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TREE CONTRACTIONS AND EVOLUTIONARY TREES

MING-YANG KAO∗

Abstract. An evolutionary tree is a rooted tree where each internal vertex has at least two
children and where the leaves are labeled with distinct symbols representing species. Evolutionary
trees are useful for modeling the evolutionary history of species. An agreement subtree of two
evolutionary trees is an evolutionary tree which is also a topological subtree of the two given trees.
We give an algorithm to determine the largest possible number of leaves in any agreement subtree
of two trees T1 and T2 with n leaves each. If the maximum degree d of these trees is bounded by a
constant, the time complexity is O(n log2 n) and is within a logn factor of optimal. For general d,

this algorithm runs in O(nd2 log d log2 n) time or alternatively in O(nd
√

d log3 n) time.
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1. Introduction. An evolutionary tree is a rooted tree where each internal ver-
tex has at least two children and where the leaves are labeled with distinct symbols
representing species. Evolutionary trees are useful for modeling the evolutionary his-
tory of species. Many mathematical biologists and computer scientists have been
investigating how to construct and compare evolutionary trees [2, 5, 7, 10, 11, 12,
16, 17, 18, 20, 24, 26, 27, 28, 33, 34, 35, 36, 37, 43, 44, 46, 48, 49]. An agreement

subtree of two evolutionary trees is an evolutionary tree which is also a topological
subtree of the two given trees. A maximum agreement subtree is one with the largest
possible number of leaves. Different theories about the evolutionary history of the
same species often result in different evolutionary trees. A fundamental problem in
computational biology is to determine how much two theories have in common. To
a certain extent, this problem can be answered by computing a maximum agreement
subtree of two given evolutionary trees [19].

Let T1 and T2 be two evolutionary trees with n leaves each. Let d be the maxi-
mum degree of these trees. Previously, Kubicka, Kubicki and McMorris [39] gave an
algorithm that can compute the number of leaves in a maximum agreement subtree
of T1 and T2 in O(n( 1

2
+ǫ) logn) time for d = 2. Steel and Warnow [47] gave the first

polynomial-time algorithm. Their algorithm runs in O(min{d!n2, d2.5n2 log n}) time if
d is bounded by a constant and in O(n4.5 logn) time for general trees. Farach and Tho-
rup [14] later reduced the time complexity of this algorithm to O(n2) for general trees.
More recently, they gave an algorithm [15] that runs in O(n1.5 log n) time for general

trees. If d is bounded by a constant, this algorithm runs in O(nc
√

logn + n
√
d logn)

time for some constant c > 1.
This paper presents an algorithm for computing a maximum agreement subtree

in O(n log2 n) time for d bounded by a constant. Since there is a lower bound of
Ω(n logn), our algorithm is within a logn factor of optimal. For general d, this
algorithm runs in O(nd2 log d log2 n) time or alternatively in O(nd

√
d log3 n) time.

This algorithm employs new tree contraction techniques [1, 22, 38, 40, 41]. With tree
contraction, we can immediately obtain an O(n log5 n)-time algorithm for d bounded
by a constant. Reducing the time bound to O(n log2 n) requires additional techniques.
We develop new results that are useful for bounding the time complexity of tree
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contraction algorithms. As in [14, 15, 47], we also explore the dynamic programming
structure of the problem. We obtain some highly regular structural properties and
combine these properties with the tree contraction techniques to reduce the time
bound by a factor of log2 n. To remove the last log n factor, we incorporate some
techniques that can compute maxima of multiple sets of sequences at multiple points,
where the input sequences are in a compressed format.

We present tree contraction techniques in §2 and outline our algorithms in §3.
The maximum agreement subtree problem is solved in §4 and §5 with a discussion of
condensed sequence techniques in §5.1. Section §6 concludes this paper with an open
problem.

2. New tree contraction techniques. Throughout this paper, all trees are
rooted ones, and every nonempty tree path is a vertex-simple one from a vertex to a
descendant. For a tree T and a vertex u, let T u denote the subtree of T formed by u

and all its descendants in T .
A key idea of our dynamic programming approach is to partition T1 and T2 into

well-structured tree paths. We recursively solve our problem for T x
1 and T

y
2 for all

heads x and y of the tree paths in the partitions of T1 and T2, respectively. The
partitioning is based on new tree contraction techniques developed in this section.

A tree is homeomorphic if every internal vertex of that tree has at least two
children. Note that the size of a homeomorphic tree is less than twice its number of
leaves. Let S be a tree that may or may not be homeomorphic. A chain of S is a
tree path in S such that every vertex of the given path has at most one child in S.
A tube of S is a maximal chain of S. A root path of a tree is a tree path whose head
is the root of that tree; similarly, a leaf path is one ending at a leaf. A leaf tube of

S is a tube that is also a leaf path. Let L(S) denote the set of leaf tubes in S. Let
R(S) = S−L(S), i.e., the subtree of S obtained by deleting from S all its leaf tubes.
The operation R is called the rake operation. See Figures 1 and 2 for examples of
rakes and leaf tubes.

Our dynamic programming approach iteratively rakes T1 and T2 until they become
empty. The tubes obtained in the process form the desired partitions of T1 and T2.
Our rake-based algorithms focus on certain sets of tubes described here. A tube system

of a tree T is a set of nonempty tree paths P1, · · · , Pm in T such that (1) the paths
Pi contain no leaves of T and (2) T h1, · · · , T hm are pairwise disjoint, where hi is the
head of Pi. Condition (1) is required here because our rake-based algorithms process
leaves and non-leaf vertices differently. Condition (2) holds if and only if for all i and
j, hi is not an ancestor or descendant of hj . We can iteratively rake T to obtain tube
systems. The set of tubes obtained by the first rake, i.e., L(T ), is not a tube system
of T because L(T ) simply consists of the leaves of T and thus violates Condition
(1). Every further rake produces a tube system of T until T is raked to emtpy. Our
rake-based algorithms only use these systems although there may be others.

We next develop a theorem to bound the time complexities of rake-based algo-
rithms in this paper. For a tree path P in a tree T ,

• K(P, T ) denotes the set of children of P ’s vertices in T , excluding P ’s vertices;
• t(P ) denotes the number of vertices in P ;
• b(P, T ) denotes the number of leaves in T h where h is the head of P .

(The symbol K stands for the word kids, t for top, and b for bottom.)
Given T , we recursively define a mapping ΦT from the subtrees S of T to reals.
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After the first rake, the above tree becomes the following tree.
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After the second rake, the above tree becomes the following tree.

③x4

③x7

③x10

✟✟✟✟✟✟

✟✟✟✟✟✟

After the third rake, the above tree becomes empty.

Fig. 1. An example of iterative applications of rakes.



tree contractions and evolutionary trees 4
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The first rake deletes the above leaf tubes.

③x2 ③x6

The second rake deletes the above leaf tubes.

③x4

③x7

③x10

✟✟✟✟✟✟

✟✟✟✟✟✟

The third rake deletes the above leaf tube.

Fig. 2. The leaf tubes deleted by the rakes in Figure 1.
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If S is an empty tree, then ΦT (S) = 0. Otherwise,

ΦT (S) = ΦT (R(S)) +
∑

P∈L(S)

b(P, T ) · log(1 + t(P )).

(Note. All logarithmic functions log in this paper are in base 2.)
Theorem 2.1. For all positive integers n and all n-leaf homeomorphic trees T ,

ΦT (T ) ≤ n(1 + logn).
Proof. For any given n, ΦT (T ) is maximized when T is a binary tree formed by

attaching n leaves to a path of n− 1 vertices. The proof is by induction.
Base Case. For n = 1, the theorem trivially holds.
Now assume n ≥ 2.
Induction Hypothesis. For every positive integer n′ < n, the theorem holds.
Induction Step. Let r be the smallest integer such that T is empty after r rakes.

Then, at the end of the (r− 1)-th rake, T is a path P = x1, · · · , xp. Let T1, · · · , Ts be
the subtrees of T rooted at vertices in K(P, T ). Let ni be the number of leaves in Ti.
Note that

ΦT (T ) = n log(p+ 1) +

s
∑

i=1

ΦTi
(Ti).

Since 1 ≤ ni < n and Ti is homeomorphic, by the induction hypothesis,

ΦT (T ) ≤ n log(p+ 1) +

s
∑

i=1

ni(1 + log ni).

Since
∑s

i=1 ni = n,

ΦT (T ) ≤ n+ n log(p+ 1) +

s
∑

i=1

ni log ni.(1)

Because T is homeomorphic, each xi has at least one child in K(P, T ). Since n ≥ 2,
r ≥ 2. Then, xp cannot be a leaf in T and thus has at least two children in K(P, T ).
Consequently, s ≥ p+ 1. Next, note that for all m1,m2 > 0,

m1 logm1 +m2 logm2 ≤ (m1 +m2) log(m1 +m2).

With this inequality and the fact that s ≥ p + 1, we can combine the terms in the
right-hand side summation of Inequality 1 to obtain the following inequality.

