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Abs t rac t .  Interactive Graph Drawing allows the user to dynamically 
interact with a drawing as the design progresses while preserving the 
user's mental map. This paper presents a theoretical analysis of Relative- 
Coordinates and an extensive experimental study comparing the perfor- 
mance of two interactive orthogonal graph drawing scenaria: No-Change, 
and Relative-Coordinates. Our theoretical analysis found that the Relative- 
Coordinates scenario builds a drawing that has no more than 3n - 1 

bends, while the area of the drawing is never larger than 2.25n ~. Also, 
no edge has more than 3 bends at any time during the drawing process. 
To conduct the experiments, we used a large set of test data consisting of 
11,491 graphs (ranging from 6 to 100 nodes) and compared the behavior 
of the above two scenaria with respect to various aesthetic properties 
(e.g., area, bends, crossings, edge length, etc) of the corresponding draw- 
ings. The Relative-Coordinates scenario was a winner over No-Change 
under any aesthetic measure considered in our experiments. Moreover, 
the practical behavior of the two scenaria was considerably better than 
the established theoretical bounds, in most cases. 

1 Introduct ion and Prel iminaries  

Graph drawing addresses the problem of automatical ly  generating geometric 
representations of abstract  graphs or networks. For a survey of graph drawing 
algorithms and other related results see the annotated bibliography of Di Bat- 
tista, Eades, Tamassia  and Tollis [4]. An orthogonal drawing is a drawing in which 
vertices are represented by points on integer coordinates and edges are repre- 
sented by polygonal chains consisting of horizontal and vertical line segments. 
Various algorithms have been introduced to produce orthogonal drawings of pla- 
nar [2, 6, 10, 20, 22] or general [1, 2, 16, 19] graphs of max imum degree four, 
and max imum degree three [10, 16, 17]. All these algorithms run in linear time, 
except for the algorithm in [20]. For drawings of general graphs, the required 
area can be as little as 0.7@ 2 [16], the total  number of bends is no more than 
2n + 2 [2, 16], and at most  two bends can be on the same edge [2, 16]. 

* Research supported in part by NIST, Advanced Technology Program grant number 
70NANB5Hl162. 
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Upper and lower area bounds have been proved for orthogonal drawings of 
general graphs. Leighton [11] presented an infinite family of planar graphs which 
require area /2(nlogn). Independently, Leiserson [12] and Valiant [25] showed 
that every planar graph of degree three or four has an orthogonal drawing with 
area O(n log 2 n). Valiant [25] showed that the orthogonal drawing of a general 
(non-planar) graph of degree three or four requires area no more than 9n 2, and 
described families of graphs that require area/2(n2). 

Many graph drawing algorithms have been implemented, and a number of 
results on their practical behavior have appeared in literature. Himsolt [8] pre- 
sented his experimental findings when he compared the performance of twelve 
graph drawing algorithms (most of which were specialized for trees, graph gram- 
mars, Petri nets and planar graphs) in the GraphEd environment [9]. An exten- 
sive experimental work appeared in [5] where four general-purpose orthogonal 
graph drawing algorithms [2, 16, 21, 22] were implemented and compared with 
respect to their performance on various aesthetic properties including crossings, 
bends~ area, running time etc. Their results have a great statistical value mainly 
because they are based on a very large data set including 11,582 graphs.The 
sizes of these graphs range from 10 to 100 vertices and are taken from "real-life" 
software engineering and database applications. 

In most graph drawing algorithms a graph is given as an input and a drawing 
of this graph is produced. If an insertion (or deletion) is performed on the graph, 
then we have a "new" graph. Running the drawing algorithm again will result in 
a new drawing, which might be vastly different from the previous one. Obviously 
this is a waste of human resources to continually re-analyze the entire drawing 
and also of computational resources to re-compute the entire layout after each 
modification. Therefore it is important to efficiently produce a series of drawings 
which evolve with the structure while preserving the user's mental map [15]. 
The first systematic approach to dynamic graph drawing appeared in [3]: the 
target was to perform queries and updates on an implicit representation of the 
drawing, while maintaining its planarity. The insertion of a single edge however, 
could cause a planar graph to drastically change embedding, or even become non 
planar. An incremental approach to orthogonal graph drawing was presented in 
[14], where the focus was on routing edges efficiently without disturbing existing 
vertices or edges. 

