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Abstract  

A two-dimensional cellular complex is a partition of a surface into a finite number 
of elements--faces (open disks), edges (open arcs), and vertices (points). The 
topology of a cellular complex is the abstract incidence and adjacency relations 
among its elements. Here we describe a program that, given only the topology 
of a cellular complex, computes a geometric realization of the same--that is, a 
specific partition of a specific surface in three-space--guided by various aesthetic 
and presentational criteria. 

Keywords: Computer graphics, visualization, graph drawing, solid modeling, 
minimum-energy surfaces, computational topology. 

1 I n t r o d u c t i o n  

1.1 Mot iva t ion  

In the boundary representation technique commonly used in computer graphics 
and engineering, a solid object is defined indirectly by its surface, which is in 
turn described as the union of a certain number of faces--simple surface patches, 
fiat or curved. Faces are bounded by edges--line segments, straight or curved-- 
whose endpoints are the vertices of the model. 

When manipulating such models, it is advisable to handle separately its 
topological properties (the contacts between faces, edges, and vertices) from its 
geometrical properties (vertex coordinates, face equations, etc.) This separation 
greatly improves the modularity and versatility of geometric algorithms [12,18]. 

A two-dimensional cellular complex is a mathematical structure that captures 
the topological aspects of such a boundary model, freed from all geometrical 
data. Informally, it consists of one or more polygons, whose sides are conceptually 
identified in pairs, in a specified direction. The pairing is conventionally indicated 
by labeling each side with a letter and an arrow, as in figure l(a). 
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Fig.  1. A Klein bottle. 

1.2 Topological  visualization 

The topology of a cellular complex, even a small one, may be hard to understand 
intuitively, which makes it hard to debug programs that  deal with boundary 
representations. The topological and geometrical aspects are often handled by 
independent procedures; so one cannot rely on the visual appearance of the 
object to verify the correctness of its topology. Faces that  may look adjacent on 
the screen may not be adjacent in the topological data structure, and vice-versa. 

Motivated by these difficulties, we set out to develop a graphical tool for au- 
tomatically visualizing the topology of a cellular comple3:, a program which, given 
only the incidence relations among the elements of a complex, will choose a sur- 
face in three-space, partitioned into points, arcs, and disks, that  clearly displays 
those incidence relations. Thus, for example, given a combinatorial description 
of the complex shown in figure l(a), the program should ideally output a picture 
like l(b). 

1.3 What  is a good realization? 

A cellular complex has infinitely many representations, but not all of them are 
useful for understanding its structure. Therefore, in order to develop an auto- 
matic visualization tool, we must figure out how to recognize a "good" represen- 
tation. 

Obviously we cannot expect a definitive solution to this problem. We can 
only list some general criteria, suggested by intuition or experiment, which seem 
to be associated with visual clarity. For example, it seems desirable that  the 
surface be as smooth and fiat as possible, in order to minimize self-occlusions 
and avoid distracting the viewer's attention with graphical artifacts (folds, shad- 
ows, silhouette edges, etc.) which have no topological significance. For the same 
reason, it is generally desirable that  the surface be free from self-intersections; 
or, if that  is not possible (as in the case of a Klein bottle), that  the extent of 
self-intersection be somehow minimized. 

Not only must the surface be easy to understand, but also the edges of the 
complex must be drawn on that  surface in a visually effective way: they must 
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be well-separated, smooth, as straight as possible, and neither too long nor too 
short. Notice that these requirements may indirectly affect the shape of the 
surface. For example, the complex shown in figure 2(a)must  be drawn on a 
surface with the topology of a sphere; however, a truly spherical surface, as in 
figure 2(b), is visually less effective than the sausage-shaped surface shown in 
figure 2(c). 

(b) 

(a) 

C} 

(c) 

Fig. 2. A complex is more than a surface. 

In order to automate the search for a good realization, we borrow a well- 
established concept from plane graph drawing: that of an energy funct ion,  a 
quantitative measure of how badly a solution fails to meet certain visual ef- 
fectiveness criteria - -  like the total curvature of the surface, the amount of 
self-intersection, the variance of edge lengths, and so forth. The problem reduces 
then to finding, among all possible realizations of the complex, the one which 
has the minimum energy. 

1.4 Re l a t ed  work  

This work can be viewed as a three-dimensional extension of the plane graph- 
drawing problem [8]. Such extensions have been attempted before, but usually 
by assuming the input to be an ordinary graph, and the output to be only a 
collection of points and line segments in space, without any surface elements. 

