
Experimental and Theoretical Results in
Interactive Orthogonal Graph Drawing*

Achilleas Papakostas, Janet M. Six and Ioannis G. Tollis

Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688
emaJ]: {papakost, janet, tollis}~utdallas, edu

Abs t rac t . Interactive Graph Drawing allows the user to dynamically
interact with a drawing as the design progresses while preserving the
user's mental map. This paper presents a theoretical analysis of Relative-
Coordinates and an extensive experimental study comparing the perfor-
mance of two interactive orthogonal graph drawing scenaria: No-Change,
and Relative-Coordinates. Our theoretical analysis found that the Relative-
Coordinates scenario builds a drawing that has no more than 3n - 1

bends, while the area of the drawing is never larger than 2.25n ~. Also,
no edge has more than 3 bends at any time during the drawing process.
To conduct the experiments, we used a large set of test data consisting of
11,491 graphs (ranging from 6 to 100 nodes) and compared the behavior
of the above two scenaria with respect to various aesthetic properties
(e.g., area, bends, crossings, edge length, etc) of the corresponding draw-
ings. The Relative-Coordinates scenario was a winner over No-Change
under any aesthetic measure considered in our experiments. Moreover,
the practical behavior of the two scenaria was considerably better than
the established theoretical bounds, in most cases.

1 Introduct ion and Prel iminaries

Graph drawing addresses the problem of automatical ly generating geometric
representations of abstract graphs or networks. For a survey of graph drawing
algorithms and other related results see the annotated bibliography of Di Bat-
tista, Eades, Tamassia and Tollis [4]. An orthogonal drawing is a drawing in which
vertices are represented by points on integer coordinates and edges are repre-
sented by polygonal chains consisting of horizontal and vertical line segments.
Various algorithms have been introduced to produce orthogonal drawings of pla-
nar [2, 6, 10, 20, 22] or general [1, 2, 16, 19] graphs of max imum degree four,
and max imum degree three [10, 16, 17]. All these algorithms run in linear time,
except for the algorithm in [20]. For drawings of general graphs, the required
area can be as little as 0.7@ 2 [16], the total number of bends is no more than
2n + 2 [2, 16], and at most two bends can be on the same edge [2, 16].

* Research supported in part by NIST, Advanced Technology Program grant number
70NANB5Hl162.

372

Upper and lower area bounds have been proved for orthogonal drawings of
general graphs. Leighton [11] presented an infinite family of planar graphs which
require area /2(nlogn). Independently, Leiserson [12] and Valiant [25] showed
that every planar graph of degree three or four has an orthogonal drawing with
area O(n log 2 n). Valiant [25] showed that the orthogonal drawing of a general
(non-planar) graph of degree three or four requires area no more than 9n 2, and
described families of graphs that require area/2(n2).

Many graph drawing algorithms have been implemented, and a number of
results on their practical behavior have appeared in literature. Himsolt [8] pre-
sented his experimental findings when he compared the performance of twelve
graph drawing algorithms (most of which were specialized for trees, graph gram-
mars, Petri nets and planar graphs) in the GraphEd environment [9]. An exten-
sive experimental work appeared in [5] where four general-purpose orthogonal
graph drawing algorithms [2, 16, 21, 22] were implemented and compared with
respect to their performance on various aesthetic properties including crossings,
bends~ area, running time etc. Their results have a great statistical value mainly
because they are based on a very large data set including 11,582 graphs.The
sizes of these graphs range from 10 to 100 vertices and are taken from "real-life"
software engineering and database applications.

In most graph drawing algorithms a graph is given as an input and a drawing
of this graph is produced. If an insertion (or deletion) is performed on the graph,
then we have a "new" graph. Running the drawing algorithm again will result in
a new drawing, which might be vastly different from the previous one. Obviously
this is a waste of human resources to continually re-analyze the entire drawing
and also of computational resources to re-compute the entire layout after each
modification. Therefore it is important to efficiently produce a series of drawings
which evolve with the structure while preserving the user's mental map [15].
The first systematic approach to dynamic graph drawing appeared in [3]: the
target was to perform queries and updates on an implicit representation of the
drawing, while maintaining its planarity. The insertion of a single edge however,
could cause a planar graph to drastically change embedding, or even become non
planar. An incremental approach to orthogonal graph drawing was presented in
[14], where the focus was on routing edges efficiently without disturbing existing
vertices or edges.

In [18] we discussed various features of interactive graph drawing systems,
we introduced four scenaria for interactive graph drawing and presented a theo-
retical analysis of the performance of the No-Change scenario. All four scenaria
were based on the assumption that. the underlying drawing was orthogonal and
the maximum degree of any vertex was four at the end of an update operation.
The basic property of the No-Change scenario is that an update operation (i.e., a
vertex insertion) does not alter the coordinates of any vertex or bend within the
current drawing, since any vertex insertion or edge routing takes place around
it. The analysis of the No-Change scenario of [18] is based on the assumption
that the drawn graph is connected at all times.