In [18] we discussed various features of interactive graph drawing systems, 
we introduced four scenaria for interactive graph drawing and presented a theo- 
retical analysis of the performance of the No-Change scenario. All four scenaria 
were based on the assumption that. the underlying drawing was orthogonal and 
the maximum degree of any vertex was four at the end of an update operation. 
The basic property of the No-Change scenario is that an update operation (i.e., a 
vertex insertion) does not alter the coordinates of any vertex or bend within the 
current drawing, since any vertex insertion or edge routing takes place around 
it. The analysis of the No-Change scenario of [18] is based on the assumption 
that the drawn graph is connected at all times. 

T h e o r e m  1. [18] The "No-Change scenario"produces drawings with the follow- 
ing properties: 
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1. every insertion operation takes constant time, 
2. every edge has at most three bends, 
3. the total number of bends at any time t is at most 2.66n(t) + 2, where n(t) 

is the number of vertices of the drawing at time t, 
4. the area of the drawing at any time t is no more than (n(t) -t- n4(t)) 2 _< 

1.77n(t) 2, where n4(t) is the number of vertices of local degree four which 
have been inserted up to time t, and 

5. the upper bounds for both area and bends are tight. 

In this paper, we first analyze the performance of the Relative-Coordinates 
scenario by using linear programming to prove upper bounds on the area and the 
number of bends. More specifically, we show that  an interactive graph drawing 
system under the Relative-Coordinates scenario builds a drawing that  has no 
more than 3n(t) - 1 bends, while requiring at most 2.25n(t) 2 area. Moreover, no 
edge has more than 3 bends at any t ime during the drawing process. Then we 
compare the performance of the No-Change and Relative-Coordinates scenaria 
on a set of 11,491 "real-life" maximum degree four graphs, which were taken 
from the database of graphs used in [5]. Our experiments compare the quality 
of the drawings produced by the two scenaria, based on the following aesthetic 
measures: area, number of bends, number of crossings, aspect ratio, average edge 
length and maximum edge length. We also include results on the average number 
of new rows, columns and bends that  are introduced in any drawing for different 
types of vertex insertions. Our experiments revealed: 

- The practical behavior of the two scenaria is much better than their estab- 
lished theoretical bounds, in most cases. 

- The Relative-Coordinates scenario exhibits better performance than No- 
Change under any aesthetic measure considered. 

2 A n a l y s i s  o f  t h e  R e l a t i v e - C o o r d i n a t e s  S c e n a r i o  

In this scenario, every t ime a new vertex is about to be inserted into the current 
drawing, the system makes a decision about the coordinates of the vertex and the 
routing of its incident edges. New rows and columns may be inserted anywhere 
in the current drawing in order for this routing to be feasible. The coordinates of 
the new vertex (say v) as well as the locations of the new rows and/or  columns 
will depend on the following: 

- v's degree (at the time of insertion). 
- How many of v's adjacent vertices allow the insertion of a new incident edge 

towards the same direction (i.e., up, down, right, or left of the vertex). 
- How many of v's adjacent vertices allow a new incident edge towards opposite 

directions. 
- Whether or not the required routing of edges can be clone utilizing segments 

of existing rows or columns that  are free (not covered by an edge). 
- Our optimization criteria. 
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When we use the Relative-Coordinates scenario in an interactive system, we 
can start  from an existing drawing of a graph or from scratch, tha t  is from an 
empty  graph. In either case, we assume that  the insertion of any vertex/edge 
under this scenario will not increase the number of connected components of the 
current graph. The only exception to this is when a single vertex is inserted into 
a currently empty  graph. Any other vertex inserted during an update  step will 
be connected to at least one other vertex of the current drawing. Let us assume 
that  v is the next vertex to be inserted in the current graph during an update  
step. The number of vertices in the current graph tha t  v is connected to, is called 
the local degree of v, and is denoted by local_degree(v). 

From the discussion above it follows that  we only consider the cases where 
an inserted vertex has local degree one, two, three or four, except for the first 
vertex inserted in an empty  graph. If the user wishes to insert a new vertex that  
has local degree zero, then this vertex is placed in a t empora ry  location and it 
will be inserted automatical ly  in the future, when some newer vertices increase 
its (local) degree. Assume that  vertex v is about  to be inserted into the current 
graph. For each one of the vertices of the current drawing that  is adjacent to v, 
the system checks the possible directions around these vertices that  new edges 
may  be inserted or routed. The target is to minimize the number of new rows 
or columns that  have to open up in the current drawing, as well as the number  
of bends that  appear along the routed edges. 

