
Automatic Visualization of Two-Dimensional
Cellular Complexes

L. A. P. Lozada,* C. F. X. de Mendon~a,* R. M. Rosi,* and J. Stolfi*

Institute of Computing, Unicamp
{iplozada, xavier, mar cone, stolfi}~dcc, uni camp. br

Abstract

A two-dimensional cellular complex is a partition of a surface into a finite number
of elements--faces (open disks), edges (open arcs), and vertices (points). The
topology of a cellular complex is the abstract incidence and adjacency relations
among its elements. Here we describe a program that, given only the topology
of a cellular complex, computes a geometric realization of the same--that is, a
specific partition of a specific surface in three-space--guided by various aesthetic
and presentational criteria.

Keywords: Computer graphics, visualization, graph drawing, solid modeling,
minimum-energy surfaces, computational topology.

1 I n t r o d u c t i o n

1.1 Mot iva t ion

In the boundary representation technique commonly used in computer graphics
and engineering, a solid object is defined indirectly by its surface, which is in
turn described as the union of a certain number of faces--simple surface patches,
fiat or curved. Faces are bounded by edges--line segments, straight or curved--
whose endpoints are the vertices of the model.

When manipulating such models, it is advisable to handle separately its
topological properties (the contacts between faces, edges, and vertices) from its
geometrical properties (vertex coordinates, face equations, etc.) This separation
greatly improves the modularity and versatility of geometric algorithms [12,18].

A two-dimensional cellular complex is a mathematical structure that captures
the topological aspects of such a boundary model, freed from all geometrical
data. Informally, it consists of one or more polygons, whose sides are conceptually
identified in pairs, in a specified direction. The pairing is conventionally indicated
by labeling each side with a letter and an arrow, as in figure l(a).

This research was supported in part by the National Council for Scientific and Tech-
nological Development (CNPq) of Brazil and the Foundation for Research Support
of the State of S~o Panlo (FAPESP)

304

a

b b
a

(a) (b)

Fig. 1. A Klein bottle.

1.2 Topological visualization

The topology of a cellular complex, even a small one, may be hard to understand
intuitively, which makes it hard to debug programs that deal with boundary
representations. The topological and geometrical aspects are often handled by
independent procedures; so one cannot rely on the visual appearance of the
object to verify the correctness of its topology. Faces that may look adjacent on
the screen may not be adjacent in the topological data structure, and vice-versa.

Motivated by these difficulties, we set out to develop a graphical tool for au-
tomatically visualizing the topology of a cellular comple3:, a program which, given
only the incidence relations among the elements of a complex, will choose a sur-
face in three-space, partitioned into points, arcs, and disks, that clearly displays
those incidence relations. Thus, for example, given a combinatorial description
of the complex shown in figure l(a), the program should ideally output a picture
like l(b).

1.3 What is a good realization?

A cellular complex has infinitely many representations, but not all of them are
useful for understanding its structure. Therefore, in order to develop an auto-
matic visualization tool, we must figure out how to recognize a "good" represen-
tation.

Obviously we cannot expect a definitive solution to this problem. We can
only list some general criteria, suggested by intuition or experiment, which seem
to be associated with visual clarity. For example, it seems desirable that the
surface be as smooth and fiat as possible, in order to minimize self-occlusions
and avoid distracting the viewer's attention with graphical artifacts (folds, shad-
ows, silhouette edges, etc.) which have no topological significance. For the same
reason, it is generally desirable that the surface be free from self-intersections;
or, if that is not possible (as in the case of a Klein bottle), that the extent of
self-intersection be somehow minimized.

Not only must the surface be easy to understand, but also the edges of the
complex must be drawn on that surface in a visually effective way: they must

305

be well-separated, smooth, as straight as possible, and neither too long nor too
short. Notice that these requirements may indirectly affect the shape of the
surface. For example, the complex shown in figure 2(a)must be drawn on a
surface with the topology of a sphere; however, a truly spherical surface, as in
figure 2(b), is visually less effective than the sausage-shaped surface shown in
figure 2(c).