T h e o r e m 1. [18] The "No-Change scenario"produces drawings with the follow-
ing properties:

373

1. every insertion operation takes constant time,
2. every edge has at most three bends,
3. the total number of bends at any time t is at most 2.66n(t) + 2, where n(t)

is the number of vertices of the drawing at time t,
4. the area of the drawing at any time t is no more than (n(t) -t- n4(t)) 2 _<

1.77n(t) 2, where n4(t) is the number of vertices of local degree four which
have been inserted up to time t, and

5. the upper bounds for both area and bends are tight.

In this paper, we first analyze the performance of the Relative-Coordinates
scenario by using linear programming to prove upper bounds on the area and the
number of bends. More specifically, we show that an interactive graph drawing
system under the Relative-Coordinates scenario builds a drawing that has no
more than 3n(t) - 1 bends, while requiring at most 2.25n(t) 2 area. Moreover, no
edge has more than 3 bends at any t ime during the drawing process. Then we
compare the performance of the No-Change and Relative-Coordinates scenaria
on a set of 11,491 "real-life" maximum degree four graphs, which were taken
from the database of graphs used in [5]. Our experiments compare the quality
of the drawings produced by the two scenaria, based on the following aesthetic
measures: area, number of bends, number of crossings, aspect ratio, average edge
length and maximum edge length. We also include results on the average number
of new rows, columns and bends that are introduced in any drawing for different
types of vertex insertions. Our experiments revealed:

- The practical behavior of the two scenaria is much better than their estab-
lished theoretical bounds, in most cases.

- The Relative-Coordinates scenario exhibits better performance than No-
Change under any aesthetic measure considered.

2 A n a l y s i s o f t h e R e l a t i v e - C o o r d i n a t e s S c e n a r i o

In this scenario, every t ime a new vertex is about to be inserted into the current
drawing, the system makes a decision about the coordinates of the vertex and the
routing of its incident edges. New rows and columns may be inserted anywhere
in the current drawing in order for this routing to be feasible. The coordinates of
the new vertex (say v) as well as the locations of the new rows and/or columns
will depend on the following:

- v's degree (at the time of insertion).
- How many of v's adjacent vertices allow the insertion of a new incident edge

towards the same direction (i.e., up, down, right, or left of the vertex).
- How many of v's adjacent vertices allow a new incident edge towards opposite

directions.
- Whether or not the required routing of edges can be clone utilizing segments

of existing rows or columns that are free (not covered by an edge).
- Our optimization criteria.

374

When we use the Relative-Coordinates scenario in an interactive system, we
can start from an existing drawing of a graph or from scratch, tha t is from an
empty graph. In either case, we assume that the insertion of any vertex/edge
under this scenario will not increase the number of connected components of the
current graph. The only exception to this is when a single vertex is inserted into
a currently empty graph. Any other vertex inserted during an update step will
be connected to at least one other vertex of the current drawing. Let us assume
that v is the next vertex to be inserted in the current graph during an update
step. The number of vertices in the current graph tha t v is connected to, is called
the local degree of v, and is denoted by local_degree(v).

From the discussion above it follows that we only consider the cases where
an inserted vertex has local degree one, two, three or four, except for the first
vertex inserted in an empty graph. If the user wishes to insert a new vertex that
has local degree zero, then this vertex is placed in a t empora ry location and it
will be inserted automatical ly in the future, when some newer vertices increase
its (local) degree. Assume that vertex v is about to be inserted into the current
graph. For each one of the vertices of the current drawing that is adjacent to v,
the system checks the possible directions around these vertices that new edges
may be inserted or routed. The target is to minimize the number of new rows
or columns that have to open up in the current drawing, as well as the number
of bends that appear along the routed edges.