There are many  different cases because there are many  possible combinations. 
In the example shown in Fig. l a  vertices ul and u2 have a free edge (i.e., grid 
edge not covered by a graph edge) up and to the right respectively. In this case 
no new rows/columns are needed for the insertion of vertex v and no new bends 
are introduced. On the other hand however, in the example shown in Fig. lb  
all four vertices ul,  u2, u3 and u4 have pairwise opposite direction free edges. 
The insertion of new vertex v requires the insertion of three new rows and three 
new columns in the current drawing. Additionally, eight bends are introduced. 
Vertices ul ,  u2, u3 and u4 have general positions in Fig. lb,  and we can see that  
edge (v, u4) has four bends. We can avoid the 4-bend edge, if we insert vertex v 
in the way shown in Fig. lc. The total  number of new rows, columns and bends 
is still the same, but the m ax i m um  number of bends per edge is now three. For 
a more even distribution of the bends of the edges adjacent to vertex v, we may  
choose to insert it in the way shown in Fig. ld, where every edge has exactly 
two bends (three new rows and three new columns are still required). Notice, 
though, tha t  the approach described in Fig. ld  for inserting vertex v, is not 
always possible (e.g.~ we cannot have this kind of insertion if vertices Ul, u2, u3 
and u4 are in the same row or column). At this point it is impor tant  to note tha t  
any one of the solutions presented in Fig. 1 (b, c and d) are acceptable: all add 
the same number of rows, columns and total number  of bends. The characteristic 
of placing a max imu m  of three bends per edge is attainable, but ul t imately is up 
to the implementor.  The total number of bends added per insertion will always 
remain the same under this scenario. 
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Fig.  1. Insertion of v: (a) no new row or column is required, (b),(c) and (d) three new 
rows and three new columns are required, with a maximum of 4 bends per edge in (b), 
a bends per edge in (c), and 2 bends per edge in (d). 

Let v be the next vertex to be inserted. There  are m a n y  cases, if one is 
interested in an exhaustive analysis. However, it is relatively easy to come up 
with all the cases for each insertion. Here, we distinguish the following main  
cases for vertex v: 

1. v has local degree one. If  u is the vertex of the current drawing tha t  is 
adjacent to v, we draw an edge between u and v. Edge (u, v) uses a direction 
(up, right, bo t tom,  or left) tha t  is not  taken by some other  edge incident to 
u. This is depicted in Fig. 2a, and this insertion requires at most  either a 
new row or a new column. No new bend is inserted. 

2. v has local degree two. In the best case, the insertion requires no new rows, 
columns or bends as shown in Fig. la.  In the worst case, though,  two new 
rows and one new column, or one new row and two new columns (see Fig. 
2b), and three new bends might  be inserted. 

3. v has local degree three. In the worst case, the insertion requires a tota l  
of  four new rows and columns, and five new bends. In Fig. 2c we show an 
example of  such an insertion tha t  requires one new row, three new columns 
and five new bends. 

4. v has local degree four. The  worst case requires a tota l  of six new rows and 
columns, and eight new bends. We have already discussed an example, which 
is depicted in Fig. lc. In Fig. 2d we show another  case, where two new rows, 
four new columns and eight new bends are introduced.  Note tha t  no more  
than  four new rows or columns m a y  be introduced when v has local degree 
four. 

As discussed in the previous section, single edge insertions can be handled 
using techniques f rom global rout ing [13] or the technique of [14]. The easiest way 
to handle deletions is to delete vert ices/edges f rom the da ta  s tructures wi thout  
changing the coordinates of the rest of  the drawing. Occasionally, or on demand,  
the sys tem can perform a l inear-t ime compact ion  similar to the one described 
in [22], and refresh the screen. 

In the rest of  this section we assume that ,  when we use the interactive 
graph  drawing scheme under  the Relat ive-Coordinates  scenario, we s tar t  f rom 
scratch. According to the discussion in the beginning of  this section, the Relative- 



376 

(a) 

(c) (d) 

Fig. 2. Inserting v when its local degree is (a) one, (b) two, (e) three, and (d) four. 