(b)

(a)

C}

(c)

Fig. 2. A complex is more than a surface.

In order to automate the search for a good realization, we borrow a well-
established concept from plane graph drawing: that of an energy funct ion, a
quantitative measure of how badly a solution fails to meet certain visual ef-
fectiveness criteria - - like the total curvature of the surface, the amount of
self-intersection, the variance of edge lengths, and so forth. The problem reduces
then to finding, among all possible realizations of the complex, the one which
has the minimum energy.

1.4 Re l a t ed work

This work can be viewed as a three-dimensional extension of the plane graph-
drawing problem [8]. Such extensions have been attempted before, but usually
by assuming the input to be an ordinary graph, and the output to be only a
collection of points and line segments in space, without any surface elements.

Ferguson, Rockwood and Cox [10] addressed the problem of automatically
generating a surface with given topology. Since the topology of a surface is
completely determined by its genus and orientability, they were able to solve the
problem by a direct construction. Our problem differs from theirs because we

306

must not only find a "good" surface with the right topology, but also a "good"
drawing of a specified graph on that surface; as we have seen, this requirement
influences indirectly the shape of the surface itself.

Another related work is Brakke's Surface Evolver [4,5], a general program
to study the evolution of surfaces under arbitrary force laws - - such as surface
tension, elastic bending, gas pressure, etc. Brakke's evolver has been used to em-
pirically determine the surfaces of minimum energy for various topologies [14].
However, the energies used in those experiments were chosen for their mathemat-
ical and physical significance, rather than their visual properties. Furthermore,
the energy function depended only on the shape of the surface; there was no
graph to be drawn on it.

Energy minimization of surfaces with a given topology has also been proposed
as a tool for interpolating a surface over a network of curves [15]. An advanced
example of this approach is the work by Moreton and S4quin [21], who consider
the problem of realizing a cellular complex with a collection of parametric surface
patches, joined with C1 continuity, given the coordinates and tangent planes at
the vertices of the complex. Our approach differs from theirs in the choice of
surface model (we use a triangular mesh), and in the amount of geometrical
data required from the user (we do not require any).

The general idea of using energy functions to quantify the "ugliness" of
a drawing apparently became popular after the graph-drawing paper by Ka-
mada [16,7]. Indeed, some of the energy functions that we use are very similar to
his "spring" energies--in spirit, if not in detail. Also, some of our energy func-
tions can be viewed as approximations to the bending energy of a thin elastic
membrane (generally assumed to be the square of the surface's curvature), which
is often used in minimal surface research [13,t5,22,4,14,21].

2 V i s u a l i z a t i o n m o d e l

The input to our tool is a purely combinatorial data structure that describes the
incidence relationships between the faces, edges and vertices of the complex.

In the literature one can find dozens of data structures that were devel-
oped for this purpose [6,9,18,25]. For our work we selected the quad-edge data
structure [12], a variant of the winged edge and half-edge structures [2] which
are widely used in CAD and computer graphics. The main reason for this choice
was that the quad-edge allows the encoding of non-orientable cellular complexes,
such as the one of figure 1; as well as degree-1 vertices, loops, bridging edges,
and multiple edges with same endpoints.

An obvious way to realize a complex geometrically is to model each face
as a polynomial surface patch, implicit or parametric, with suitable continuity
constraints between adjacent patches [19,1]. However, in a general complex a
face may have any number of sides (including 1 or 2), and may be glued in
arbitrarily complex ways. Thus, in general, it is not possible to realize each face
as a single polynomial surface patch of bounded degree.

307

Therefore, instead of using the faces as modeling units, we use what we call
the t i les of the complex. Each tile is a four-sided surface patch, containing exactly
one edge e of the complex and the corresponding edge e ~ of the dual complex,
both running diagonally across the tile. See figure 3.