There are many different cases because there are many possible combinations.
In the example shown in Fig. l a vertices ul and u2 have a free edge (i.e., grid
edge not covered by a graph edge) up and to the right respectively. In this case
no new rows/columns are needed for the insertion of vertex v and no new bends
are introduced. On the other hand however, in the example shown in Fig. lb
all four vertices ul, u2, u3 and u4 have pairwise opposite direction free edges.
The insertion of new vertex v requires the insertion of three new rows and three
new columns in the current drawing. Additionally, eight bends are introduced.
Vertices ul , u2, u3 and u4 have general positions in Fig. lb, and we can see that
edge (v, u4) has four bends. We can avoid the 4-bend edge, if we insert vertex v
in the way shown in Fig. lc. The total number of new rows, columns and bends
is still the same, but the m ax i m um number of bends per edge is now three. For
a more even distribution of the bends of the edges adjacent to vertex v, we may
choose to insert it in the way shown in Fig. ld, where every edge has exactly
two bends (three new rows and three new columns are still required). Notice,
though, tha t the approach described in Fig. ld for inserting vertex v, is not
always possible (e.g.~ we cannot have this kind of insertion if vertices Ul, u2, u3
and u4 are in the same row or column). At this point it is impor tant to note tha t
any one of the solutions presented in Fig. 1 (b, c and d) are acceptable: all add
the same number of rows, columns and total number of bends. The characteristic
of placing a max imu m of three bends per edge is attainable, but ul t imately is up
to the implementor. The total number of bends added per insertion will always
remain the same under this scenario.

-Iv
lh

(a)
Co)

375

u 1

(c) (d)

Fig. 1. Insertion of v: (a) no new row or column is required, (b),(c) and (d) three new
rows and three new columns are required, with a maximum of 4 bends per edge in (b),
a bends per edge in (c), and 2 bends per edge in (d).

Let v be the next vertex to be inserted. There are m a n y cases, if one is
interested in an exhaustive analysis. However, it is relatively easy to come up
with all the cases for each insertion. Here, we distinguish the following main
cases for vertex v:

1. v has local degree one. If u is the vertex of the current drawing tha t is
adjacent to v, we draw an edge between u and v. Edge (u, v) uses a direction
(up, right, bo t tom, or left) tha t is not taken by some other edge incident to
u. This is depicted in Fig. 2a, and this insertion requires at most either a
new row or a new column. No new bend is inserted.

2. v has local degree two. In the best case, the insertion requires no new rows,
columns or bends as shown in Fig. la. In the worst case, though, two new
rows and one new column, or one new row and two new columns (see Fig.
2b), and three new bends might be inserted.

3. v has local degree three. In the worst case, the insertion requires a tota l
of four new rows and columns, and five new bends. In Fig. 2c we show an
example of such an insertion tha t requires one new row, three new columns
and five new bends.

4. v has local degree four. The worst case requires a tota l of six new rows and
columns, and eight new bends. We have already discussed an example, which
is depicted in Fig. lc. In Fig. 2d we show another case, where two new rows,
four new columns and eight new bends are introduced. Note tha t no more
than four new rows or columns m a y be introduced when v has local degree
four.

As discussed in the previous section, single edge insertions can be handled
using techniques f rom global rout ing [13] or the technique of [14]. The easiest way
to handle deletions is to delete vert ices/edges f rom the da ta s tructures wi thout
changing the coordinates of the rest of the drawing. Occasionally, or on demand,
the sys tem can perform a l inear-t ime compact ion similar to the one described
in [22], and refresh the screen.

In the rest of this section we assume that , when we use the interactive
graph drawing scheme under the Relat ive-Coordinates scenario, we s tar t f rom
scratch. According to the discussion in the beginning of this section, the Relative-

376

(a)

(c) (d)

Fig. 2. Inserting v when its local degree is (a) one, (b) two, (e) three, and (d) four.

Coordinates scenario guarantees that the graph that is being built is always con-
nected after any vertex insertion. Let nl(t) , n2(t), n3(t) and n4(t) denote the
number of vertices of local degree one, two, three and four, respectively, that
have been inserted up to time t.

T h e o r e m 2. An interactive graph drawing system under the ~Relative Coordi-
nates scenario" produces drawings with the following properties:

1. after each vertex insertion, the coordinates of any vertex or bend of the cur-
rent drawing may shift by a total amount of at most 5 units along the x and
y axes,

2. there are at most 3 bends along any edge of the drawing,
3. the total number of bends is at most 3n(t) - 1, and
4- the area of the drawing is at most 2.25n(t) 2,

where n(t) is the number of vertices that have been inserted up to time t.

S k e t c h o f P r o o f . The first property follows from the definition of the Relative-
Coordinates scenario and from the fact that at most 6 new rows and new columns
might open anywhere in the current drawing (see Figs. lb, le, ld, 2d) as a result
of a vertex insertion. Figures 1 and 2 cover the worst cases in terms of rows,
columns and bends required for a single vertex insertion, and for all possible
local degrees of the inserted vertex. From these figures we observe the following:
First there can be at most 3 bends along any edge of the drawing (see Fig. lc).
Second, the bends along an edge are introduced at the time of insertion of the
vertex that is incident to that edge.