Ferguson, Rockwood and Cox [10] addressed the problem of automatically 
generating a surface with given topology. Since the topology of a surface is 
completely determined by its genus and orientability, they were able to solve the 
problem by a direct construction. Our problem differs from theirs because we 
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must not only find a "good" surface with the right topology, but also a "good" 
drawing of a specified graph on that surface; as we have seen, this requirement 
influences indirectly the shape of the surface itself. 

Another related work is Brakke's Surface Evolver [4,5], a general program 
to study the evolution of surfaces under arbitrary force laws - -  such as surface 
tension, elastic bending, gas pressure, etc. Brakke's evolver has been used to em- 
pirically determine the surfaces of minimum energy for various topologies [14]. 
However, the energies used in those experiments were chosen for their mathemat- 
ical and physical significance, rather than their visual properties. Furthermore, 
the energy function depended only on the shape of the surface; there was no 
graph to be drawn on it. 

Energy minimization of surfaces with a given topology has also been proposed 
as a tool for interpolating a surface over a network of curves [15]. An advanced 
example of this approach is the work by Moreton and S4quin [21], who consider 
the problem of realizing a cellular complex with a collection of parametric surface 
patches, joined with C1 continuity, given the coordinates and tangent planes at 
the vertices of the complex. Our approach differs from theirs in the choice of 
surface model (we use a triangular mesh), and in the amount of geometrical 
data required from the user (we do not require any). 

The general idea of using energy functions to quantify the "ugliness" of 
a drawing apparently became popular after the graph-drawing paper by Ka- 
mada [16,7]. Indeed, some of the energy functions that we use are very similar to 
his "spring" energies--in spirit, if not in detail. Also, some of our energy func- 
tions can be viewed as approximations to the bending energy of a thin elastic 
membrane (generally assumed to be the square of the surface's curvature), which 
is often used in minimal surface research [13,t5,22,4,14,21]. 

2 V i s u a l i z a t i o n  m o d e l  

The input to our tool is a purely combinatorial data structure that describes the 
incidence relationships between the faces, edges and vertices of the complex. 

In the literature one can find dozens of data structures that were devel- 
oped for this purpose [6,9,18,25]. For our work we selected the quad-edge data 
structure [12], a variant of the winged edge and half-edge structures [2] which 
are widely used in CAD and computer graphics. The main reason for this choice 
was that the quad-edge allows the encoding of non-orientable cellular complexes, 
such as the one of figure 1; as well as degree-1 vertices, loops, bridging edges, 
and multiple edges with same endpoints. 

An obvious way to realize a complex geometrically is to model each face 
as a polynomial surface patch, implicit or parametric, with suitable continuity 
constraints between adjacent patches [19,1]. However, in a general complex a 
face may have any number of sides (including 1 or 2), and may be glued in 
arbitrarily complex ways. Thus, in general, it is not possible to realize each face 
as a single polynomial surface patch of bounded degree. 
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Therefore, instead of using the faces as modeling units, we use what we call 
the t i les of the complex. Each tile is a four-sided surface patch, containing exactly 
one edge e of the complex and the corresponding edge e ~ of the dual complex, 
both running diagonally across the tile. See figure 3. 
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Fig. 3. A two-dimensional complex drawn on the plane (solid), overlaid 
with its dual complex (dashed), and the tile boundaries (dotted). 

2.1 Mode l ing  a tile 

Since every tile has only four sides, and therefore only four neighboring tiles, it 
is possible to realize it as a geometric object of bounded complexity. 

A obvious candidate for this role would be a parametric polynomial patch [19,21]o 
This approach would allow us in principle to obtain a truly smooth surface, with 
continuity of tangent plane (and possibly curvature) between adjacent tiles. How- 
ever, it is not at all trivial to enforce those constraints for complexes arbitrary 
topology. Also, some of the energy functions we use seem hard to evaluate in 
this model. Given these difficulties, we decided to model each tile as a polyhedral 
surface; specifically, as a grid of k x k four-sided cells, each consisting of four 
plane triangles. See figure 4. We thus replace the original cellular complex C, 
with m edges, by a refined complex T having 6ink 2 edges and 4rnk 2 faces, all 
triangles. The elements of C are unions of elements of T; in particular, the edges 
of C are polygonal paths in T, running diagonally across the corresponding tiles. 
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Fig. 4. The triangulated tile model. 

Obviously, having adopted a polyhedral model, we must give up any hope of 
obtaining a really smooth surface, and seek instead to reduce and equalize the 
external dihedral angles between adjacent triangles. Still, by using a large enough 
tile order k, we can in principle obtain surfaces that are arbitrarily smooth almost 
everywhere. Moreover, we can always use standard tricks of computer graphics, 
such as Gouraud shading [11], to smooth out the corners when rendering the 
final image. 