1 I

l I
I

i I

I ,,,

I
I
I
I

/ I X

/ " ' %

i I !)
I
I I '
| I , / i I
I I ' " I

�9 " ' " ~ I ,+ s s

- - . . ~

Fig. 3. A two-dimensional complex drawn on the plane (solid), overlaid
with its dual complex (dashed), and the tile boundaries (dotted).

2.1 Mode l ing a tile

Since every tile has only four sides, and therefore only four neighboring tiles, it
is possible to realize it as a geometric object of bounded complexity.

A obvious candidate for this role would be a parametric polynomial patch [19,21]o
This approach would allow us in principle to obtain a truly smooth surface, with
continuity of tangent plane (and possibly curvature) between adjacent tiles. How-
ever, it is not at all trivial to enforce those constraints for complexes arbitrary
topology. Also, some of the energy functions we use seem hard to evaluate in
this model. Given these difficulties, we decided to model each tile as a polyhedral
surface; specifically, as a grid of k x k four-sided cells, each consisting of four
plane triangles. See figure 4. We thus replace the original cellular complex C,
with m edges, by a refined complex T having 6ink 2 edges and 4rnk 2 faces, all
triangles. The elements of C are unions of elements of T; in particular, the edges
of C are polygonal paths in T, running diagonally across the corresponding tiles.

308

"~, e '~

>4XX>4
XX> X
XXX:X
XX> X
XX X

(a) (b)

Fig. 4. The triangulated tile model.

Obviously, having adopted a polyhedral model, we must give up any hope of
obtaining a really smooth surface, and seek instead to reduce and equalize the
external dihedral angles between adjacent triangles. Still, by using a large enough
tile order k, we can in principle obtain surfaces that are arbitrarily smooth almost
everywhere. Moreover, we can always use standard tricks of computer graphics,
such as Gouraud shading [11], to smooth out the corners when rendering the
final image.

2.2 Bui lding the t r iangula t ion

We use the quad-edge data structure to represent not only the input complex C,
but also the refined mesh T. (There are specialized data structures for triangular
meshes which use less space than the quad-edge; but the latter is more convenient
in the intermediate stages of the tiling procedure, when the mesh T still contains
some non-triangular faces.)

After building a triangulated k • k tile for each edge of the original complex
C, we glue the sides of those tiles in pairs, as prescribed by the adjacency relation
between the corresponding edges of C.

Note that it is possible for a tile to get glued to itself; that happens, for
instance, when the complex C includes faces or vertices of degree 1. In those
cases, the resulting mesh may contain pairs of twin triangles with the same
three vertices, or pairs of twin edges having the same endpoints.

Figure 5 illustrates this problem, in this case when the bottom side of a 2 x 2
triangulated tile (a) gets glued to the right side of the same tile (b,c). Note that
in figure 5@) there are two pairs of twin triangles, highlighted in gray; and two
pairs of twin edges, inside and surrounding the gray area..

309

S t

.-::!:i:!:!:!:!:!....-::i!:)~::: / : : . : : : ~ . - . . : : ~ : - - . : : : : : : : : . I

.~i!!::::"~." .:!~:!"/..~F i
..... 4::ii~!~:/:~!:: ~

q ~ , -!::;r / ~ ~ / /

t

(a)
. .A

�9 ..:.:.:.:...... Ji~:::

-)::.:::.... ":.::::!:~..i:!:i:!: I �9
~!,: ~"..: ! i '~::~:~:F t /"

q = t

(b)
. A

/cJT-,.,-I
," I I /

,," I : ,,"
I r = s | II r

q = t

(c) (d)

Fig. 5. Gluing a tile to itself.

Obviously, two such triangles will coincide no mat ter what coordinates we assign
to their vertices. If they are left in the mesh, they will look like a loose flap
hanging out from the surface. Thus, whenever gluing a tile to itself, we must
locate and remove any twin pairs, as shown in figure 5(d).