From Figs. 1 and 2 and from the discussion above, it follows that at most 3
new bends are introduced when a vertex of local degree 2 is inserted, at most 5
new bends when a vertex of local degree 3 is inserted, and at most 8 new bends
when a vertex of local degree 4 is inserted. No new bend is introduced when a
vertex of local degree 1 is inserted. In other words, if B(t) is the total number
of bends at t ime t, it holds that:

B(t) < 3n2(t) + 5,,3(t) + 8n4(t)

We want to compute the maximum value that B(t) can take, in order to estab-
lish an upper bound on the number of bends of the drawing at t ime t. This is
equivalent to solving the following linear program:

377

maximize : 3n2 + 5n3 + 8n4

under the following constraints:

n l > l
nl -9n2 -9 n3 -g n4 = n- - 1
nl + 2n2 + 3n3-9 4n4 < 2n

The first constraint is an inequality on the number of local degree one insertions,
the second is an equation on the number of vertices, and the third is an inequality
on the number of edges of the graph, after n vertices have been inserted. Recall
that the first vertex to be inserted has local degree 0, since it does not have any
edges yet.

Solving this linear program with all three constraints leads to a non-integral
solution. If we ignore the first constraint, the new linear program has an integral
solution and the objective function is maximized (to 3n + 2) when nl = n3 = 0,
n2 = n - 2, and n4 = 1. This solution implies that maximizing the number of
bends depends solely on the number of vertices of local degree two and four. If we
take into account the fact that the first two vertices inserted in an empty graph
have local degrees 0 and 1 respectively, what we really have is that n2 = n - 3
and n4 = 1. This is the same solution as the one obtained from the first linear
program after relaxing the solution into an integral one. We can also see that
any other combination of values for n2 and n4 when n2 + n4 = n - 2 gives more
than 2 n - 1 edges (recall that one edge is introduced by the second vertex, which
has local degree 1). From the above analysis, it follows that the upper bound on
the number of bends is 3n - 1.

Regarding the area of the drawing at t ime t, we can infer from Figs. 1 and 2
that:

- when a vertex with local degree one is inserted, either a new row or a new
column is required,

- when a vertex with local degree two is inserted, either two new rows and one
new column are required, or one new row and two new columns are required,

- when a vertex with local degree three is inserted, we need a total of at most
four new rows and new columns, and

- when a vertex with local degree four is inserted, we need a total of at most
six new rows and new columns.

Let h(t) and w(t) denote the height and the width, respectively, of the drawing
at t ime t. Then it holds that:

h(t) -9 w(t) <_ nl(t) -9 3n2(t) -9 4n3(t) + 6n4(t) < 2n(t) + n2(t) -9 n3(t) + 2n4(t)

since nl(t) -9 2n2(t) -9 3n3(t) 4-4n4(t) < 2n(t). We want to maximize h(t) -9 w(t).
If we just mult iply both sides of the last inequality (i.e., the one on the edges
of the graph) by 3 y, we obtain h(t) + w(t) < 3n(t). However, this solution does
not give us the values of the variables (i.e., nl(t), n2(t), etc), for which this
upper bound is achieved. For this reason, we formulate this problem as a linear

378

program, where the expression to be maximized is: 2n + n2 + n3 + 2n4, and the
constraints are exactly the same as the ones in the above linear program.

Solving this new linear program, we have that h(t) + w(t) is maximized when
nl = n3 = 0, n2 = n - 2 , and n4 = 1, exactly as in the linear program we studied
above, for the number of bends. According to the analysis we did for that linear
program, these results really mean that nl = 1 (the second vertex to be inserted),
n2 = n - 3, and n4 = 1. The maximum value of expression 2n q- n2 + n3 q- 2n4
that we wanted to maximize is now 3n. This means that h(t) + w(t) < 3n(t). It

also holds that h(t) x w(t) is maximized when h(t) = w(t) = h(t)+~(t) < 1.ha(t).
2

In this case, the area of the drawing can be at most 2.25n(t) 2. []
Let us have a look at the expression giving the number of bends that we max-

imized in the linear program of the proof of Theorem 2. One might be tempted
to believe that this expression is maximized when n4(t) is maximized (and this

happens when = if the graph is always connected). The result of the
linear program was quite revealing. We discovered that this expression is max-
imized only under the following insertion sequence: insert the first two vertices
with local degrees 0 and 1 respectively, followed by n - 3 vertices of local de-
gree two, and conclude with the insertion of exactly one vertex of local degree
four. In order to refresh the drawing after each update, the coordinates of every
ver tex/bend affected must be recalculated. Hence, it would take linear time.