2.2 Bui lding the  t r iangula t ion  

We use the quad-edge data structure to represent not only the input complex C, 
but also the refined mesh T. (There are specialized data structures for triangular 
meshes which use less space than the quad-edge; but the latter is more convenient 
in the intermediate stages of the tiling procedure, when the mesh T still contains 
some non-triangular faces.) 

After building a triangulated k • k tile for each edge of the original complex 
C, we glue the sides of those tiles in pairs, as prescribed by the adjacency relation 
between the corresponding edges of C. 

Note that it is possible for a tile to get glued to itself; that happens, for 
instance, when the complex C includes faces or vertices of degree 1. In those 
cases, the resulting mesh may contain pairs of twin triangles with the same 
three vertices, or pairs of twin edges having the same endpoints. 

Figure 5 illustrates this problem, in this case when the bottom side of a 2 x 2 
triangulated tile (a) gets glued to the right side of the same tile (b,c). Note that 
in figure 5@) there are two pairs of twin triangles, highlighted in gray; and two 
pairs of twin edges, inside and surrounding the gray area.. 
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Fig.  5. Gluing a tile to itself. 

Obviously, two such triangles will coincide no mat ter  what coordinates we assign 
to their vertices. If they are left in the mesh, they will look like a loose flap 
hanging out from the surface. Thus, whenever gluing a tile to itself, we must 
locate and remove any twin pairs, as shown in figure 5(d). 

Fortunately, this cleanup is quite easy. It can be shown [24] that  any twin 
triangles or edges must belong to a grid cell that  is adjacent to the two sides of 
a tile that  are being glued together, like the highlighted corner of figure 5(a). 
As long as k is three or more, the removal of these corner cells does not create 
any new twin pairs, and original edges of the complex--represented by the tile 
diagonals--will not be entirely obliterated. 

3 Energy functions 

Since each tile is modeled by a set of flat triangles, the shape of the triangulated 
mesh is completely determined by the coordinates of its vertices ]?T = {Vl,.. Vn}; 
we say that  these n points of R ~ are a configuration of the mesh. Our energy 
function, which measures the "ugliness" of the surface, is therefore a function 
from (R3) ~ to R .  
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The energy functions we have tried were convex combinations E = ~ i  wiE~ 
of the functions Ei described below, with fixed weights wi. In these formulas, 
PC, EC, 79C, and 5vC denote the vertices, primal edges, dual edges, and faces of 
a complex C. Also EC and ~ C  denote the set of all directed edges, respectively 
primal and dual. 

Bending energy: 

Eb,,d = } 2  leO~ 
eEET 

where le is the length of edge e, and Oe is the external dihedral angle at that edge. 
Minimizing Ebnd tends to flatten out the surface, and distribute its curvature 
evenly among all edges. 

Eccentricity energy: 

E~r162 = IVT I ~ Iv- b~l 2 
vE~)T 

where by is the barycenter of all neighbors of vertex v. Minimizing Eecc also 
tends to flatten out the surface, and equalize the edge lengths. 

Angle variance energy: 

1 Ce 2zr'2 
E~"~:T~ Z. T -d~ eE~ 

where Ce is the angle between e and the next edge out of the same vertex, 
projected onto the tangent plane at that vertex; and de is the degree of that 
vertex. Minimizing Ea,g tends to equalize the angles between adjacent edges, 
which helps to unfold the surface and reduce its self-intersections. 

Spreading energy: 
1 

Espr- I)2T ] E IPvl2 
vEVT 

where Pv is the Cartesian coordinates of vertex v. Minimizing this energy tends 
to keep all vertices close to the origin of R 3 . 

Proximity energy: 

1 1 
Eprx - 

I~TI  ~ ~ , ~ T  I~  - c,I ~ + p~ + p~ 
r#s 

where Cr, cs are the centroids of triangles r and s, and Pr, Ps are their average 
radii (in the root-mean-square sense). This energy can be understood as the 
electrostatic potential of a set of fuzzy electric charges, located at the trian- 
gle centroids. Minimizing Epr• tends to spread out the triangles in space, thus 
avoiding self-intersections (especially grazing ones) and fold-overs. 
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Patch area energy The two diagonals of a tile divide it into four triangular 
pieces, each consisting of k ~ triangles. Let A1,. . .  A4m be the total areas of 
these quarter-tiles. Then 

: - -  

4m i=1 

where A. = lr/m is the "ideal" area of a quarter-tile. Minimizing Epa r tends to 
keep the total surface area close to 47r, and to equalize the quarter-tile areas, so 
that the edges of the original complex are spread out uniformly over the surface. 