Fortunately, this cleanup is quite easy. It can be shown [24] that any twin
triangles or edges must belong to a grid cell that is adjacent to the two sides of
a tile that are being glued together, like the highlighted corner of figure 5(a).
As long as k is three or more, the removal of these corner cells does not create
any new twin pairs, and original edges of the complex--represented by the tile
diagonals--will not be entirely obliterated.

3 Energy functions

Since each tile is modeled by a set of flat triangles, the shape of the triangulated
mesh is completely determined by the coordinates of its vertices]?T = {Vl,.. Vn};
we say that these n points of R ~ are a configuration of the mesh. Our energy
function, which measures the "ugliness" of the surface, is therefore a function
from (R3) ~ to R .

310

The energy functions we have tried were convex combinations E = ~ i wiE~
of the functions Ei described below, with fixed weights wi. In these formulas,
PC, EC, 79C, and 5vC denote the vertices, primal edges, dual edges, and faces of
a complex C. Also EC and ~ C denote the set of all directed edges, respectively
primal and dual.

Bending energy:

Eb,,d = } 2 leO~
eEET

where le is the length of edge e, and Oe is the external dihedral angle at that edge.
Minimizing Ebnd tends to flatten out the surface, and distribute its curvature
evenly among all edges.

Eccentricity energy:

E~r162 = IVT I ~ Iv- b~l 2
vE~)T

where by is the barycenter of all neighbors of vertex v. Minimizing Eecc also
tends to flatten out the surface, and equalize the edge lengths.

Angle variance energy:

1 Ce 2zr'2
E~"~:T~ Z. T -d~ eE~

where Ce is the angle between e and the next edge out of the same vertex,
projected onto the tangent plane at that vertex; and de is the degree of that
vertex. Minimizing Ea,g tends to equalize the angles between adjacent edges,
which helps to unfold the surface and reduce its self-intersections.

Spreading energy:
1

Espr- I)2T] E IPvl2
vEVT

where Pv is the Cartesian coordinates of vertex v. Minimizing this energy tends
to keep all vertices close to the origin of R 3 .

Proximity energy:

1 1
Eprx -

I~TI ~ ~ , ~ T I~ - c,I ~ + p~ + p~
r#s

where Cr, cs are the centroids of triangles r and s, and Pr, Ps are their average
radii (in the root-mean-square sense). This energy can be understood as the
electrostatic potential of a set of fuzzy electric charges, located at the trian-
gle centroids. Minimizing Epr• tends to spread out the triangles in space, thus
avoiding self-intersections (especially grazing ones) and fold-overs.

3t l

Patch area energy The two diagonals of a tile divide it into four triangular
pieces, each consisting of k ~ triangles. Let A1,. . . A4m be the total areas of
these quarter-tiles. Then

: - -

4m i=1

where A. = lr/m is the "ideal" area of a quarter-tile. Minimizing Epa r tends to
keep the total surface area close to 47r, and to equalize the quarter-tile areas, so
that the edges of the original complex are spread out uniformly over the surface.

Note that the energy functions above must be used in combination, rather
than alone, in order to avoid degenerate configurations. For instance, the prox-
imity energy Eprx tends to its minimum value (zero) when the vertices tend to
infinity; whereas the bending energy Ebn d is minimum when all vertices are at
the origin. However, the asymptotic behavior of the two formulas is such that any
nontrivial convex combination of them will attain its minimum at configurations
of bounded and nonzero radius.

The purpose of the scaling factors in the formulas above, such as
in the formula of Ebnd, is to make the numerical value of each energy largely
insensitive to the number of triangles in the mesh. This scaling allows us to use
the same weights for optimizing meshes of different resolutions (different values
of k). In particular, it allows us to use the multi-scale approach, which consists in
running the optimization algorithm simultaneously on several meshes of varying
resolution, which are loosely coupled by interpolation and local averaging.