3 E x p e r i m e n t a l C o m p a r i s o n o f t h e T w o I n t e r a c t i v e

S c e n a r i a

3.1 I m p l e m e n t a t i o n a n d E x p e r i m e n t s

Both the No-Change and Relative-Coordinates algorithms have been imple-
mented in C + + (GNU C + + version 2.6.0) on a SPARC 5 running SUN OS
Release 4.1.3. Our implementations are running on top of Tom Sawyer Software's
Graph Layout Toolkit version 2.2 [23, 24]. We converted 11,491 of the graphs
used in the experimental analysis of [5] for our set of experiments. This database
of graphs is available by anonymous ftp from i n f o k i t , d i s . un i romal , i t : pub l i c .
A small number of edges and vertices were discarded in order to make all vertices
maximum degree four. For each graph~ arbitrarily selected vertices and their in-
cident edges were inserted one at a time into an initially empty structure. The
graph was connected at all times. The following standard measures of quality
were determined for each drawing:

- Area: The area of the smallest box which can bound the drawing.
- Bends: The total number of bends.
- Crossings: The total number of crossings.
- Aspect Ratio: The width divided by the height of the drawing.
- Average Edge Length: The sum of all edge lengths divided by the number

of edges in the drawing.
- Maximum Edge Length: The length of the single longest edge in the drawing.

379

In addition to these standard measures, we also count the number of rows,
columns and bends added with each type of insertion (local degree one, two,
three or four). These factors show behavior specific to interactive orthogonal
drawing algorithms. All of these measures are plotted against the final number
of vertices in the graph.

3.2 Pe r fo rmance Analysis Under Various Qual i ty Measures

Our experimental results show that both No-Change and Relative-Coordinates
scenaria behave better than their theoretical upper bounds. The most impor-
tant aspect of our experimental work is the observation that the performance
of the Relative-Coordinates approach for graph drawing is considerably bet-
ter than that of No-Change with respect to the aesthetic measures we consid-
ered. Although both algorithms respected their theoretical bounds, Relative-
Coordinates' average case behavior was consistently better than that of No-
Change. In Fig. 3 we show the drawings of one graph from our experimental
set with the same random order of vertex insertion, when drawn under the two
different scenaria. As is evidenced in the pair of drawings, each scenario has its
own distinctive style. The No-Change scenario placed the first two vertices at the
top left corner of the drawing and grew in a south-easterly direction. Relative-
Coordinates maintained the general shape of the drawing, but inserted a small
number of rows and columns in order to facilitate the placement of the new
vertex and the routing of its incident edges. Some of our experimental findings
are summarized in Fig. 4. More specifically, we have:
Area: The area of graphs laid out by Relative-Coordinates is consistently smaller
than that of No-Change. The theoretical upper bound of the No-Change scenario

•2
is 1.77n 2 while the behavior is closer to T" Likewise, the theoretical upper bound
of the Relative-Coordinates scenario is 2.25n 2 and the experimental behavior is

n~ closer to -4-"
Bends: Relative-Coordinates produces drawings with fewer bends than No-
Change. This happens because, under Relative-Coordinates, newly inserted ver-
tices are expected to be placed closer to their adjacent vertices. In addition, the
first invariant of No-Change forces us to place bends in a significant percentage
of all degree one insertions. In other words, if a low or no bend edge exists,
Relative-Coordinates will use it, but No-Change may not in order to comply
with its own invariants. The theoretical upper bound for No-Change is 2.66n + 2
while it behaves more like 9" Likewise the theoretical upper bound for Relative-

n Coordinates is 3 n - 1 and it behaves closer to 7"
Crossings: Again Relative-Coordinates performs significantly better than No-
Change and this behavior is expected. Since the No-Change scenario allows no
coordinate of any vertex or bend to change, the scenario must comply with its
own invariants, so new edges are often forced to cross many old edges to reach
their incident vertices. Contrariwise, Relative-Coordinates allows some change
(in the form of row and column additions anywhere within the drawing) and
places vertices closer to their adjacent vertices.
Aspect Ratio: As can be seen in the plot, No-Change and Relative-Coordinates

380

behave in a very similar fashion. Both algorithms produce rather squarish draw-
ings. It is important to note that certain modifications within the implementation
will allow different behaviors: either algorithm could produce more rectangular
drawings to comply with some requirement.
A v e r a g e E d g e L e n g t h : The Average Edge Length and Maximum Edge Length
plots show a very important difference between the two scenaria. By the very
nature of No-Change, newer vertices are forced to be far from their adjacent
vertices if they were inserted at a much earlier point in the lifetime of the draw-
ing. This factor, of course, causes the average edge length to be high. Relative-
Coordinates adds a reasonable number of rows and columns as necessary to allow
"good" placement of new vertices close to their adjacent vertices and edges with
few bends.
M a x i m u m E d g e L e n g t h : The No-Change Algorithm produces long edges
when a new vertex is connected to another vertex which was placed at, or near,
the beginning of the lifetime of the graph. This is also an expected result.

r ~

[
I I

T

1

)

Fig. 3. Drawings of the same 29-vertex graph: No-Change on the left, Rela-
tive-Coordinates on the right.