ΦT (T ) ≤ n+ n log(p+ 1) +

p+1
∑

i=1

n′
i log n

′
i,(2)

where
∑p+1

i=1 n′
i = n and n′

i ≥ 1. For any given p, the summation in Inequality 2 is
maximized when n′

1 = n− p and n′
2 = · · · = n′

p+1 = 1. Therefore,

ΦT (T ) ≤ n+ n log(p+ 1) + (n− p) log(n− p).(3)

The right-hand side of Inequality 3 is maximized when p = n − 1. This gives the
desired bound and finishes the induction proof.
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3. Comparing evolutionary trees. Formally, an evolutionary tree is a home-
omorphic tree whose leaves are labeled by distinct labels. The label set of an evolu-

tionary tree is the set of all the leaf labels of that tree.
The homeomorphic version T ′ of a tree T is the homeomorphic tree constructed

from T as follows. Let W = {w | w is a leaf of T or is the lowest common ancestor of
two leaves}. T ′ is the tree over W that preserves the ancestor-descendant relationship
of T . Let T1 and T2 be two evolutionary trees with label sets L1 and L2, respectively.

• For a subset L′
1 of L1, T1||L′

1 denotes the homeomorphic version of the tree
constructed by deleting from T1 all the leaves with labels outside L′

1.
• Let T1||T2 = T1||(L1∩L2).
• For a tree path P of T1, P ||T2 denotes the tree path in T1||T2 formed by the
vertices of P that remain in T1||T2.
• For a set P of tree paths P1, · · · , Pm of T1, P||T2 denotes the set of all Pi||T2.

Formally, if L′ is a maximum cardinality subset of L1∩L2 such that there exists
a label-preserving tree isomorphism between T1||L′ and T2||L′, then T1||L′ and T2||L′

are called maximum agreement subtrees of T1 and T2.
• rr(T1, T2) denotes the number of leaves in a maximum agreement subtree of
T1 and T2.
• ra(T1, T2) is the mapping from each vertex v ∈ T2||T1 to rr(T1, (T2||T1)

v),
i.e., ra(T1, T2)(v) = rr(T1, (T2||T1)

v).
For a tree path Q of T2, if Q is nonempty, let H(Q, T2) be the set of all vertices in
Q and those in K(Q, T2). If Q is empty, let H(Q, T2) consist of the root of T2, and
thus, if both T2 and Q are empty, H(Q, T2) = ∅.

• For a set Q of tree paths Q1, · · · , Qm of T2, let rp(T1, T2,Q) be the mapping
from v ∈ ∪mi=1H(Qi||T1, T2||T1) to rr(T1, (T2||T1)

v), i.e., rp(T1, T2,Q)(v) =
rr(T1, (T2||T1)

v). For simplicity, when Q consists of only one path Q, let
rp(T1, T2, Q) denote rp(T1, T2,Q).

(The notations rr, ra and rp abbreviate the phrases root to root, root to all and
root to path. We use rr to replace the notation mast of previous work [14, 15, 47]
for the sake of notational uniformity.)

Lemma 3.1. Let T1, T2, T3 be evolutionary trees.

• (T1||T2)||T3 = T1||(T2||T3).
• If T3 is a subtree of T1, then T3||T1 = T1||T3 = T3.

• rr(T1, T2) = rr(T1||T2, T2) = rr(T1, T2||T1) = rr(T1||T2, T2||T1).
Proof. Straightforward.
Fact 1 ([14]). Given an n-leaf evolutionary tree T and k disjoint sets L1, · · · , Lk

of leaf labels of T , the subtrees T ||L1, · · · , T ||Lk can be computed in O(n) time.

Proof. The ideas are to preprocess T for answering queries of lowest common
ancestors [25, 45] and to reconstruct subtrees from appropriate tree traversal num-
berings [4, 9].

Given T1 and T2, our main goal is to evaluate rr(T1, T2) efficiently. Note that
rr(T1, T2) = rr(T1||T2, T2||T1) and that T1||T2 and T2||T1 can be computed in linear
time. Thus, the remaining discussion assumes that T1 and T2 have the same label
set. To evaluate rr(T1, T2), we actually compute ra(T2, T1) and divide the discussion
among the five problems defined below. Each problem is named as a p-q case, where
p and q are the numbers of tree paths in T1 and T2 contained in the input. The inputs
of these problems are illustrated in Figure 3.

Problem 1 (one-one case).
Input:
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❇
❇
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Fig. 3. Inputs of Problems 1–5.
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1. T1 and T2;
2. root paths P of T1 and Q of T2 with no leaves from their respective trees;
3. rp(T u

1 , T2, Q) for all u ∈ K(P, T1);
4. rp(T v

2 , T1, P ) for all v ∈ K(Q, T2).
Output: rp(T1, T2, Q) and rp(T2, T1, P ).

The next problem generalizes Problem 1.
Problem 2 (many-one case).

Input:
1. T1 and T2;
2. a tube system P = {P1, · · · , Pm} of T1 and a root path Q of T2 with no

leaf from T2;
3. rp(T u

1 , T2, Q) for all Pi and u ∈ K(Pi, T1);
4. rp(T v

2 , T1,P) for all v ∈ K(Q, T2).
Output:
1. rp(T hi

1 , T2, Q) for the head hi of each Pi;
2. rp(T2, T1,P).

Problem 3 (zero-one case).
Input:
1. T1 and T2;
2. a root path Q of T2 with no leaf from T2;
3. ra(T v

2 , T1) for all v ∈ K(Q, T2).
Output: ra(T2, T1).

The next problem generalizes Problem 3.
Problem 4 (zero-many case).

Input:
1. T1 and T2;
2. a tube system Q = {Q1, · · · , Qm} of T2;
3. ra(T v

2 , T1) for all Qi and v ∈ K(Qi, T2).
Output: ra(T hi

2 , T1) for the head hi of each Qi.
Our main goal is to evaluate rr(T1, T2). It suffices to solve the next problem.
Problem 5 (zero-zero case).

Input: T1 and T2.
Output: ra(T2, T1).

Our algorithms for these problems are called One-One, Many-One, Zero-One,

Zero-Many and Zero-Zero, respectively. Each algorithm except One-One uses the
preceding one in this list as a subroutine. These reductions are based on the rake
operation defined in §2. We give One-One in §5 and the other four in §4.1-4.4.

These five algorithms assume that the input trees T1 and T2 have n leaves each
and d is the maximum degree. We use integer sort and radix sort [4, 9] extensively to
help achieve the desired time complexity. (For brevity, from here onwards, radix sort
refers to both integer and radix sorts.) For this reason, we make the following integer

indexing assumptions:
• An integer array of size O(n) is allocated to each algorithm.
• The vertices of T1 and T2 are indexed by integers from [1, O(n)].
• The leaf labels are indexed by integers from [1, O(n)].

We call Zero-Zero only once to compare two given trees. Consequently, we may
reasonably assume that the tree vertices are indexed with integers from [1, O(n)].
When we call Zero-Zero, we simply allocate an array of size O(n). As for indexing the
leaf labels, this paper considers only evolutionary trees whose leaf labels are drawn
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from a total order. Before we call Zero-Zero, we can sort the leaf labels and index
them with integers from [1, O(n)]. This preprocessing takes O(n log n) time, which is
well within our desired time complexity for Zero-Zero.

The other four algorithms are called more than once, and their integer indexing
assumptions are maintained in slightly different situations from that for Zero-Zero.
When an algorithm issues subroutine calls, it is responsible for maintaining the index-
ing assumptions for the callees. In certain cases, the caller uses radix sort to reindex
the labels and the vertices of each callee’s input trees. The caller also partitions
its array into segments and allocates to each callee a segment in proportion to that
callee’s input size. The new indices and the array segments for subroutine calls can
be computed in obvious manners within the desired time complexity of each caller.
For brevity of presentation, such preprocessing steps are omitted in the descriptions
of the five algorithms.

Some inputs to the algorithms are mappings. We represent a mapping f by
the set of all pairs (x, f(x)). With this representation, the total size of the input
mappings in an algorithm is O(n). Since the input mappings have integer values at
most n, this representation and the integer indexing assumptions together enable us to
evaluate the input mappings at many points in a batch by means of radix sort. Other
mappings that are produced within the algorithms are similarly evaluated. When
these algorithms are detailed, it becomes evident that such evaluations can computed
in straightforward manners in time linear in n and the number of points evaluated.
The descriptions of these algorithms assume that the values of mappings are accessed
by radix sort.

4. The rake-based reductions. For ease of understanding, our solutions to
Problems 1–5 are presented in a different order from their logical one. This section
assumes the following theorem for Problem 1 and uses it to solve Problems 2–5.
In §5.6, we prove this theorem by giving an algorithm, called One-One, that solves
Problem 1 within the theorem’s stated time bounds.

Theorem 4.1. Problem 1 can be solved in O(nd2 log d+ n log(p+ 1) log(q + 1))
time or alternatively in O(nd

√
d logn+ n log(p+ 1) log(q + 1)) time.