3.1 Select ing the weights

When it comes to selecting the weights, we still do not have any answer much
better than trial-and-error, perhaps guided by some physical intuition.

It would be trivial to implement a GUI-based tool that allowed direct ad-
justment of the weights by the user, with visual feedback. Unfortunately, our
optimizer is still too slow for interactive use: it would take tens of minutes to
(re)compute the optimum configuration after a change in the weights. (On the
other hand, considering our limited expertise in numerical methods, it seems
likely that this time can be reduced, by several orders of magnitude, merely by
using better optimization algorithms.)

A more speculative solution is to let the computer "learn" the weights from
examples, as Eades and Mendon6a did for the plane graph drawing problem [20].
The idea is to give the computer a collection of "good" realizations of cellular
complexes--generated, say, by ad-hoc programs or manual editing with solid
modeling tools--and let the computer find the combination of weights that comes
closest to reproducing those shapes.

312

4 O p t i m i z a t i o n

Having constructed the triangular mesh, and chosen an energy function, we are
faced with problem of finding the configuration of minimum energy. This is
a nontrivial optimization problem, since even a small complex determined an
energy function with hundreds of independent variables.

We approach this problem at two levels. We use general-purpose non-linear
optimization techniques to move from given configuration to a nearby local min-
imum. We repeat this search for a couple dozen random starting points, and
(select the local minimum with lowest energy as the answer. It should be possi-
ble to use combinatorial heuristics, such as simulated annealing, to extend the
search beyond the nearest local minimum; but we haven't been able to get such
methods to work fast enough.)

When searching the local minimum, we need a stopping criterion of some
sort. Unfortunately, there is no numerical criterion that can tell when the en-
ergy is "low enough" to provide a good visualization. So, in practice, we fix
a computation budget, and use the best configuration we can find within that
limit.

4.1 Genera l opt imiza t ion me thods

To solve this problem, we have tried several general purpose numerical opti-
mization techniques, including Kirkpatrick's simulated annealing [17,23], Nadler
and Mead's downhill simplex method [23, p.289], Powell's principal directions
method [23, p.298], the naive single coordinate optimization, with periodic diag-
onal steps [23, p.294] and a gradient descent method with adaptive step-size.

The tests were performed on various triangulated meshes, ranging from a
few tens to a few hundred vertices. The initial guess for the optimization was
either a random configuration--where each vertex was chosen independently
and uniformly in the unit cube--or a reasonably smooth configuration obtained
by the heuristic methods described in the next section. The effectiveness of an
algorithm was judged from its energy evolution curve: the energy of the minimum
configuration found, as a function of accumulated CPU time.

The ranking of the methods was generally the same on all tests, and consis-
tent over time. Not surprisingly, we found that gradient descent was the most
effective. Simulated annealing was so slow that we gave up on it after a few tests.
The Nadler-Mead and Brent-Powell algorithms were faster, but not enough to
be usable. Moreover, they require $2(n 2) storage for a function of n variables,
and therefore are restricted to complexes with a few tens of edges.

The naive minimization method consists of adjusting one variable at a time
(using, for instance, Brent's univariate minimization algorithm [23, p.283]), while
all other variables are held fixed. As recommended in the literature, every n + 1
such "axial" steps we perform a "diagonal" step, where we seek the minimum
configuration along the line connecting the outcomes of the first and the last of
those axial steps.

313

We implemented this naive method only for the sake of comparison, since
textbooks generally claim it is slower than Brent-Powell. To our surprise, it
turned out to be much faster. The reason, which was obvious on hindsight, is
that all our energy functions are the sum of many terms, each depending on a
few vertices only. When varying one coordinate at a time, we could save time
by recomputing only the terms that depended on that coordinate. Thus, while
the naive algorithm performed somewhat more energy evaluations than Powell's
method, each evaluation was faster by one or two orders of magnitude.