At this point it is important to notice that Relative-Coordinates performs
well even as a non-interactive algorithm. Although it is unfair to directly compare
our results with those in [5] because we limit the test graphs to degree four, it
is interesting that the average area of a Relative-Coordinates drawing is only
slightly larger than the Giotto drawings. The same phenomenon is observed with
crossings and average edge length. For these experiments we used an arbitrary

381

4500

4000

35O0

3000

2500
2
< 20O0

1500

~ooO

500

. . . . , , , ,

No-Change --
ReI-Coor -~- /

/ ,
0

0 10 20 30 40 50 60 70 80 90 t00
Vertices

350 -1

250 /

0 .1| i

10 20 30 40 50 60 70 80 90 100
Vertices

i i i i i 1 i i i

0 10 20 30 40 50 60 70 80 90 100
Vertices

== 200

o 150
~J

20 I
18
16

" 12
~ 10
W

g a

<
4
2
0

55
50
45
40
35

~ 30

~ 25

20
15
10
5

0

1.25

1,2

1.15

o 1.1

~- 1.05

< 0.95

0.9

0.85

0.8

120

lO0
. . c

~ ~o _J

~ 60
E

20

, , , , , , , , ,

No-Change --

Rel-Coor --,-- ~ .

0 10 20 30 40 50 60 70 80 90 100
Vertices

o~Change - -
ll-Coot -~-

i i F i i i f i i

1o 20 30 40 50 60 70 80 90 100
Vertices

10 20 30 40 50 ~0 70 80 90 100
Vertices

Fig. 4. Graphs of our experimental findings.

382

insertion sequence. If we find a "good" insertion sequence then we should obtain
even better results. An additional refinement phase should produce data curves
(representing area, bends, crossings, average and max imum edge lengths) tha t
are very similar to those of Giotto.

3.3 P e r f o r m a n c e A f t e r a S ing le U p d a t e S t e p

Our second set of experimental data is pertinent to the interactive nature of the
two scenaria, Our data show tha t Relative-Coordinates consistently outperforms
No-Change in any measure considered. The plots of our results are shown in Fig.
5 and Fig. 6.
R o w s a n d C o l u m n s A d d e d p e r D e g r e e O n e I n s e r t i o n : No-Change adds at
most one new row and one new column per degree one insertion while Relative-
Coordinates adds either one new row or one new column. Therefore we ex-
pected the average number of rows and columns for degree one insertions to
be slightly higher for No-Change. The collected data reflects this characteris-
tic. The average number of rows and columns added per degree one insertion is
0.551 + 0.605 = 1.156 for No-Change and 0.515 + 0.485 = 1.000 for Relative-
Coordinates.
B e n d s A d d e d p e r D e g r e e O n e I n s e r t i o n : No-Change adds a bend to the
edge if it is placed to the North or West of the old vertex while Relative-
Coordinates never adds a bend during a degree one insertion. The average num-
ber of bends for No-Change is 0.118 and 0 for Relative-Coordinates.
R o w s a n d C o l u m n s A d d e d p e r D e g r e e T w o I n s e r t i o n : No-Change adds
at most one new row and one new column per degree two insertion. On average,
No-Change adds 0.926 + 0.953 = 1.879 rows and columns per degree two inser-
tion. Notice that the sum is very close to the worst case. Relative-Coordinates
adds a total of three new rows and columns in the worst case and the average is

a much better 0.377 + 0.435 = 0.812.
B e n d s A d d e d p e r D e g r e e T w o I n s e r t i o n : In the worst case, No-Change
adds four bends while Relative-Coordinates adds three. The average number of
bends inserted is 2.050 for No-Change and 0.812 for Relative-Coordinates. This
number is so low because Relative-Coordinates makes good use of any free rows,
columns and open degrees of freedom.
R o w s a n d C o l u m n s A d d e d p e r D e g r e e T h r e e I n s e r t i o n : Theoretically
at most two new rows and two new columns are added for a No-Change de-
gree three insertion, and at most a totM of four new rows and columns are
needed for Relative-Coordinates. In our experiments we found that an aver-
age of 1.102 + 1.135 = 2.237 rows and columns are added in the No-Change
implementat ion and only 0.707 + 0.740 = 1.447 rows and columns in Relative-

Coordinates.
B e n d s A d d e d p e r D e g r e e T h r e e I n s e r t i o n : In the worst case, No-Change
adds five bends and the average behavior is 3.205. Relative-Coordinates takes
bet ter advantage of available rows and columns and has an average of 2.447.
R o w s a n d C o l u m n s A d d e d p e r D e g r e e F o u r I n s e r t i o n : Degree four inser-
tions are handled very similarly by both No-Change and Relative-Coordinates.