Coordinates scenario guarantees that  the graph that  is being built is always con- 
nected after any vertex insertion. Let nl(t) ,  n2(t), n3(t) and n4(t) denote the 
number of vertices of local degree one, two, three and four, respectively, that  
have been inserted up to time t. 

T h e o r e m  2. An interactive graph drawing system under the ~Relative Coordi- 
nates scenario" produces drawings with the following properties: 

1. after each vertex insertion, the coordinates of any vertex or bend of the cur- 
rent drawing may shift by a total amount of at most 5 units along the x and 
y axes, 

2. there are at most 3 bends along any edge of the drawing, 
3. the total number of bends is at most 3n(t) - 1, and 
4- the area of the drawing is at most 2.25n(t) 2, 

where n(t) is the number of vertices that have been inserted up to time t. 

S k e t c h  o f  P r o o f .  The first property follows from the definition of the Relative- 
Coordinates scenario and from the fact that  at most 6 new rows and new columns 
might open anywhere in the current drawing (see Figs. lb, le, ld, 2d) as a result 
of a vertex insertion. Figures 1 and 2 cover the worst cases in terms of rows, 
columns and bends required for a single vertex insertion, and for all possible 
local degrees of the inserted vertex. From these figures we observe the following: 
First there can be at most 3 bends along any edge of the drawing (see Fig. lc). 
Second, the bends along an edge are introduced at the time of insertion of the 
vertex that  is incident to that  edge. 

From Figs. 1 and 2 and from the discussion above, it follows that  at most 3 
new bends are introduced when a vertex of local degree 2 is inserted, at most 5 
new bends when a vertex of local degree 3 is inserted, and at most 8 new bends 
when a vertex of local degree 4 is inserted. No new bend is introduced when a 
vertex of local degree 1 is inserted. In other words, if B(t) is the total number 
of bends at t ime t, it holds that: 

B(t) < 3n2(t) + 5,,3(t) + 8n4(t) 

We want to compute the maximum value that  B(t)  can take, in order to estab- 
lish an upper bound on the number of bends of the drawing at t ime t. This is 
equivalent to solving the following linear program: 
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maximize : 3n2 + 5n3 + 8n4 

under the following constraints: 

n l > l  
nl -9n2 -9 n3 -g n4 = n- -  1 
nl + 2n2 + 3n3-9 4n4 < 2n 

The first constraint is an inequality on the number of local degree one insertions, 
the second is an equation on the number of vertices, and the third is an inequality 
on the number of edges of the graph, after n vertices have been inserted. Recall 
that  the first vertex to be inserted has local degree 0, since it does not have any 
edges yet. 

Solving this linear program with all three constraints leads to a non-integral 
solution. If  we ignore the first constraint, the new linear program has an integral 
solution and the objective function is maximized (to 3n + 2) when nl = n3 = 0, 
n2 = n - 2, and n4 = 1. This solution implies that  maximizing the number  of 
bends depends solely on the number of vertices of local degree two and four. If we 
take into account the fact that  the first two vertices inserted in an empty  graph 
have local degrees 0 and 1 respectively, what we really have is that  n2 = n - 3 
and n4 = 1. This is the same solution as the one obtained from the first linear 
program after relaxing the solution into an integral one. We can also see that  
any other combination of values for n2 and n4 when n2 + n4 = n - 2 gives more 
than 2 n -  1 edges (recall that  one edge is introduced by the second vertex, which 
has local degree 1). From the above analysis, it follows that  the upper bound on 
the number of bends is 3n - 1. 

Regarding the area of the drawing at t ime t, we can infer from Figs. 1 and 2 
that:  

- when a vertex with local degree one is inserted, either a new row or a new 
column is required, 

- when a vertex with local degree two is inserted, either two new rows and one 
new column are required, or one new row and two new columns are required, 

- when a vertex with local degree three is inserted, we need a total  of at most  
four new rows and new columns, and 

- when a vertex with local degree four is inserted, we need a total  of at most  
six new rows and new columns. 

