, which are quite 
similar to the forbidden patterns given in [8]. Overall, our approach delivers a 
more general interpretation of the framework introduced there. 

Acknowledgements  We thank Majid Sarrafzadeh for drawing our attention 
to the layer assignment problem for general edge-disjoint layouts. 
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