383

At most, a total of six new rows and columns are added by each algorithm. Ac-
cording to the data an average of 1.660+1.730 = 3.390 rows and columns is added
by the No-Change algorithm. Relative-Coordinates adds 1.343 + 1.373 = 2.716.
B e n d s A d d e d p e r D e g r e e F o u r I n s e r t i o n : Both algorithms add eight bends
in the worst case, and No-Change has been experimentally found to produce an
average of 5.022 bends per degree four insertion while Relative-Coordinates in-
troduces an average of 3.987 bends.
Remember in Sect. 2 we proved that the area and number of bends within a
Relative-Coordinates drawing is contingent on the number of degree two inser-
tions. Therefore it is quite interesting and important to note that the experi-
mental behavior of degree two insertions is so much better than the worst case.
This explains why the behavior (with respect to area and bends) of Relative-
Coordinates is so much better.

4 C o n c l u s i o n s a n d O p e n P r o b l e m s

The Relative-Coordinates scenario maintains the general shape of the current
drawing after an update (vertex/edge insertion/deletion) takes place, and does
not affect the number of bends of the current drawing even if the update opera-
tion is a vertex insertion. We used linear programming in order to establish an
upper bound for the performance of this scenario. A comparison of the practical
behavior of the No-Change and Relative-Coordinates scenaria was presented.
The two scenaria were tried on a very large set of "real-life" graphs, and results
were reported with respect to their performance under various aesthetic mea-
sures. The Relative-Coordinates scenario was consistently better, while both
scenaria respected their theoretical bounds.

It is an interesting open problem to develop a theory that enables the efficient
insertion, movement or deletion of more than one vertex simultaneously (that is
a block of vertices) in the current drawing. Also, techniques for interactive graph
drawing in other standards (straight line, polyline, etc.) are needed, and should
be explored.

R e f e r e n c e s

1. Therese Biedl, Embedding Nonplanar Graphs in the Rectangular Grid, Rutcor
Research Report 27-93, 1993.

2. T. Biedl and G. Kant, A Better Heuristic for OrthogonaJ Graph Drawings, Proc.
2nd Ann. European Symposium on Algorithms (ESA '94), Lecture Notes in Com-
puter Science, vol. 855, pp. 24-35, Springer-Verlag, 1994.

3. R. Cohen, G. DiBattista, R. Tamassia, and I. G. Tollis, Dynamic Graph Draw-
ings:Trees, Series-Parallel Digraphs, and Planar st-Digraphs, SIAM Journal on
Computing, vol. 24, no. 5, pp. 970-1001, 1995.

4. G. DiBattista, P. Eades, R. Tamassia and I. Tollis, Algorithms for Draw-
ing Graphs: An Annotated Bibliography, Computational Geometry: Theory

3 8 4

_~

-~ 0,9

0.8
r~

0,7

< 0 , 6

o ~
CE
'5 0.5

o}
,~ 0.4

0.9

0.8

m 0,7
7
~ 0,6

"5 0.5

131

0.4

0.7

0 , 6

{ii
0,5

0.4

.~ o.3
<

0,2

"5 0.1

o

20 40 60 80 1 O0
Vedices

i i i i

2O 40 60 80 100
Vertices

No-Change - -
IReI-Coor -.-.---

20 40 60 80 100
Vertices

c 1,i"

0 , 9

o 0,7

c,. 0,6

o.5
<

o; ~ t
cr 0 . 3 ~ "

c~ 0,2[
0.1

0

~ t . 2

~ 1,1

~ 0,9

a 0,8

0,7

08!
< 0,5

~ 0.4

*~ 0.3

~ 0.2

.~ 2.2

C~ 1 ,6

1,4

~ 1,2

m
*6 0.8
t~
~ 1).6

20 40 60 80 100
Vertices

N~-Change - - /

_ _ 1 i i i

20 40 60 80 1 O0
Vertices

- , , . , - -

2 0 4O 60 8 0 1 O0

Vertices

F i g . 5. A v e r a g e n u m b e r of rows, c o l u m n s a n d b e n d s a d d e d pe r d e g r e e one a n d two
v e r t e x in se r t ion .