In the gradient descent method, we compute the partial derivatives of the
energy function by Banr and Strassen's method [3]. The latter, which is basically
a systematic use of the chain derivation rule, reduces the cost of computing the
gradient of any algebraic or transcendental formula to a small constant times
the cost of computing the energy itself.

4.2 Hem: i s t i c m e t h o d s

Besides these general-purpose optimization algorithms, we have also used two
specialized heuristic methods, the smoothing heuristic and the spreading heuris-
tic. Both are local operations that are applied to each vertex v in turn, cyclically,
up to a prescribed number of passes. The smoothing heuristic adjusts the position
of vertex v, keeping all other vertices fixed, so as to approximately minimize the
bending energy of the edges between the triangles that are incident to v. The
spreading heuristic keeps the vertex v fixed, but rotates its neighbors u l , . . Uk
around the surface normal r at the vertex so as to bet ter equalize the angles
u~vui+l, when projected on a plane perpendicular to r.

These heuristics are not sensitive to the energy functions or their weights.
Therefore, they are useful only as a preprocessing step, when starting from a ran-
dom configuration, where the goal is merely to untangle the surface and smooth
out its largest wrinkles - - which are bad under any reasonable energy function. If
we want to compare the effect of different energy functions and varying weights,
we must eventually follow these heuristics with one of the generic optimization
methods above.

Each pass of the heuristic redistributes the "stress" energy of each element
among the neighboring elements. It should be noted that, as in any diffusion
process, the number of passes needed to achieve a given surface smoothness is
expected to scale as the square of the graph-theoretic diameter of the triangu-
lation.

In our test runs, with complexes of a few tens of edges, we found that 20-100
passes of each heuristic already provided a reasonably smooth surface; additional
passes were hardly worth their cost.

314

5 R e s u l t s

Figure 6 shows the heuristic smoothing of a simple torus-like complex. The
original complex had one face, two edges, and one vertex; it was modeled with
tiles of order k = 5, resulting in a mesh with 300 edges, 200 triangles and 100
vertices. Shown are the initial random configuration (a), and the states after 5,
30, and 100 passes of each heuristic, respectively (b-d).

Fig. 6. Smoothing of a torus complex.

The configuration of figure 6(d) was then optimized with the gradient-descent
method, for the energy E = Ebn d -~- Epar "~ Eecc -~ 5Eprx Figures 6(e-f) show the
state after 100 and 1000 energy evaluations, respectively.

Figure 7 shows renderings of the final stage of optimization for three different
complexes with the topology of a sausage, a five-star and a tritorus (a sphere
with three handles).

315

Fig. 7. Realizations of a sausage, a five-star, and a tritorus.

The renderings are further enhanced by a little animation displaying several
views of the complexes. The series of pictures are presented as a sequence of
stereoscopic pairs. The 3D rendering may be seen by holding the paper about
50 cm away, and converging the eyes toward a point behind it, so that pairs
of consecutive drawings are fused into one image. The resulting stereo illusion
should compensate for the the small size of the images.

The images were produced with P0V-Ray, a freely available ray tracer [26].
Their apparent smoothness is due to Gouraud-shading of the triangles [11]. The
edges and vertices are modeled by thin cylinders and small spheres.

6 C o n c l u s i o n s a n d f u t u r e w o r k

Our experiments to date are encouraging, but there is still a lot of work to be
done here. To begin with, we need to work more on the energy minimization
code; speedup several orders of magnitude seem possible, just by using better
optimization algorithms.

We still understand very little about the effects of the various energy func-
tions, and the proper weights to use. Among other things, we need to develop
energy functions that penalize self-intersections more strongly than the func-
tions we have got. We also need to improve the heuristic methods so as to avoid
generating self-intersecting shapes.

Finally, we need to develop combinatorial optimization tools or heuristics to
extend the search over several local minima.