Note that the energy functions above must be used in combination, rather 
than alone, in order to avoid degenerate configurations. For instance, the prox- 
imity energy Eprx tends to its minimum value (zero) when the vertices tend to 
infinity; whereas the bending energy Ebn d is minimum when all vertices are at 
the origin. However, the asymptotic behavior of the two formulas is such that any 
nontrivial convex combination of them will attain its minimum at configurations 
of bounded and nonzero radius. 

The purpose of the scaling factors in the formulas above, such as 
in the formula of Ebnd, is to make the numerical value of each energy largely 
insensitive to the number of triangles in the mesh. This scaling allows us to use 
the same weights for optimizing meshes of different resolutions (different values 
of k). In particular, it allows us to use the multi-scale approach, which consists in 
running the optimization algorithm simultaneously on several meshes of varying 
resolution, which are loosely coupled by interpolation and local averaging. 

3.1 Select ing the  weights  

When it comes to selecting the weights, we still do not have any answer much 
better than trial-and-error, perhaps guided by some physical intuition. 

It would be trivial to implement a GUI-based tool that allowed direct ad- 
justment of the weights by the user, with visual feedback. Unfortunately, our 
optimizer is still too slow for interactive use: it would take tens of minutes to 
(re)compute the optimum configuration after a change in the weights. (On the 
other hand, considering our limited expertise in numerical methods, it seems 
likely that this time can be reduced, by several orders of magnitude, merely by 
using better optimization algorithms.) 

A more speculative solution is to let the computer "learn" the weights from 
examples, as Eades and Mendon6a did for the plane graph drawing problem [20]. 
The idea is to give the computer a collection of "good" realizations of cellular 
complexes--generated, say, by ad-hoc programs or manual editing with solid 
modeling tools--and let the computer find the combination of weights that comes 
closest to reproducing those shapes. 
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4 O p t i m i z a t i o n  

Having constructed the triangular mesh, and chosen an energy function, we are 
faced with problem of finding the configuration of minimum energy. This is 
a nontrivial optimization problem, since even a small complex determined an 
energy function with hundreds of independent variables. 

We approach this problem at two levels. We use general-purpose non-linear 
optimization techniques to move from given configuration to a nearby local min- 
imum. We repeat this search for a couple dozen random starting points, and 
(select the local minimum with lowest energy as the answer. It should be possi- 
ble to use combinatorial heuristics, such as simulated annealing, to extend the 
search beyond the nearest local minimum; but we haven't been able to get such 
methods to work fast enough.) 

When searching the local minimum, we need a stopping criterion of some 
sort. Unfortunately, there is no numerical criterion that can tell when the en- 
ergy is "low enough" to provide a good visualization. So, in practice, we fix 
a computation budget, and use the best configuration we can find within that 
limit. 

4.1 Genera l  opt imiza t ion  me thods  

To solve this problem, we have tried several general purpose numerical opti- 
mization techniques, including Kirkpatrick's simulated annealing [17,23], Nadler 
and Mead's downhill simplex method [23, p.289], Powell's principal directions 
method [23, p.298], the naive single coordinate optimization, with periodic diag- 
onal steps [23, p.294] and a gradient descent method with adaptive step-size. 

The tests were performed on various triangulated meshes, ranging from a 
few tens to a few hundred vertices. The initial guess for the optimization was 
either a random configuration--where each vertex was chosen independently 
and uniformly in the unit cube--or a reasonably smooth configuration obtained 
by the heuristic methods described in the next section. The effectiveness of an 
algorithm was judged from its energy evolution curve: the energy of the minimum 
configuration found, as a function of accumulated CPU time. 

The ranking of the methods was generally the same on all tests, and consis- 
tent over time. Not surprisingly, we found that gradient descent was the most 
effective. Simulated annealing was so slow that we gave up on it after a few tests. 
The Nadler-Mead and Brent-Powell algorithms were faster, but not enough to 
be usable. Moreover, they require $2(n 2) storage for a function of n variables, 
and therefore are restricted to complexes with a few tens of edges. 