Proof. Follows from Theorem 5.14 at the end of §5.6.
4.1. The many-one case. The following algorithm is for Problem 2 and uses

One-One as a subroutine. Note that Problem 2 is merely a multi-path version of
Problem 1.
Algorithm Many-One;
begin

1. For all Pi, compute T1,i = T hi

1 , T2,i = T2||T1,i, and Qi = Q||T1,i;
2. For all empty Qi, compute part of the output as follows:

(a) Compute the root v̂ of T2,i and v ∈ K(Q, T2) such that v̂ ∈ T v
2 ;

(b) rp(T hi

1 , T2, Q)(v̂) ← rp(T v
2 , T1,P)(hi); (Note. H(Qi, T2,i) = {v̂}. This

is part of the output.)
(c) For all x ∈ H(Pi, T1), rp(T2, T1,P)(x)← rp(T v

2 , T1,P)(x); (Note. This
is part of the output.)

3. For all nonempty Qi, compute the remaining output as follows: (Note. The
many-one case is reduced to the one-one case with input T1,i, T2,i, Pi and Qi.)
(a) For all u ∈ K(Pi, T1,i), rp(T

u
1,i, T2,i, Qi)← rp(T u

1 , T2, Q);

(b) For all v̂ ∈ K(Qi, T2,i), compute rp(T v̂
2,i, T1,i, Pi) as follows:

i. Compute the vertex v ∈ K(Q, T2) such that v̂ ∈ T v
2 ;
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ii. rp(T v̂
2,i, T1,i, Pi)(x)← rp(T v

2 , T1,P)(x) for all x ∈ H(Pi, T1,i);
(c) Compute rp(T1,i, T2,i, Qi) and rp(T2,i, T1,i, Pi) by applying One-One to

T1,i, T2,i, Pi, Qi and the mappings computed at Steps 3a and 3b;

(d) rp(T hi

1 , T2, Q)← rp(T1,i, T2,i, Qi); (Note. This is part of the output.)
(e) For all x ∈ H(Pi, T1,i), rp(T2, T1,P)(x) ← rp(T2,i, T1,i, Pi)(x); (Note.

This is part of the output.)
end.

Theorem 4.2. Many-One solves Problem 2 with the following time complexities:

O(nd2 log d+ log(1 + t(Q))·
m
∑

i=1

b(Pi, T1) log(1 + t(Pi))),

or alternatively

O(nd
√
d log n+ log(1 + t(Q))·

m
∑

i=1

b(Pi, T1) log(1 + t(Pi))).

Proof. Since T1 and T2 have the same label set, all T2,i are nonempty. To compute
the output rp, there are two cases depending on whether Qi is empty or nonempty.
These cases are computed by Steps 2 and 3. The correctness of Many-One is then
determined by that of Steps 2b, 2c, 3a, 3b, 3(b)ii, 3d and 3e. These steps can be
verified using Lemma 3.1. As for the time complexity, these steps take O(n) time
using radix sort to evaluate rp. Step 1 uses Fact 1 and takes O(n) time. Steps 2a
and 3(b)i take O(n) time using tree traversal and radix sort. As discussed in §3,
Step 3c preprocesses the input of its One-One calls to maintain their integer indexing
assumptions. We reindex the labels and vertices of T1,i and T2,i and pass the new
indices to the calls. We also partition Many-One’s O(n)-size array to allocate a
segment of size |T1,i| to the call with input T1,i. Since the total input size of the
calls is O(n), this preprocessing takes O(n) time in an obvious manner. After this
preprocessing, the running time of Step 3c dominates that of Many-One. The stated
time bounds follow from Theorem 4.1 and the fact that Qi is not longer than Q and
the degrees of T2,i are at most d.

4.2. The zero-one case. The following algorithm is for Problem 3. It uses
Many-One as a subroutine to recursively compare T2 with the subtrees of T1 rooted
at the heads of the tubes obtained by iteratively raking T1. The tubes obtained by
the first rake are compared with T2 first, and the tube obtained by the last rake is
compared last.
Algorithm Zero-One;
begin

1. S ← T1;
2. LF ← L(S); (Note. LF consists of the leaves of T1.)
3. For all x ∈ LF , ra(T2, T1)(x)← 1; (Note. This is part of the output.)
4. For all u ∈ LF , rp(T u

1 , T2, Q)(y)← 1, where y is the unique vertex of T2||T u
1 ;

(Note. This is the base case of rake-based recursion.)
5. S ← S − L(S);
6. while S is not empty do the following steps:

(a) Compute L(S) = {P1, · · · , Pm};
(b) Gather the mappings rp(T u

1 , T2, Q) for all Pi and u ∈ K(Pi, T1); (Note.
These mappings are either initialized at Step 4 or computed at previous
iterations of Step 6d.)
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(c) rp(T v
2 , T1,L(S))(x) ← ra(T v

2 , T1)(x) for all v ∈ K(Q, T2) and x ∈
∪mi=1H(Pi, T1);

(d) Compute rp(T hi

1 , T2, Q) for the head hi of each Pi and rp(T2, T1,L(S))
by applying Many-One to T1, T2, L(S), Q and the mappings obtained
at Steps 6b and 6c; (Note. This is the recursion step of rake-based
recursion.)

(e) For all x ∈ ∪mi=1K(Pi, T1),ra(T2, T1)(x) ← rp(T2, T1,L(S))(x); (Note.
This is part of the output.)

(f) S ← S − L(S);
end.

Theorem 4.3. Zero-One solves Problem 3 with the following time complexities:

O(nd2 log d logn+ n logn log(1 + t(Q))),

or alternatively

O(nd
√
d log2 n+ n logn log(1 + t(Q))).

Proof. The L(S) at Step 6a is a tube system. The heads of the tubes in L(S)
become children of the tubes in future L(S). The vertices u ∈ K(Pi, T1) at Step 6b are
either leaves of T1 or heads of the tubes in previous L(S). These properties ensure
the correctness of the rake-based recursion. The remaining correctness proof uses
Lemma 3.1 to verify the correctness of Steps 3, 4, 6c and 6e. Steps 1-5, 6a, 6b and 6f
are straightforward and take O(n) time. Step 6c and 6e take O(n) time using radix
sort to access rp and ra. At Step 6d, to maintain the integer indexing assumptions
for the call to Many-One, we simply pass to Many-One the indices of T1 and T2 and
the whole array of Zero-One. Step 6d has the same time complexity as Zero-One.
The desired time bounds follow from Theorems 2.1 and Theorem 4.2.

4.3. The zero-many case. The following algorithm is for Problem 4 and uses
Zero-One as a subroutine. Note that Problem 4 is merely a multi-path version of
Problem 3.
Algorithm Zero-Many;
begin

1. For all Qi, compute T2,i = T hi

2 and T1,i = T1||T2,i;
2. For all Qi and v ∈ K(Qi, T2,i), ra(T

v
2,i, T1,i)← ra(T v

2 , T1);
3. For all Qi, compute ra(T2,i, T1,i) by applying Zero-One to T1,i, T2,i, Qi and

the mapping computed at Step 2;
4. For all Qi,ra(T

hi

2 , T1)← ra(T2,i, T1,i); (Note. This is the output.)
end.

Theorem 4.4. Zero-Many solves Problem 4 with the following time complexities:

O(nd2 log d logn+ logn·
m
∑

i=1

b(Qi, T2) log(1 + t(Qi))),

or alternatively

O(nd
√
d log2 n+ logn·

m
∑

i=1

b(Qi, T2) log(1 + t(Qi))).

Proof. The proof is similar to that of Theorem 4.2. The time bounds follow from
Theorem 4.3.
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4.4. The zero-zero case. The following algorithm is for Problem 5. It uses
Zero-Many as a subroutine to recursively compare T1 with the subtrees of T2 rooted
at the heads of the tubes obtained by iteratively raking T2. The tubes obtained by
the first rake are compared with T1 first, and the tube obtained by the last rake is
compared last.
Algorithm Zero-Zero;
begin

1. S ← T2;
2. LF ← L(S); (Note. LF consists of the leaves of T2.)
3. For all v ∈ LF , ra(T v

2 , T1)(x) ← 1, where x is the only vertex in T1||T v
2 ;

(Note. This is the base case of rake-based recursion.)
4. S ← S − L(S);
5. while S is not empty do

(a) Compute L(S) = {Q1, · · · , Qm};
(b) Gather the mappings ra(T v

2 , T1) for all Qi and v ∈ K(Qi, T2); (Note.
These mappings are either initialized at Step 3 or computed at previous
iterations of Step 5c.)

(c) Compute ra(T hi

2 , T1) for the head hi of each Qi by applying Zero-Many
to T1, T2,L(S) and the mappings obtained at Step 5b. (Note. This is
the recursion step of rake-based recursion.)

(d) S ← S − L(S);
6. ra(T2, T1)← ra(T h

2 , T1), where h is the root of T2; (Note. This is the output.
If T2 has only one vertex, ra(T h

2 , T1) is computed at Step 3; otherwise it is
computed at the last iteration of Step 5c.)

end.
Theorem 4.5. Zero-Zero solves Problem 5 within O(nd2 log d log2 n) time or

alternatively within O(nd
√
d log3 n) time.

Proof. The proof is similar to that of Theorem 4.3. The time bounds follow from
Theorems 2.1 and 4.4.