Let h(t) and w(t) denote the height and the width, respectively, of the drawing 
at t ime t. Then it holds that:  

h(t) -9 w(t) <_ nl(t) -9 3n2(t) -9 4n3(t) + 6n4(t) < 2n(t) + n2(t) -9 n3(t) + 2n4(t) 

since nl( t )  -9 2n2(t) -9 3n3(t) 4-4n4(t) < 2n(t). We want to maximize h(t) -9 w(t). 
If we just  mult iply both sides of the last inequality (i.e., the one on the edges 
of the graph) by 3 y, we obtain h(t) + w(t) < 3n(t). However, this solution does 
not give us the values of the variables (i.e., nl(t), n2(t), etc), for which this 
upper bound is achieved. For this reason, we formulate this problem as a linear 
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program, where the expression to be maximized is: 2n + n2 + n3 + 2n4, and the 
constraints are exactly the same as the ones in the above linear program. 

Solving this new linear program, we have that h(t) + w(t) is maximized when 
nl = n3 = 0, n2 = n - 2 ,  and n4 = 1, exactly as in the linear program we studied 
above, for the number of bends. According to the analysis we did for that  linear 
program, these results really mean that  nl = 1 (the second vertex to be inserted), 
n2 = n - 3, and n4 = 1. The maximum value of expression 2n q- n2 + n3 q- 2n4 
that  we wanted to maximize is now 3n. This means that  h(t) + w(t) < 3n(t). It 

also holds that  h(t) x w(t) is maximized when h(t) = w(t) = h(t)+~(t) < 1.ha(t). 
2 

In this case, the area of the drawing can be at most 2.25n(t) 2. [] 
Let us have a look at the expression giving the number of bends that  we max- 

imized in the linear program of the proof of Theorem 2. One might be tempted 
to believe that  this expression is maximized when n4(t) is maximized (and this 

happens when = if the graph is always connected). The result of the 
linear program was quite revealing. We discovered that  this expression is max- 
imized only under the following insertion sequence: insert the first two vertices 
with local degrees 0 and 1 respectively, followed by n - 3 vertices of local de- 
gree two, and conclude with the insertion of exactly one vertex of local degree 
four. In order to refresh the drawing after each update, the coordinates of every 
ver tex/bend affected must be recalculated. Hence, it would take linear time. 

3 E x p e r i m e n t a l  C o m p a r i s o n  o f  t h e  T w o  I n t e r a c t i v e  

S c e n a r i a  

3.1 I m p l e m e n t a t i o n  a n d  E x p e r i m e n t s  

Both the No-Change and Relative-Coordinates algorithms have been imple- 
mented in C + +  (GNU C + +  version 2.6.0) on a SPARC 5 running SUN OS 
Release 4.1.3. Our implementations are running on top of Tom Sawyer Software's 
Graph Layout Toolkit version 2.2 [23, 24]. We converted 11,491 of the graphs 
used in the experimental analysis of [5] for our set of experiments. This database 
of graphs is available by anonymous ftp from i n f o k i t ,  d i s .  un i romal ,  i t  : pub l i c .  
A small number of edges and vertices were discarded in order to make all vertices 
maximum degree four. For each graph~ arbitrarily selected vertices and their in- 
cident edges were inserted one at a time into an initially empty structure. The 
graph was connected at all times. The following standard measures of quality 
were determined for each drawing: 

- Area: The area of the smallest box which can bound the drawing. 
- Bends: The total number of bends. 
- Crossings: The total number of crossings. 
- Aspect Ratio: The width divided by the height of the drawing. 
- Average Edge Length: The sum of all edge lengths divided by the number 

of edges in the drawing. 
- Maximum Edge Length: The length of the single longest edge in the drawing. 
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In addition to these standard measures, we also count the number of rows, 
columns and bends added with each type of insertion (local degree one, two, 
three or four). These factors show behavior specific to interactive orthogonal 
drawing algorithms. All of these measures are plotted against the final number 
of vertices in the graph. 

3.2 Pe r fo rmance  Analysis  Under  Various Qual i ty  Measures  

Our experimental results show that both No-Change and Relative-Coordinates 
scenaria behave better than their theoretical upper bounds. The most impor- 
tant aspect of our experimental work is the observation that the performance 
of the Relative-Coordinates approach for graph drawing is considerably bet- 
ter than that of No-Change with respect to the aesthetic measures we consid- 
ered. Although both algorithms respected their theoretical bounds, Relative- 
Coordinates' average case behavior was consistently better than that of No- 
Change. In Fig. 3 we show the drawings of one graph from our experimental 
set with the same random order of vertex insertion, when drawn under the two 
different scenaria. As is evidenced in the pair of drawings, each scenario has its 
own distinctive style. The No-Change scenario placed the first two vertices at the 
top left corner of the drawing and grew in a south-easterly direction. Relative- 
Coordinates maintained the general shape of the drawing, but inserted a small 
number of rows and columns in order to facilitate the placement of the new 
vertex and the routing of its incident edges. Some of our experimental findings 
are summarized in Fig. 4. More specifically, we have: 
Area: The area of graphs laid out by Relative-Coordinates is consistently smaller 
than that of No-Change. The theoretical upper bound of the No-Change scenario 