316

References

1. Chandrajit L. Bajaj. Smoothing polyhedra using implicit algebraic splines. In
Proc. SIGGRAPH'92, pages 79-88, 1992.

2. Bruce G. Banmgart. A polyhedron representation for computer vision. In Proc.
1975 AFIPS National Computer Conference, volume 44, pages 589-596, 1975.

3. Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical
Computer Science, 22:317-330, 1983.

4. Kenneth A. Brakke. The Surface Envolver. Experimental Mathematics, 1(2):141-
165, 1992.

5. Kenneth A. Brakke. Surface Evolver Manual. The Geometry Center, University
of Minnesota, December 1993. Eletronic Address: brakke@geom.umn.edu.

6. Erik Brisson. Representing geometric structures in d dimensions: Topology and
order. Proc. 5th Annual ACM Syrup. on Computational Geometry, pages 218-227,
June 1989.

7. Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing.
Technical report, Department of Applied Mathematics and Computer Science, The
Weizmann Institute of Science, 1989.

8. G. Di Battista, P. D. Eades, and R. Tamassia. Algorithms for drawing graphs:
An annotated bibliography. Technical report, Department of Computer Science,
University of Newcastle, 1993.

9. David P. Dobkin and Michel J. Laszlo. Primitives for the manipulations of three-
dimensional subdivisions. Prec. 3rd A CM Syrup. on Comp. Geometry, pages 86-99,
June 1987.

10. H. Ferguson, A. P~ockwood, and J. Cox. Topological design of sculpted surfaces.
In Proc. SIGGRAPH'92, pages 149-156, 1992.

11. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics: Principles and Practice. Addison-Wesley, second edition, 1990.

12. Leonidas Guibas and Jorge Stolfi. Primitives for the manipulations of general
subdivisions and the computation of Voronoi diagrams. ACM Transactions on
Graphics, 4(2):74-123, April 1985.

13. B. K. P. Horn. The curve of least energy. ACM Transactions on Mathematical
Software, 9(4):441-460, December 1983.

14. Lucas Hsu, Rob Kusner, and John Sullivan. Minimizing the squared mean curva-
ture integral for surfaces in space forms. Experimental Mathematics, 1(3):191-207,
1992.

15. Michael Kallay and Bahrain Ravani. Optimal twist vectors as a tool for inter-
polation a network of curves with a minimum energy surface. Computer Aided
Geometric Design, pages 465-473, 1990.

16. Tomihisa Kamada and Satoru Kawal. An algorithm for drawing general undirected
graphs. Information Processing Letters, pages 7-15, April 1989.

17. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

18. Pascal Lienhardt. Subdivisions of N-dimensional spaces and N-dimensional gen-
eralized maps. Proc. 5th Annual ACM Syrup. on Computational Geometry, pages
228-236, June 1989.

19. Charles Loop and Tony DeRose. Generalized B-spline surface of arbitrary topology.
In Proc. SIGGRAPH'90, pages 347-356, August 1990.

20. C&ndido X. F. Mendonw and Peter Eades. Learning aesthetics for visualization.
In Anais do XX Semindrio Integrado de Software e Hardware, pages 76-88, Flo-
rianSpolis, SC (Brazil), 1993.

317

21. Henry P. Moreton and Carlo H. S@quin. Functional optimization for fair surface
design. In Proc. SIGGRAPH'92~ pages 167-176, 1992.

22. D. B. Parkinson and D. N. Moreton. Optimal biarc-curve fitting. Computer-Aided
Design, 23(6):411-419, 1991.

23. William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,
1986.

24. Rober Marcone Rosi and Jorge Stolfi. Automatic visualization of two-dimensional
cellular complexes. Technical Report IC-96-02, Institute of Computing, University
of Campinas, May 1996.

25 . Fujio Yamaguchi and Toshiya Tokieda. A solid modelling system: Freedom-II.
Computers ~ Graphics, pages 225-232, 1983.

26. C. Young, D. K. Buck, and A. C. Collins. POV-Ray - Persistence of Vision Ray-
tracer, version 2.0. 1993.