5. The one-one case. Our algorithm for Problem 1 makes extensive use of
bisection-based dynamic programming and implicit computation in compressed for-
mats. This problem generalizes the longest common subsequence problem [6, 23, 29,
30, 32], which has efficient dynamic programming solutions. A direct dynamic pro-
gramming approach to our problem would recursively solve the problem with T x

1 and
T

y
2 in place of T1 and T2 for all vertices x ∈ P and y ∈ Q. This approach may

require solving Ω(n2) subproblems. To improve the time complexity, observe that the
number of leaves in a maximum agreement subtree of T x

1 and T
y
2 can range only from

0 to n. Moreover, this number never increases when x moves from the root of T1

along P to P ’s endpoint, and y remains fixed, or vice versa. Compared to the length
of P , rr(T x

1 , T
y
2 ) often assumes relatively few different values. Thus, to compute

this number along P , it is useful to compute the locations at P where the number
decreases. We can find those locations with a bisection scheme and use them to im-
plicitly solve the O(n2) subproblems in certain compressed formats. We first describe
basic techniques used in such implicit computation in §5.1 and then proceed to discuss
bisection-based dynamic programming techniques in §5.2–§5.5. We combine all these
techniques to give an algorithm to solve Problem 1 in §5.6.

5.1. Condensed sequences. For integers k1 and k2 with k1 ≤ k2, let [k1, k2] =
{k1, · · · , k2}, i.e., the integer interval between k1 and k2. The length of an integer
interval is the number of its integers. The upper and lower halves of an even length
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[k1, k2] are [k1,
k1+k2−1

2 ] and [k1+k2+1
2 , k2], respectively. The regular integer intervals

are defined recursively. For all integers α ≥ 0, [1, 2α] is regular. The upper and lower
halves of an even length regular interval are also regular.

For example, [1, 8] is regular. Its regular subintervals are [1, 4], [5, 8], [1, 2], [3, 4],
[5, 6], [7, 8], and the singletons [1, 1], [2, 2], . . . , [8, 8].

A normal sequence is a nonincreasing sequence {f(j)}lj=1 of nonnegative numbers.
A normal sequence is nontrivial if it has at least one nonzero term.

For example, 5, 4, 4, 0 is a nontrivial normal sequence, whereas 0, 0, 0 is a trivial
one.

Let f1, · · · , fk be k normal sequences of length l. An interval query for f1, · · · , fk
is a pair ([k1, k2], j) where [k1, k2] ⊆ [1, k] and j ∈ [1, l]. If k1 = k2, ([k1, k2], j) is also
called a point query. The value of a query ([k1, k2], j) is maxk1≤i≤k2

fi(j). A query
([k1, k2], j) is regular if [k1, k2] is a regular integer interval.

For example, let

f1 = 5, 4, 4, 3, 2;
f2 = 8, 7, 4, 2, 0;
f3 = 9, 9, 5, 0, 0.

Then, f1, f2 and f3 are normal sequences of length 5. Here, k = 3 and l = 5. Thus,
([1, 3], 2) is an interval query; its value is max{f1(2), f2(2), f3(2)} = 9. The pair
([1, 1], 3) is a point query; its value is f1(3) = 4. The pair ([1, 2], 2) is a regular query;
its values is max{f1(2), f2(2)} = 7.

The joint of f1, · · · , fk is the normal sequence f̂ also of length l such that f̂(j) =
max{f1(j), · · · , fk(j)}.

Continuing the above example, the joint of f1, f2, f3 is

f̂ = 9, 9, 5, 3, 2.

The minimal condensed form of a normal sequence {f(j)}lj=1 is the set of all pairs
(j, f(j)) where f(j) 6= 0 and j is the largest index of any f(j′) with f(j′) = f(j). A
condensed form is a set of pairs (j, f(j)) that includes the minimal condensed form.
The size of a condensed form is the number of pairs in it. The total size of a collection
of condensed forms is the sum of the sizes of those forms.

Continuing the above example, the minimal condensed form of f3 is {(2, 9), (3, 5)};
its size is 2. The set {(1, 9), (2, 9), (3, 5), (5, 0)} is a condensed form of f3; its size is 4.
The total size of these two forms is 6.

Lemma 5.1. Let F1, · · · , Fk be sets of nontrivial normal sequences of length l.

Let f̂i be the joint of the sequences in Fi. Given a condensed form of each sequence

in each Fi, we can compute the minimal condensed forms of all f̂i in O(l + s) time

where s is the total size of the input forms.

Proof. The desired minimal forms can be computed by the two steps below:
1. Sort the pairs in the given condensed forms for Fi into a sequence in the

increasing order of the first components of these pairs.
2. Go through this sequence to delete all unnecessary pairs to obtain the minimal

condensed form of f̂i.
We can use radix sort to implement Step 1 in O(l + s) time for all Fi. Step 2 can be
easily implemented in O(s) time for all Fi.

Lemma 5.2. Let f1, · · · , fk be nontrivial normal sequences of length l. Assume

that the input consists of a condensed form of each fi with a total size of s.
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1. We can evaluate m point queries in O(m+ l + s) time.

2. We can evaluate m1 regular queries and m2 irregular queries in a total of

O(m1 + (m2 + l + s) log(k + 1)) time.

Proof. The proof of Statement 1 uses radix sort in an obvious manner. To prove
Statement 2, we assume without loss of generality that k is a power of two. The input
queries can be evaluated by the following three stages within the desired time bound.

Stage 1. For each regular interval [k1, k2] ⊆ [1, k], let f [k1, k2] be the joint of
fk1

, · · · , fk2
. We use Lemma 5.1O(log(k+1)) times to compute the minimal condensed

forms of all f [k1, k2]. The total size of these forms is O(s log(k+1)). This stage takes
O((l + s) log(k + 1)) time.

Stage 2. For each irregular input query ([i1, i2], j), we partition [i1, i2] into
O(log(k + 1)) regular subintervals [h1, h2], [h2 + 1, h3], · · · , [hr−1 + 1, hr]. Then, the
value of ([i1, i2], j) is the maximum of those of ([h1, h2], j), · · · , ([hr−1+1, hr], j). These
regular queries are point queries for f [h1, h2], · · · , f [hr−1 + 1, hr]. Together with the
given m1 regular queries, we have now generated O(m1 +m2 log(k+1)) point queries
for all f [k1.k2]. This stage takes O(m1 +m2 log(k + 1)) time.

Stage 3. We use Statement 1 and the minimal condensed forms of f [k1.k2] to
evaluate the points queries generated at Stage 2. Once the values of these point
queries are obtained, we can easily compute the values of the input queries. This
stage takes O(m1 +m2 log(k + 1) + l + s log(k + 1)) time.

5.2. Normalizing the input. To solve Problem 1, we first augment its input
T1, T2, P and Q in order to simplify our discussion. Let P = x1, · · · , xp and Q =
y1, · · · , yq. Without loss of generality, we assume that p ≥ q.

1. Let α and β be the smallest positive integers such that p′ = 2α+1, q′ = 2β+1,
p′ ≥ q′, p′ > p and q′ > q. (Note. The conditions p′ > p and q′ > q are
employed for technical simplicity. They can be changed to p′ ≥ p and q′ ≥ q

with some modification on Algorithm One-One.)
2. Attach to xp the path xp+1, · · · , xp′ and to yq the path yq+1, · · · , yq′ .
3. Let P ′ = x1, · · · , xp′ and Q′ = y1, · · · , yq′ .
4. Attach a leaf to each of xp+1, · · · , xp′−1 and yq+1, · · · , yq′−1, two leaves to xp′ ,

and two leaves to yq′ .
5. Assign distinct labels to the new leaves which also differ from the existing

labels of T1 and T2.
6. Let S1 be T1 together with P ′ and the new leaves of P ′. Let S2 be T2 together

with Q′ and the new leaves of Q′.
S1 and S2 are evolutionary trees. P ′ and Q′ contain no leaves from S1 and S2,

and are root paths of these trees. Let n′ = max{n1, n2} where ni is the number of
leaves in Si. Let d

′ be the maximum degree in S1 and S2.
Lemma 5.3.
• n′ = O(n), p′ = O(p), q′ = O(q), and d′ ≤ d+ 1.
• rp(T1, T2, Q) = rp(S1, S2, Q

′) and rp(T2, T1, P ) = rp(S2, S1, P
′).

Proof. Straightforward.
In light of Lemma 5.3, our discussion below mainly works with S1, S2, P

′ and Q′.
Let G = GP ∪ GQ where GP is the set of all pairs (xi, y1) and GQ is the set of all
(x1, yj). To solve Problem 1, a main task is to evaluate rr(Sx

1 , S
y
2 ) for (x, y) ∈ G.

The output rp values that are excluded here can be retrieved directly from the input
rp mappings.