•2 
is 1.77n 2 while the behavior is closer to T" Likewise, the theoretical upper bound 
of the Relative-Coordinates scenario is 2.25n 2 and the experimental behavior is 

n~ closer to -4-" 
Bends:  Relative-Coordinates produces drawings with fewer bends than No- 
Change. This happens because, under Relative-Coordinates, newly inserted ver- 
tices are expected to be placed closer to their adjacent vertices. In addition, the 
first invariant of No-Change forces us to place bends in a significant percentage 
of all degree one insertions. In other words, if a low or no bend edge exists, 
Relative-Coordinates will use it, but No-Change may not in order to comply 
with its own invariants. The theoretical upper bound for No-Change is 2.66n + 2 
while it behaves more like 9" Likewise the theoretical upper bound for Relative- 

n Coordinates is 3 n -  1 and it behaves closer to 7" 
Crossings: Again Relative-Coordinates performs significantly better than No- 
Change and this behavior is expected. Since the No-Change scenario allows no 
coordinate of any vertex or bend to change, the scenario must comply with its 
own invariants, so new edges are often forced to cross many old edges to reach 
their incident vertices. Contrariwise, Relative-Coordinates allows some change 
(in the form of row and column additions anywhere within the drawing) and 
places vertices closer to their adjacent vertices. 
Aspect  Ratio:  As can be seen in the plot, No-Change and Relative-Coordinates 
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behave in a very similar fashion. Both algorithms produce rather squarish draw- 
ings. It is important  to note that  certain modifications within the implementation 
will allow different behaviors: either algorithm could produce more rectangular 
drawings to comply with some requirement. 
A v e r a g e  E d g e  L e n g t h :  The Average Edge Length and Maximum Edge Length 
plots show a very important  difference between the two scenaria. By the very 
nature of No-Change, newer vertices are forced to be far from their adjacent 
vertices if they were inserted at a much earlier point in the lifetime of the draw- 
ing. This factor, of course, causes the average edge length to be high. Relative- 
Coordinates adds a reasonable number of rows and columns as necessary to allow 
"good" placement of new vertices close to their adjacent vertices and edges with 
few bends. 
M a x i m u m  E d g e  L e n g t h :  The No-Change Algorithm produces long edges 
when a new vertex is connected to another vertex which was placed at, or near, 
the beginning of the lifetime of the graph. This is also an expected result. 

r ~  

[ 
I I 

T 

1 

) 

Fig. 3. Drawings of the same 29-vertex graph: No-Change on the left, Rela- 
tive-Coordinates on the right. 

At this point it is important  to notice that  Relative-Coordinates performs 
well even as a non-interactive algorithm. Although it is unfair to directly compare 
our results with those in [5] because we limit the test graphs to degree four, it 
is interesting that  the average area of a Relative-Coordinates drawing is only 
slightly larger than the Giotto drawings. The same phenomenon is observed with 
crossings and average edge length. For these experiments we used an arbitrary 
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insertion sequence. If we find a "good" insertion sequence then we should obtain 
even better  results. An additional refinement phase should produce data  curves 
(representing area, bends, crossings, average and max imum edge lengths) tha t  
are very similar to those of Giotto. 