385

1.4 [
, No-Change - (~

~ 0.6

r
"6 02 i

0 20

_~ 1.4

~ ~.a

m 12

~1.1
c3

-~ o.s

'< 0.8

~ 07

~* 0.6

~ 0.5

3.6 I

i 3,4

~) 3,2

~ 3
121

~ 2,6

~ 2,4

~' 2.2

"5 2

No-Chan~

i i i

40 60 80 100
Vertices

20 40 60 80 100
Vertices

l~-Chan~

/ ' I '
i 1 i i

20 40 60 80 1 O0
Vedices

~- 2,5

D 2

<

o cr t

~ 0.5

3

2,5

r~ 2

"u 1.5

t~

"~ 0.5

3hange - -
eI-Coor -~-

' ~ -'~IT" '~" " ~~ ~ "? '~ , '1

20 40 60 80
Vertices

N Change
leI-Coor --*--

100

i i

20 40 60 80 100
Vertices

~
_~ N m

C3

5
<

4
'5

3
20 40 60 80 I O0

Vertices

F i g . 6. A v e r a g e n u m b e r of rows, c o l u m n s and b e n d s a d d e d pe r deg ree t h r e e and four
v e r t e x inse r t ion .

386

and Applications, vol. 4, no 5, 1994, pp. 235-282. Also available via anony-
mous ftp from ftp.cs.brown.edu, gdbiblio.tex,Z and gdbiblio.ps.Z in
/pub/papers/compgeo.

5. G. DiBattista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari and F. Vargiu, An
Experimental Comparison of Three Graph Drawing Algorithms, Proc. of A CM
Syrup. on Computational Geometry, pp. 306-315, 1995. The version of the paper
with the four algorithms can be obtained from http://www, cs .brown/people/rt.

6. S. Even and G. Granot, Rectilinear Planar Drawings with Few Bends in Each Edge,
Tack. Report 797, Comp. Science Dept., Technion, Israel Inst. of Tech., 1994.

7. S. Even and R.E. Tarjan, Computing an st-numbering, Theor. Comp. Sci. 2 (1976),
pp. 339-344.

8. Michael tlimsolt, Comparing and evaluating layout algorithms within GraphEd,
d. Visual Languages and Computing, vol. 6, no. 3. pp.255-73, 1995.

9. Michael Himsolt, GraphEd: a graphical platform for the implementation of graph
algorithms, Proc. DIMACS Workshop GD '94, Lecture Notes in Comp. Sci. 894,
Springer-Verlag, 1994, pp. 182-193.

10. Goos Kant, Drawing planar graphs using the line-ordering, Proc. 33th Ann. IEEE
Symp. on Found. of Comp. Science, 1992, pp. 101-110.

11. F. T. Leighton, New lower bound techniques for VLSI, Proc. 22nd Ann. IEEE
Syrup. on Found. of Comp. Science, 1981, pp. 1-12.

12. Charles E. Leiserson, Area-Efficient Graph Layouts (for VLSI), Proc. 21st Ann.
IEEE Syrup. on Found. of Comp. Science, 1980, pp. 270-281.

13. Thomas Lenganer, Combinatorial Algorithms for Integrated Circuit Layout, John
Wiley and Sons, 1990.

14. K. Miriyala, S. W. Hornick and R. Tamassia, An Incremental Approach to Aes-
thetic Graph Layout, Proe. Int. Workshop on Computer-Aided Software Engineer-
ing (Case '93), 1993.

15. K. Misue, P. Eades, W. Lai and K. Sugiyama, Layout Adjustment and the Mental
Map, J. of Visual Languages and Computing, June 1995, pp.183-210.

16. A. Papakostas and I. G. Tollis, Algorithms for Area-Efficient Orthogonal Drawings,
Technical Report UTDCS-06-95, The University of Texas at Dallas, 1995.

17. A. Papakostas and I. G. Tollis, Improved Algorithms and Bounds for Orthogonal
Drawings, Proe. DIMACS Workshop GD '94, LNCS 894, Springer-Verlag, 1994,
pp. 40-51.

18. A. Papakostas and I. G. Tollis, Issues in Interactive Orthogonal Graph Drawing,
Proc. of GD '95, LNCS 1027, Springer-Verlag, 1995, pp. 419-430.

19. Markus Sch/~ffter, Drawing Graphs on Rectangular Grids, Discr. AppL Math. 63
(1995), pp. 75-89.

20. J. Storer, On minimal node-cost planar embeddings, Networks 14 (1984), pp. 181-
212.

21. R. Tamassia, On embedding a graph in the grid with the minimum number of
bends, SIAM d. Comput. 16 (1987), pp. 421-444.

22. R. Tamassia and I. Tollis, Planar Grid Embeddings in Linear Time, IEEE Trans.
on Circuits and Systems CAS-36 (1989), pp. 1230-1234.

23. "Ibm Sawyer Software Corp. GLT development group, Graph Layout Toolkit User's
Guide, Berkeley, California, 1995.

24. Tom Sawyer Software Corp. GLT development group, Graph Layout Toolkit Ref-
erence Manual Berkeley, California, 1995.

25. L. Valiant, Universality Considerations in VLSI Circuits, IEEE Trans. on Comp.,
vol. C-30, no 2, (1981), pp. 135-140.