5.3. Predecessors. A pair (xi′ , yj′) is a predecessor of a distinct (xi, yj) if i ≤ i′

and j ≤ j′. One-One proceeds by recursively reducing the problem of computing
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rr(Sx
1 , S

y
2 ) to that of computing the rr values of the P -predecessor, Q-predecessor

and PQ-predecessor defined below.
Let P [i, i′] be the path xi, · · · , xi′ , where i ≤ i′. Let Xi be the set of the children

of xi in S1 that are not in P ′. We similarly define Q[j, j′] and Yj . A pair (xi, yj) is
intersecting if Su

1 and Sv
2 have at least one common leaf label for some u ∈ Xi and

v ∈ Yj . (P [i, i′], Q[yj, yj′ ]) is intersecting if some xi′′ ∈ P [i, i′] and yi′′ ∈ Q[j, j′] form
an intersecting pair.

The lengths of P [i, i′] and Q[j, j′] are those of [i, i′] and [j, j′], respectively. A
path P [i, i′] is regular if [i, i′] is a regular interval. A regular Q[j, j′] is similarly de-
fined. We now construct a tree Ψ over pairs of regular paths; this tree is slightly
different from that of [15]. The root of Ψ is (P [1, p′ − 1], Q[1, q′ − 1]). A pair
(P [i, i′], Q[j, j′]) ∈ Ψ is a leaf if and only if either (1) i = i′, j = j′ and (xi, yj)
is intersecting, or (2) this pair is nonintersecting. For a nonleaf (P [i, i′], Q[j, j′]) ∈
Ψ, if j = j′, then its children are (P [i, i+i′−1

2 ], yj) and (P [ i+i′+1
2 , i′], yj). Other-

wise, this pair has four children (P [i, i+i′−1
2 ], Q[j, j+j′−1

2 ]), (P [i, i+i′−1
2 ], Q[ j+j′+1

2 , j′]),

(P [ i+i′+1
2 , i′], Q[j, j+j′−1

2 ]), (P [ i+i′+1
2 , i′], Q[ j+j′+1

2 , j′]).
The ceiling of (P [i, i′], Q[j, j′]) is (xi, yj); its floor is (xi′+1, yj′+1) [15]. Its P -

diagonal is (xi′+1, yj); its Q-diagonal is (xi, yj′+1). Let E be the set of all ceilings,
diagonals, floors of the leaves of Ψ. Let B = {(xi, yq′) | i ∈ [1, p′]} ∪ {(xp′ , yj) | j ∈
[1, q′]}. Due to its recursive nature, One-One evaluates rr(Sx

1 , S
y
2 ) for all (x, y) ∈

G ∪ E ∪B.
Given (xi, yj), if (xi+1, yi+1) ∈ G∪E ∪B, then this pair is the PQ-predecessor of

(xi, yj). Let i
′ be the smallest index that is larger than i such that (xi′ , yj) ∈ G∪E∪B.

This (xi′ , yj) is the P -predecessor of (xi, yj). Let j
′ be the smallest index larger than

j such that (xi, yj′) ∈ G ∪E ∪B. This (xi, yj′) is the Q-predecessor of (xi, yj).
Lemma 5.4.
1. Each intersecting (xi, yj) ∈ (G ∪ E) − B has a P -predecessor (xi+1, yj), a

Q-predecessor (xi, yj+1) and a PQ-predecessor (xi+1, yj+1).
2. Each nonintersecting (xi, yj) ∈ E − B has a P -predecessor (xi′ , yj) and a

Q-predecessor (xi, yj′). Also, (P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

3. Each nonintersecting (xi, y1) ∈ GP −B has a P -predecessor (xi+1, y1) and a

Q-predecessor (xi, yj). Moreover, (xi, Q[1, j − 1]) is nonintersecting.

4. Each nonintersecting (x1, yj) ∈ GQ − B has a P -predecessor (xi, yj) and a

Q-predecessor (x1, yj+1). Moreover, (P [1, i− 1], yj) is nonintersecting.

Proof. Statement 1 follows from the definitions of Ψ and E. The proofs of
Statements 3 and 4 are similar to Case 3 in the proof of Statement 2 below.

As for Statement 2, by the definition of B, xi′ and yj′ exist. To show (P [i, i′ −
1], Q[j, j′ − 1]) is nonintersecting, we consider the following four cases. The proofs of
their symmetric cases are similar to theirs and are omitted for brevity.

Case 1: (xi, yj) is the ceiling of a nonintersecting leaf (P [i, i2], Q[j, j2]) ∈ Ψ.
Since (xi, yj2+1) and (xi2+1, yj) are in E, i′ ≤ i2 + 1 and j′ ≤ j2 + 1. Then because
(P [i, i2], Q[j, j2]) is nonintersecting, so is (P [i, i′ − 1], Q[j, j′ − 1]).

Case 2: (xi, yj) is the Q-diagonal of a nonintersecting leaf (P [i, i2], Q[j1, j−1]) (or
symmetrically, (xi, yj) is the P -diagonal of a nonintersecting leaf (P [i1, i−1], Q[j, j2])).
Since (xi2+1, yj) is the floor of (P [i, i2], Q[j1, j−1]), (xi2+1, yj) ∈ E and thus i′ ≤ i2+1.
Let j′′ be the smallest index such that j ≤ j′′ and (P [i, i2], yj′′) is intersecting. There
are two subcases.

Case 2a: j′′ does not exist. Then, (P [i, i2], Q[j, q′]) is nonintersecting and there-
fore (P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.
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Case 2b. j′′ exists. Let Q[j3, j4] be a regular path that contains yj′′ and is of the
same length as Q[j1, j − 1]. Note that j ≤ j3 and (P [i, i2], Q[j3, j4]) ∈ Ψ. There are
two subcases.

Case 2b(1): j3 = j. Then (xi, yj) is the ceiling of (P [i, i2], Q[j3, j4]). Since (xi, yj)
is nonintersecting, it is the ceiling of a nonintersecting leaf in Ψ which is a descendant
of (P [i, i2], Q[j3, j4]). Therefore, Case 2b(1) is reduced to Case 1.

Case 2b(2): j3 > j. By the construction of Ψ, (xi, yj3) ∈ E and thus j′ ≤ j3.
By the choice of Q[j3, j4], (P [i, i2], Q[j, j3 − 1]) is nonintersecting and so is (P [i, i′ −
1], Q[j, j′ − 1]).

Case 3: (xi, yj) is the Q-diagonal of an intersecting leaf (xi, yj−1) (or symmetri-
cally, (xi, yj) is the P -diagonal of an intersecting leaf (xi−1, yj)). Since (xi+1, yj) ∈ E,
i′ = i + 1 and P [i, i′ − 1] = xi. Let j′′ be the smallest index such that j < j′′ and
(xi, yj′′ ) is intersecting. There are two subcases.

Case 3a: j′′ does not exist. Then, (xi, Q[j, q′]) is nonintersecting and therefore
(P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

Case 3b: j′′ exists. Then, (xi, yj′′ ) ∈ E and j′ ≤ j′′. By the choice of j′′,
(xi, Q[j, j′′ − 1]) is nonintersecting. Thus, (P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

Case 4: (xi, yj) is the floor of a leaf (P [i1, i−1], Q[j1, j−1]), which may or may not
be intersecting. Let (P [i3, i4], Q[j3, j4]) be the lowest ancestor of (P [i1, i−1], Q[j1, j−
1]) in Ψ such that (xi, yj) is not the floor of (P [i3, i4], Q[j3, j4]). This ancestor exists
because (xi, yj) 6∈ B. There are two subcases.

Case 4a: j3 = j4 and i3 < i4. Then, P [i1, i − 1] is a subpath of P [i3,
i3+i4−1

2 ]

and i = i3+i4+1
2 . Also, j3 = j1 = j − 1. Thus, (xi, yj) is the Q-diagonal of

(P [i, i4], yj−1) ∈ Ψ. By the construction of Ψ, (xi, yj) is the Q-diagonal of a leaf
which is either (P [i, i4], yj−1) itself or its descendant. Depending on whether this leaf
is nonintersecting or intersecting, Case 4a is reduced to Case 2 or 3.

Case 4b: j3 < j4 and i3 < i4. There are two subcases.
Case 4b(1): P [i1, i−1] ⊂ P [i3,

i3+i4−1
2 ] andQ[j1, j−1] ⊂ Q[j3,

j3+j4−1
2 ]. Note that

i = i3+i4+1
2 , j = j3+j4+1

2 , and (xi, yj) is the ceiling of (P [ i3+i4+1
2 , i4], Q[ j3+j4+1

2 , j4]) ∈
Ψ. Since (xi, yj) is nonintersecting, (xi, yj) is the ceiling of a nonintersecting leaf in
Ψ which is (P [ i3+i4+1

2 , i4], Q[ j3+j4+1
2 , j4]) itself or a descendant. This reduces Case

4b(1) to Case 1.
Case 4b(2): P [i1, i− 1] ⊂ P [i3,

i3+i4−1
2 ] and Q[j1, j− 1] ⊂ Q[ j3+j4+1

2 , j4] (or sym-

metrically, P [i1, i−1] ⊂ P [ i3+i4+1
2 , i4] and Q[j1, j−1] ⊂ Q[j3,

j3+j4−1
2 ]). Note that i =

i3+i4+1
2 , j = j4 + 1, and (xi, yj) is the Q-diagonal of (P [ i3+i4+1

2 , i4], Q[ j3+j4+1
2 , j4]) ∈

Ψ. Then, (xi, yj) is the Q-diagonal of a leaf which is (P [ i3+i4+1
2 , i4], Q[ j3+j4+1

2 , j4]) it-
self or a descendant. Depending on whether this leaf is nonintersecting or intersecting,
Case 4b(2) is reduced to Case 2 or 3.