The naive minimization method consists of adjusting one variable at a time 
(using, for instance, Brent's univariate minimization algorithm [23, p.283]), while 
all other variables are held fixed. As recommended in the literature, every n + 1 
such "axial" steps we perform a "diagonal" step, where we seek the minimum 
configuration along the line connecting the outcomes of the first and the last of 
those axial steps. 
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We implemented this naive method only for the sake of comparison, since 
textbooks generally claim it is slower than Brent-Powell. To our surprise, it 
turned out to be much faster. The reason, which was obvious on hindsight, is 
that  all our energy functions are the sum of many terms, each depending on a 
few vertices only. When varying one coordinate at a time, we could save time 
by recomputing only the terms that  depended on that  coordinate. Thus, while 
the naive algorithm performed somewhat more energy evaluations than Powell's 
method, each evaluation was faster by one or two orders of magnitude. 

In the gradient descent method, we compute the partial derivatives of the 
energy function by Banr and Strassen's method [3]. The latter, which is basically 
a systematic use of the chain derivation rule, reduces the cost of computing the 
gradient of any algebraic or transcendental formula to a small constant times 
the cost of computing the energy itself. 

4.2 Hem: i s t i c  m e t h o d s  

Besides these general-purpose optimization algorithms, we have also used two 
specialized heuristic methods, the smoothing heuristic and the spreading heuris- 
tic. Both are local operations that  are applied to each vertex v in turn, cyclically, 
up to a prescribed number of passes. The smoothing heuristic adjusts the position 
of vertex v, keeping all other vertices fixed, so as to approximately minimize the 
bending energy of the edges between the triangles that  are incident to v. The 
spreading heuristic keeps the vertex v fixed, but  rotates its neighbors u l , . .  Uk 
around the surface normal r at the vertex so as to bet ter  equalize the angles 
u~vui+l, when projected on a plane perpendicular to r.  

These heuristics are not sensitive to the energy functions or their weights. 
Therefore, they are useful only as a preprocessing step, when starting from a ran- 
dom configuration, where the goal is merely to untangle the surface and smooth 
out its largest wrinkles - -  which are bad under any reasonable energy function. If 
we want to compare the effect of different energy functions and varying weights, 
we must eventually follow these heuristics with one of the generic optimization 
methods above. 

Each pass of the heuristic redistributes the "stress" energy of each element 
among the neighboring elements. It should be noted that,  as in any diffusion 
process, the number of passes needed to achieve a given surface smoothness is 
expected to scale as the square of the graph-theoretic diameter of the triangu- 
lation. 

In our test runs, with complexes of a few tens of edges, we found that  20-100 
passes of each heuristic already provided a reasonably smooth surface; additional 
passes were hardly worth their cost. 
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5 R e s u l t s  

Figure 6 shows the heuristic smoothing of a simple torus-like complex. The 
original complex had one face, two edges, and one vertex; it was modeled with 
tiles of order k = 5, resulting in a mesh with 300 edges, 200 triangles and 100 
vertices. Shown are the initial random configuration (a), and the states after 5, 
30, and 100 passes of each heuristic, respectively (b-d). 

Fig. 6. Smoothing of a torus complex. 

The configuration of figure 6(d) was then optimized with the gradient-descent 
method, for the energy E = Ebn d -~- Epar "~ Eecc -~ 5Eprx Figures 6(e-f) show the 
state after 100 and 1000 energy evaluations, respectively. 

Figure 7 shows renderings of the final stage of optimization for three different 
complexes with the topology of a sausage, a five-star and a tritorus (a sphere 
with three handles). 
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Fig. 7. Realizations of a sausage, a five-star, and a tritorus. 

The renderings are further enhanced by a little animation displaying several 
views of the complexes. The series of pictures are presented as a sequence of 
stereoscopic pairs. The 3D rendering may be seen by holding the paper about 
50 cm away, and converging the eyes toward a point behind it, so that pairs 
of consecutive drawings are fused into one image. The resulting stereo illusion 
should compensate for the the small size of the images. 

The images were produced with P0V-Ray, a freely available ray tracer [26]. 
Their apparent smoothness is due to Gouraud-shading of the triangles [11]. The 
edges and vertices are modeled by thin cylinders and small spheres. 

6 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

Our experiments to date are encouraging, but there is still a lot of work to be 
done here. To begin with, we need to work more on the energy minimization 
code; speedup several orders of magnitude seem possible, just by using better 
optimization algorithms. 

We still understand very little about the effects of the various energy func- 
tions, and the proper weights to use. Among other things, we need to develop 
energy functions that penalize self-intersections more strongly than the func- 
tions we have got. We also need to improve the heuristic methods so as to avoid 
generating self-intersecting shapes. 

Finally, we need to develop combinatorial optimization tools or heuristics to 
extend the search over several local minima. 
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