3.3 P e r f o r m a n c e  A f t e r  a S ing le  U p d a t e  S t e p  

Our second set of experimental  data  is pertinent to the interactive nature of the 
two scenaria, Our data  show tha t  Relative-Coordinates consistently outperforms 
No-Change in any measure considered. The plots of our results are shown in Fig. 
5 and Fig. 6. 
R o w s  a n d  C o l u m n s  A d d e d  p e r  D e g r e e  O n e  I n s e r t i o n :  No-Change adds at 
most  one new row and one new column per degree one insertion while Relative- 
Coordinates adds either one new row or one new column. Therefore we ex- 
pected the average number  of rows and columns for degree one insertions to 
be slightly higher for No-Change. The collected data  reflects this characteris- 
tic. The average number  of rows and columns added per degree one insertion is 
0.551 + 0.605 = 1.156 for No-Change and 0.515 + 0.485 = 1.000 for Relative- 
Coordinates. 
B e n d s  A d d e d  p e r  D e g r e e  O n e  I n s e r t i o n :  No-Change adds a bend to the 
edge if it is placed to the North or West of the old vertex while Relative- 
Coordinates never adds a bend during a degree one insertion. The average num- 
ber of bends for No-Change is 0.118 and 0 for Relative-Coordinates. 
R o w s  a n d  C o l u m n s  A d d e d  p e r  D e g r e e  T w o  I n s e r t i o n :  No-Change adds 
at most one new row and one new column per degree two insertion. On average, 
No-Change adds 0.926 + 0.953 = 1.879 rows and columns per degree two inser- 
tion. Notice that  the sum is very close to the worst case. Relative-Coordinates 
adds a total  of three new rows and columns in the worst case and the average is 

a much better  0.377 + 0.435 = 0.812. 
B e n d s  A d d e d  p e r  D e g r e e  T w o  I n s e r t i o n :  In the worst case, No-Change 
adds four bends while Relative-Coordinates adds three. The average number of 
bends inserted is 2.050 for No-Change and 0.812 for Relative-Coordinates.  This 
number is so low because Relative-Coordinates makes good use of any free rows, 
columns and open degrees of freedom. 
R o w s  a n d  C o l u m n s  A d d e d  p e r  D e g r e e  T h r e e  I n s e r t i o n :  Theoretically 
at most two new rows and two new columns are added for a No-Change de- 
gree three insertion, and at most  a totM of four new rows and columns are 
needed for Relative-Coordinates. In our experiments we found that  an aver- 
age of 1.102 + 1.135 = 2.237 rows and columns are added in the No-Change 
implementat ion and only 0.707 + 0.740 = 1.447 rows and columns in Relative- 

Coordinates. 
B e n d s  A d d e d  p e r  D e g r e e  T h r e e  I n s e r t i o n :  In the worst case, No-Change 
adds five bends and the average behavior is 3.205. Relative-Coordinates takes 
bet ter  advantage of available rows and columns and has an average of 2.447. 
R o w s  a n d  C o l u m n s  A d d e d  p e r  D e g r e e  F o u r  I n s e r t i o n :  Degree four inser- 
tions are handled very similarly by both No-Change and Relative-Coordinates. 
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At most, a total of six new rows and columns are added by each algorithm. Ac- 
cording to the data an average of 1.660+1.730 = 3.390 rows and columns is added 
by the No-Change algorithm. Relative-Coordinates adds 1.343 + 1.373 = 2.716. 
B e n d s  A d d e d  p e r  D e g r e e  F o u r  I n s e r t i o n :  Both algorithms add eight bends 
in the worst case, and No-Change has been experimentally found to produce an 
average of 5.022 bends per degree four insertion while Relative-Coordinates in- 
troduces an average of 3.987 bends. 
Remember in Sect. 2 we proved that  the area and number of bends within a 
Relative-Coordinates drawing is contingent on the number of degree two inser- 
tions. Therefore it is quite interesting and important  to note that  the experi- 
mental behavior of degree two insertions is so much better than the worst case. 
This explains why the behavior (with respect to area and bends) of Relative- 
Coordinates is so much better. 

4 C o n c l u s i o n s  a n d  O p e n  P r o b l e m s  

The Relative-Coordinates scenario maintains the general shape of the current 
drawing after an update (vertex/edge insertion/deletion) takes place, and does 
not affect the number of bends of the current drawing even if the update opera- 
tion is a vertex insertion. We used linear programming in order to establish an 
upper bound for the performance of this scenario. A comparison of the practical 
behavior of the No-Change and Relative-Coordinates scenaria was presented. 
The two scenaria were tried on a very large set of "real-life" graphs, and results 
were reported with respect to their performance under various aesthetic mea- 
sures. The Relative-Coordinates scenario was consistently better, while both 
scenaria respected their theoretical bounds. 

It is an interesting open problem to develop a theory that  enables the efficient 
insertion, movement or deletion of more than one vertex simultaneously (that is 
a block of vertices) in the current drawing. Also, techniques for interactive graph 
drawing in other standards (straight line, polyline, etc.) are needed, and should 
be explored. 
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