5.4. Counting lemmas. We now give some counting lemmas that are used
in §5.6 to bound One-One’s time complexity.

For all (P [i1, i2], Q[j1, j2]) ∈ Ψ,
• C(P [i1, i2], Q[j1, j2]) denotes the set of all ceilings of the leaves in Ψ which
are either (P [i1, i2], Q[j1, j2]) itself or its descendants;
• D(P [i1, i2], Q[j1, j2]) denotes the set of all Q-diagonals of the leaves in Ψ
which are either (P [i1, i2], Q[j1, j2]) itself or its descendants;
• I(P [i1, i2], Q[j1, j2]) = {(xi, yj) | xi ∈ P [i1, i2], yj ∈ Q[j1, j2] and (xi, yj) is
intersecting}.

Lemma 5.5.
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1. |I(P [1, p′ − 1], Q[1, q′ − 1])| ≤ n.

2. Ψ has O(n log(q + 1)) leaves of the form (P [i1, i2], Q[j1, j2]) where j1 < j2.

3. Ψ has O(n log(q + 1)) pairs of the form (P [i1, i2], yj) where P [i1, i2] is of

length p′−1
q′−1 .

4. |E| = O(n log(p+ 1)).
Proof. Statements 1–3 are proved below. The proof of Statment 4 is similar to

those of Statements 2 and 3.
Statement 1. For all distinct intersecting pairs (xi, yj) and (xi′ , yj′), the leaf

labels shared by the subtrees T u
1 where u ∈ Xi and the subtrees T v

2 where v ∈ Yi are
different from the shared labels for Xi′ and Yj′ . Statement 1 then follows from the
fact that S1 and S2 share n leaf labels.

Statements 2 and 3. On each level of Ψ, for all distinct pairs (P [i1, i2], Q[j1, j2])
and (P [i′1, i

′
2], Q[j′1, j

′
2]), I(P [i1, i2], Q[j1, j2]) ∩ I(P [i′1, i

′
2], Q[j′1, j

′
2]) = ∅. Thus, each

level has at most |I(P [1, p′ − 1], Q[1, q′ − 1])| nonleaf pairs. Consequently, from the
second level downwards, each level has at most 4 · |I(P [1, p′ − 1], Q[1, q′ − 1])| pairs.
These two statements then follows from Statement 1 and the fact that the pairs
specified in these two statements are within the top 1 + log(q′ − 1) levels of Ψ.

A pair (xi, yj) is P -regular if [i, i′ − 1] is a regular interval where (xi′ , yj) is the
P -predecessor of (xi, yj). (We do not need the notion of Q-regular because p′ ≥ q′.)

Given a regular [i1, i2], a set {h1, · · · , hk} regularly partitions [i1, i2] if h1 = i1 and
the intervals [h1, h2 − 1], [h2, h3 − 1], · · · , [hk−1, hk − 1], [hk, i2] are all regular.

Lemma 5.6.
1. Assume that j > 1 and P ([i1, i2], yj) ∈ Ψ. If the P -predecessor (xi, yj) of

some (xi′ , yj) ∈ C(P [i1, i2], yj) is not in {(xi2+1, yj)} ∪ C(P [i1, i2], yj), then
P ([i1, i2], yj−1) ∈ Ψ and (xi, yj) ∈ D(P [i1, i2], yj−1).

2. Assume that j < q′ and P ([i1, i2], yj−1) ∈ Ψ. If the P -predecessor (xi, yj) of

some (xi′ , yj) ∈ D(P [i1, i2], yj−1) is not in {(xi2+1, yj) ∪ D(P [i1, i2], yj−1),
then P ([i1, i2], yj) ∈ Ψ and (xi, yj) ∈ C(P [i1, i2], yj).

3. For every (P [i1, i2], yj) ∈ Ψ, the set {i | (xi, yj) ∈ C(P [i1, i2], yj)} regularly

partitions [i1, i2] and so does the set {i | (xi, yj) ∈ D(P [i1, i2], yj)}.
4. For all (P [i1, i2], yj) ∈ Ψ, every pair in C(P [i1, i2], yj) ∪ D(P [i1, i2], yj) is

P -regular.

5. At most O(n log(q + 1)) of the nonintersecting pairs of E are P -irregular.

Proof. The proofs of Statements 1 and 5 are detailed below. The proof of State-
ment 2 is similar to that of Statement 1 and is omitted. Statement 3 is obvious.
Statement 4 follows from the first three statements and the fact that if two sets
regularly partition [i1, i2], then so does their union.

Statement 1. Note that i1 < i ≤ i2 and q′ > j > 1. The pair (xi, yj) can be the
ceiling, the P -diagonal, the Q-diagonal, or the floor of some leaf (P [i3, i4], Q[j3, j4]) ∈
Ψ. These four cases are discussed below.

Case 1: (xi, yj) is the ceiling. Then i = i3 and j = j3. Since i1 < i ≤ i2 and both
[i, i4] and [i1, i2] are regular, [i, i4] ⊂ [i1, i2]. Since the length of P [i1, i2] is at most
p′−1
q′−1 , so is the length of P [i, i4]. Thus Q[j3, j4] = yj and (P [i, i4], yj) is a descendant

of (P [i1, i2], yj). This contradicts the assumption that (xi, yj) 6∈ C(P [i1, i2], yj) and
this case cannot exist.

Case 2: (xi, yj) is the P -diagonal. Then i = i4 + 1 and j = j3. As in Case 1,
Q[j3, j4] = yj and (P [i3, i − 1], yj) is a descendant of (P [i1, i2], yj). Thus, there
exists a leaf (P [i, i6], yj) that is a descendant of (P [i1, i2], yj). Because (xi, yj) is
the ceiling of this leaf, the existence of this leaf contradicts the assumption that
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(xi, yj) 6∈ C(P [i1, i2], yj) and this case cannot exist.
Case 3: (xi, yj) is the Q-diagonal. Then, i = i3 and j = j4 + 1. As in Case 1,

[i, i4] ⊂ [i1, i2] and Q[j3, j4] = yj−1. Since (P [i, i4], yj−1) ∈ Ψ, (P [i1, i2], yj−1) ∈ Ψ.
Then (P [i, i4], yj−1) is a descendant of (P [i1, i2], yj−1) and (xi, yj) ∈ D(P [i1, i2], yj−1).

Case 4: (xi, yj) is the floor. Then, i = i4 + 1 and j = j4 + 1. As in Case 3,
(P [i1, i2], yj−1) ∈ Ψ, Q[j3, j − 1] = yj−1 and (P [i3, i − 1], yj−1) is a descendant
of (P [i1, i2], yj−1). Thus, there is a leaf (P [i, i6], yj−1) which is a descendant of
(P [i1, i2], yj−1). Since (xi, yj) is this leaf’s Q-diagonal, it is in D(P [i1, i2], yj−1).

Statement 5. Note that E consists of the following three types of pairs:
1. the ceiling, diagonals and floor of a leaf (P [i1, i2], Q[j1, j2]) ∈ Ψ where j1 < j2.
2. the P -diagonal and floor of (P [i1, i2], yj]) ∈ Ψ where P [i1, i2] is of length

p′−1
q′−1 .

3. the pairs in C(P [i1, i2], j]) ∪ D(P [i1, i2], yj ]) where (P [i1, i2], j]) ∈ Ψ and

P [i1, i2] is of length
p′−1
q′−1 .

By Statement 4, only the pairs of the first two types may be P -irregular. This
statement then follows from Lemmas 5.5(2) and 5.5(3).

5.5. Recurrences. One-One uses the following formulas to recursively compute
rr(Sxi

1 , S
yj

2 ) for (xi, yj) ∈ G ∪ E ∪ B in terms of the rr values of the appropriate
P -predecessor, Q-predecessor and PQ-predecessor of (xi, yj).

For vertex subsets U of S1 and V of S2, m(U, V ) denotes the maximum weight of
any matching of the bipartite graph (U, V, U×V ) where the weight of an edge (u, v)
is rr(Su

1 , S
v
2 ). Let m(U, v) = m(U, {v}) and m(u, V ) = m({u}, V ). Given two vertices

x ∈ S1 and y ∈ S2, let m(U, V, x, y) be the maximum weight of any matching of the
same graph without the edge (x, y).

Lemma 5.7. For each (xi, yj) ∈ B, rr(Sx
1 , S

y
2 ) = 0.

Proof. This lemma follows from the fact that p′ > p, q > q and the new labels of
S1 and S2 are different from one another and the labels of T1 and T2.

Fact 2 ([47]). For all vertices u ∈ S1 and v ∈ S2,

rr(Su
1 , S

v
2 ) = max







m(K(u, S1),K(v, S2)),
m(u,K(v, S2)),
m(K(u, S1), v)







.

Proof. To form maximum agreement subtrees of Su
1 and Sv

2 , there are three cases.
(1) m(K(u, S1),K(v, S2)) accounts for matching u to v. (2) m(u,K(v, S2)) accounts
for matching u to a proper descendant of v. (3) m(K(u, S1), v) accounts for matching
v to a proper descendant of u.

Lemma 5.8. For all (xi, yj) where i < p′ and j < q′, regardless of whether (xi, yj)
is intersecting or nonintersecting,

rr(Sxi

1 , S
yj

2 ) = max































m(Xi, Yj) + rr(S
xi+1

1 , S
yj+1

2 ),
m(Xi ∪ {xi+1}, Yj ∪ {yj+1}, xi+1, yj+1),
rr(Sxi

1 , S
yj+1

2 ),
m(xi, Yj),
rr(S

xi+1

1 , S
yj

2 ),
m(Xi, yj)































.

Proof. This lemma follows from Fact 2 with a finer case analysis for the cases in
the proof of Fact 2.
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Lemma 5.9. For each nonintersecting (xi, yj) ∈ E−B with P -predecessor (xi′ , yj)
and Q-predecessor (xi, yj′),

rr(Sxi

1 , S
yj

2 ) = max







maxj′′∈[j,j′−1] m(xi′ , Yj′′ ) + maxi′′∈[i,i′−1] m(Xi′′ , yj′),

rr(Sxi

1 , S
yj′

2 ),
rr(S

xi′

1 , S
yj

2 )







.

Proof. This lemma follows from Lemma 5.4(2) and is obtained by iterative appli-
cations of Lemma 5.8. The following properties are used. Since (P [i, i′−1], Q[j, j′−1])
is nonintersecting, for i′′ ∈ [i, i′ − 1] and j′′ ∈ [j, j′ − 1],

• m(Xi′′ , Yj′′ ) = 0;
• m(Xi′′ ∪ {xi′′+1}, Yj′′ ∪ {yj′′+1}, xi′′+1, yj′′+1) = m(xi′′ , Yj′′) +m(Xi′′ , yj′′);
• m(xi′′ , Yj′′ ) = m(xi′ , Yj′′ );
• m(Xi′′ , yj′′ ) = m(Xi′′ , yj′).

For brevity, the symmetric statement of the next lemma for GQ is omitted.
Lemma 5.10. For all nonintersecting pairs (xi, y1) ∈ GP −B with Q-predecessor

(xi, yj),

rr(Sxi

1 , S
y1

2 ) = max







rr(Sxi

1 , S
yj

2 ),
rr(S

xi+1

1 , S
y1

2 ),
m(Xi, yj) + maxj′∈[1,j−1] m(xi+1, Yj′ )







.

Proof. The proof is similar to that of Lemma 5.9 and follows from Lemma 5.4(3).

5.6. The algorithm for Problem 1. We combine the discussion in §5.3–§5.5
to give the following algorithm to solve Problem 1.
Algorithm One-One;
begin

1. Compute S1, S2, P
′, Q′, rp(Su

1 , S2, Q
′) for u ∈ K(P ′, S1), and rp(Sv

2 , S1, P
′)

v ∈ K(Q′, S2);
2. Compute G ∪ E ∪ B, B, I(P [1, p′ − 1], Q[1, q′ − 1]) − B, the set of all non-

intersecting pairs in E − B, and the sets of nonintersecting pairs in GP − B

and GQ −B, respectively;
3. Compute the following predecessors:

• the P -predecessor, Q-predecessor and PQ-predecessor of each pair in
I(P [1, p′ − 1], Q[1, q′ − 1])−B;
• the P -predecessor and Q-predecessor of each nonintersecting pair in E−
B;
• the Q-predecessor of each nonintersecting pair in GP − B and the P -
predecessor of each nonintersecting pair in GQ −B;

4. For all pairs in G ∪ E ∪ B, compute the non-rr terms in the appropriate
recurrence formulas of §5.5:
• Lemma 5.7 for B;
• Lemma 5.8 for (I(P [1, p′ − 1], Q[1, q′ − 1])−B;
• Lemma 5.9 for the nonintersecting pairs in E −B;
• Lemma 5.10 for the nonintersecting pairs in GP −B and its symmetric
statement for the nonintersecting pairs in GQ − B;

5. Compute the rr(Sxi

1 , S
yj

2 ) for all (xi, yj) ∈ G ∪ E ∪B using the appropriate
recurrence formulas given in §5.5 and the non-rr terms computed at Step 4;
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6. Compute the output as follows:
• For all yj ∈ Q, rp(T1, T2, Q)(yj)← rr(Sx1

1 , S
yj

2 );
• For all xi ∈ P , rp(T2, T1, P )(xi)← rr(Sxi

1 , S
y1

2 );
• For every v ∈ K(Q, T2), rp(T1, T2, Q)(v)← rp(T v

2 , T1, P )(h) where h is
the root of T1||T v

2 ;
• For every u ∈ K(P, T1), rp(T2, T1, P )(u)← rp(T u

1 , T2, Q)(h) where h is
the root of T2||T u

1 ;
end.

To analyze One-One, we first focus on Step 4. The recurrences of §5.5 contain
only four types of non-rr terms other than the constant 0 in Lemma 5.7:

1. m(Xi, yj) and m(xi, Yj);
2. maxi∈[i1,i2] m(Xi, yj) and maxj∈[j1,j2] m(xi, Yj);
3. m(Xi, Yj);
4. m(Xi ∪ {xi+1}, Yj ∪ {yj+1}, xi+1, yj+1).

It is important to notice that these non-rr terms can be simultaneously evaluated.
In light of this observation, we compute these terms by using the techniques of §5.1
to process the normal sequences Ai, Au, Bj , Bv defined below:

• Ai(j) = m(Xi, yj) for all xi and yj .
• Bj(i) = m(xi, Yj) for all yj and xi.
• Au(j) = rr(Su

1 , S
yj

2 ) for all u ∈ K(P ′, S1) and yj .
• Bv(i) = rr(Sv

2 , S
xi

1 ) for all v ∈ K(Q′, S2) and xi.
Note that Ai and Au have length q′, and Ai is the joint of all Au where u ∈ Xi.

Similarly, Bj and Bv have length p′, and Bj is the joint of all Bv where v ∈ Yj .
Lemma 5.11.
1. The minimal condensed forms of the sequences Au and Bv have a total size

of O(n) and can be computed in O(n) time.

2. The minimal condensed forms of the sequences Ai and Bj have a total size

of O(n) and can be computed in O(n) time.

Proof. Statement 2 follows from Statement 1 and Lemma 5.1. Below we only
prove Statement 1 for Au; Statement 1 for Bv is similarly proved. We first compute
a condensed form Au for each Au as follows:

1. For all u ∈ K(P ′, S1), compute S2,u = S2||Su
1 and Qu = Q′||Su

1 .
2. For all u where Qu is nonempty, do the following steps:

(a) Au ← {(j, w) | yj ∈ Qu, w = rp(Su
1 , S2, Q

′)(yj)}.
(b) Compute all tuples (v̂, v, yj) where v̂ ∈ K(Qu, S2,u), v ∈ K(Q′, S2),

v̂ ∈ Sv
2 , and v ∈ Yj .

(c) Find the smallest s such that some (v̂, v, ys) is obtained at Step 2b.
(d) If there is only one (v̂, v, ys), then add to Au the pair (s, w) where w =

rp(Su
1 , S2, Q

′)(v̂).
3. For all u where S2,u is nonempty and Qu is empty, do the following steps:

(a) Compute v̂, v and ys where v̂ is the root of S2,u, v ∈ K(Q′, S2), v̂ ∈ Sv
2

and v ∈ Ys.
(b) Au ← {(s, w)}, where w = rp(Su

1 , S2, Q
′)(v̂).

4. For all u where S2,u is empty, Au ← ∅.
The correctness proof of this algorithm has three cases.
Case 1: Qu is nonempty. Let yj1 , yj2 , · · · , yjk = Qu. Let j0 = 0. Then, for all

k′ ∈ [1, k] and all j ∈ [jk′−1 + 1, jk′ ], S
yj

2 ||Su
1 = S

yk′

2,u and by Lemma 3.1, Au(j) =
rp(Su

1 , S2, Q
′)(yk′). There are two subcases for j > jk.

Case 1a: Step 2b finds two or more (v̂, v, ys). Then ys ∈ Qu, s = jk, and for all
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j ∈ [jk + 1, q′], S
yj

2 ||Su
2 is empty and Au(j) = 0.

Case 1b: Step 2b finds only one (v̂, v, ys). Then ys 6∈ Qu and s > jk. For all
j ∈ [jk + 1, s], S

yj

2 ||Su
1 = S v̂

2,u and Au(j) = rp(Su
1 , S2, Q

′)(v̂). For all j ∈ [s + 1, q′],

S
yj

2 ||Su
1 is empty and Au(j) = 0.

Thus, the Au of Step 2 is a condensed form of Au for Case 1.
Case 2: S2,u is nonempty and Qu is empty. This case is similar to Case 1b, and

Step 3 computes a correct condensed form Au for this case.
Case 3: S2,u is empty. This case is obvious, and Step 4 correctly computes a

condensed form Au of Au for this case.
The total size of all Au is at most that of the rp mappings of S1, S2, P

′ and Q′,
which is the desired O(n). Step 1 takes O(n) time using Fact 1. The other steps can
be implemented in O(n) time in straightforward manners using radix sort and tree
traversal. As discussed in §3, the rp mappings are evaluated by radix sort. Once the
forms Au are obtained, we can in O(n) time radix sort the pairs in all Au and then
delete all unnecessary pairs to obtain the desired minimal condensed forms.

Lemma 5.12. All the non-rr terms of the first two types for the pairs in G∪E∪B
can be evaluated in O(n log(p+ 1) log(q + 1)) time.

Proof. The value of m(Xi, yj) is that of the point query ([i, i], j) for A1, · · · , Aq′ ,
and the value of maxi∈[i1,i2] m(Xi, yj) is that of the interval query ([i1, i2], j). By
Lemma 5.5(4), there are O(n log(p+1)) such terms required for the pairs in G∪E∪B.
Given the results of Steps 2 and 3 of One-One, we can determine all such terms and the
corresponding queries inO(n log(p+1)) time. By Lemma 5.6(5), onlyO(n log(q+1)) of
these queries are not P -regular. By Lemmas 5.11(2) and 5.2(2), we can evaluate these
queries in O(n log(p+1) log(q+1)) time. The terms m(xi, Yj) and maxj∈[j1,j2] m(xi, Yj)
are similarly evaluated is O(n log(p+1) log(q+1)) time. The analysis for these terms
is easier because p′ ≥ q′ and it does not involve the notion of Q-regularity.

Lemma 5.13. The non-rr terms of the third and the fourth type for the pairs in

G ∪ E ∪B can be evaluated within the following time complexity:

1. O(nd log d) or alternatively O(n
√
d logn) for the third type;

2. O(nd2 log d) or alternatively O(nd
√
d logn) for the fourth type.

Proof. To prove Statement 1, we consider the graphs (Xi, Yj , Xi×Yj) on which
the desired terms m(Xi, Yj) are defined. Let Zi,j be the subgraph of (Xi, Yj , Xi×Yj)
constructed by removing all zero-weight edges and all resulting isolated vertices. The
edges of Zi,j are computed as follows:

1. For all u ∈ K(P ′, S1), compute S2,u = S2||Su
1 and Qu = Q′||Su

1 .
2. For all S2,u is nonempty, do the following steps:

(a) If Qu is nonempty, compute all tuples (u, v, w) where v̂ ∈ K(Qu, S2,u),
v ∈ K(Q′, S2), v̂ ∈ Sv

2 and w = rp(Su
1 , S2, Q

′)(v̂).
(b) If Qu is empty, compute the tuple (u, v, w) where v̂ is the root of S2,u,

v ∈ K(Q′, S2), v̂ ∈ Sv
2 and w = rp(Su

1 , S2, Q
′)(v̂).

This algorithm captures all the nonzero-weight (u, v). At Step 2, S v̂
2,u = Sv

2 ||Su
1 and

by Lemma 3.1 rr(Su
1 , S

v
2 ) = rp(Su

1 , S2, Q
′)(v̂). Thus, the first two components of

the obtained tuples form the edges of all desired Zi,j and the third components are
the weights of these edges. We use Fact 1 to implement Step 1 in O(n) time. We
can implement Step 2 in O(n) time using radix sort and tree traversal. Note that
Step 2 uses radix sort to evaluate rp mappings. With the tuples (u, v, w) obtained,
we use radix sort to construct all desired Zi,j in O(n) time. Let mi,j and ni,j be
the numbers of edges and vertices in Zi,j , respectively. Since an edge weighs at
most n, we can compute m(Xi, Yj) in O(ni,j ·mi,j + n2

i,j · logni,j) and alternatively in
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O(mi,j ·√ni,j · log(n·ni,j)) time [21, 42]. Statement 1 then follows from the fact that
ni,j ≤ 2d′, ni,j ≤ 2mi,j , and by Lemma 5.5(1) the sum of all mi,j is at most n.

To prove Statement 2, we similarly process the bipartite graphs on which the
desired terms m(Xi ∪ {xi+1}, Yj ∪ {yj+1}, xi+1, yj+1) are defined. The key difference
from the third type is that in addition to some of the edges in Zi,j , we need certain
nonzero-weight (u, yj+1) for u ∈ Xi and (xi+1, v) for v ∈ Yj . Since these edges are
required only for intersecting (xi, yj), by Lemma 5.5(1), O(dn) such edges are needed.
We use Lemma 5.11(1) to compute the weights of these edges in O(dn) time. Due to
these edges, the total time complexity for the fourth type is O(d) times that for the
third type.

The next theorem serves to prove Theorem 4.1 given at the start of §4.
Theorem 5.14. One-One solves Problem 1 with the following time complexities:

O(nd2 log d+ n log(p+ 1) log(q + 1)),

or alternatively

O(nd
√
d logn+ n log(p+ 1) log(q + 1)).

Proof. The correctness of One-One follows from Lemma 5.3 and §5.3–§5.5. As for
the time complexity, Step 1 is obvious and takes O(n) time. By computing Ψ, we can
compute the sets E and I(P [1, p′−1], Q[1, q′−1]). Since the leaf labels of S1 and S2 are
from [1, O(n)], each level of Ψ can be computed inO(n) time. Since Ψ has O(log(p+1))
levels, E and I(P [1, p′−1], Q[1, q′−1]) can be computed in O(n log(p+1)) time. With
these two sets obtained, we can compute all the desired sets in O(n log(p+ 1)) time.
Thus, Step 2 takes O(n log(p + 1)) time. Step 3 takes O(n log(p + 1)) time using
radix sort. The time complexity of Step 4 dominates that of One-One. This step
uses Lemmas 5.12 and 5.13 and takes O(n log(p + 1) log(q + 1) + nd2 log d) time or
alternatively O(n log(p+1) log(q+1)+nd

√
d logn) time. Step 5 spends O(n log(p+1))

time using radix sort to create pointers from the pairs in G ∪ E ∪ B to appropriate
predecessors. Step 5 then takes O(1) time per pair in G ∪E ∪B and O(n log(p+ 1))
time in total. Step 6 takes O(n log(p+1)) time. It uses radix sort to access the desired
rr values and evaluate the input mappings. It also uses Fact 1 to compute all T1||T v

2

and T2||T u
1 .

6. Discussions. We answer the main problem of this paper with the following
theorem and conclude with an open problem.

Theorem 6.1. Let T1 and T2 be two evolutionary trees with n leaves each. Let

d be their maximum degree. Given T1 and T2, a maximum agreement subtree of T1

and T2 can be computed in O(nd2 log d log2 n) time or alternatively in O(nd
√
d log3 n)

time. Thus, if d is bounded by a constant, a maximum agreement subtree can be

computed in O(n log2 n) time.

Proof. By Theorem 4.5, the algorithms in §4–5 compute rr(T1, T2) within the de-
sired time bounds. With straightforward modifications, these algorithms can compute
a maximum agreement subtree within the same time bounds.

The next lemma establishes a reduction from the longest common subsequence
problem to that of computing a maximum agreement subtree.

Lemma 6.2. Let M1 = x1, . . . , xn and M2 = y1, . . . , yn be two sequences. Assume

that the symbols xi are all distinct and so are the symbols yj. Then, the problem of

computing a longest common subsequence of M1 and M2 can be reduced in linear time

to that of computing a maximum agreement subtree of two binary evolutionary trees.
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Proof. Given M1 and M2, we construct two binary evolutionary trees T1 and T2

as follows. Let z1 and z2 be two distinct symbols different from all xi and yi. Next,
we construct two paths P1 = u1, . . . , un+1 and P2 = v1, . . . , vn+1. T1 is formed by
making u1 the root, attaching xi to ui as a leaf, and attaching z1 and z2 to un+1 as
leaves. Symmetrically, T2 is formed by making v1 the root, attaching yi to vi, and
attaching z1 and z2 to vn+1. The lemma follows from the straightforward one-to-one
onto correspondence between the longest common subsequences of M1 and M2 and
the maximum agreement subtrees of T1 and T2.

We can use Lemma 6.2 to derive lower complexity bounds for computing a max-
imum agreement subtree from known bounds for the longest common subsequence
problem in various models of computation [3, 6, 23, 29, 30, 32, 50]. This paper as-
sumes a comparison model where two labels x and y can be compared to determine
whether x is smaller than y or x = y or x is greater than y. Since the longest common
subsequence problem in Lemma 6.2 requires Ω(n logn) time in this model [31], the
same bound holds for the problem of computing a maximum agreement subtree of
two evolutionary trees where d is bounded by a constant. It would be significant to
close the gap between this lower bound and the upper bound of O(n log2 n) stated in
Theorem 6.1. Recently, Farach, Przytycka and Thorup [13] independently developed
an algorithm that runs in O(n

√
d log3 n) time. For binary trees, Cole and Hariha-

ran [8] gave an O(n log n)-time algorithm. It may be possible to close the gap by
incorporating ideas used in those two results and this paper.
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