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Vitesse de convergence pour un procedure numérique
d’un probleme de contréle impultionnel

Résumé : Dans ce papier nous considérons un probleme de controle impulsionnel détérmi-
niste. Nous discrétisons I’équation de Hamilton-Jacobi-Bellman satisfaite par la fonction de
coflit optimale et nous trouvons les solutions discretes de notre probleme. Nous obtenons une
expression explicite de la vitesse de convergence entre les solutions approchées et la solution
du probleme original. Nous considérons le probleme de commutation optimale comme un cas
particulier du probleme de contréle impulsionnel et nous appliquons la méme structure de
discrétisation pour avoir la vitesse de convergence dans ce cas. Nous présentons un exemple
numérique.

Mots-clé : Controle impulsionnel. Discrétisation. Equations de Hamilton-Jacobi-Bellman
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1 Introduction

Optimization problems of dynamical systems lead to the treatment of non linear partial diffe-
rential equations: the Hamilton-Jacobi-Bellman equations or Isaacs equations, associated to
optimal control problems or differential game problems respectively. Except in special cases,
the analytical solutions of these equations are unknown. Therefore, it is interesting to find
characterisations of the existence, unicity, regularity of the solutions of these equations in
order to develop numerical methods to obtain approximate solutions. With these solutions
it is possible to obtain suboptimal feedback controls, equilibrium strategies, etc.

After the development of viscosity solutions (see [12], [25] and [16]), the approximation
of Hamilton-Jacobi-Bellman equations was deeply studied.
The techniques to obtain numerical approximations are based on time-space discretizations.
The time discretization procedure was introduced in [9], [11], for deterministic control pro-
blems (see also [2], [3], [5] for game problems with target) and the space discretization
procedure uses finite elements techniques; see [22], [8] and [23] for control problems and [4]
and [1] for game problems.
Another type of discretization, which involves only space discretization, was also studied in
[19] and [28] for example.

In this paper we consider a deterministic implusive control problem (see [7]). We apply
the time-space discretization procedure to obtain the discrete solutions.
It is organized as follows: In §1 we introduce the continuous problem and we give the
properties of the optimal cost function as the unique viscosity solution of the associated
Hamilton-Jacobi-Bellman equation (the proof is similar to the one presented in [10] for
optimal switching problems).
In §2 we introduce a time discretization of the Hamilton-Jacobi-Bellman equation, we also
give a convergence rate. The results obtained here are extensions of the results presented in
[9] and [11] for impulsive control problems. The time discretization scheme involves a delay
between impulsions. We can prove the existence and unicity of the discrete time solution
because it is the fixed point of a contractive operator. We also define a non contractive
scheme of time discretization. This scheme corresponds to a process where instantaneous
impulsions are allowed. We prove that both schemes are equivalents.
In §3 we also discretize in the spatial variable in order to obtain an approximate problem
whose solution can be found numerically. We give a rate of convergence of these solutions
to the solution of the original problem.
In §4 we present a numerical example and finally, in §5, we consider the optimal switching
problem (see [10]). We prove that this type of problem is a special case of impulsive control
problems and we can apply the previously developed theory. In particular, in this case, due
to the special structure of the optimal switching problem, we can obtain a better rate of
convergence than the one obtained for general impulsive control problems.

RR n"2926



4 Mabel Tidball

2  Description of the continuous problem

We consider a deterministic impulsive control problem, where the state of the system y(.) is
given by the following ordinary differential equation:

dy
ds

where z € Q, Q an open set of IR".

Equation (1) is valid Vs > 0 except at times 6, where an impulsive control is applied. The
impulsions are given by z(6,) € Z, Z a compact set of IR’, with 6, < 0,41.

The impulsive controls, that we denote by z, are determined by the sequence of values
z(.) = {(6.,2(6.)),v =1,2...}. We call Z the set of impulsive controls.

The impulsions z(6,) produce a jump given by g(y(8, ), z(6,)) that makes the system change
instantaneously from position y(6;) to y(6;}); i.e.

y(0,) =y(0,) + 3y, ), 2(6,)) (2)

We assume that y(s) € Q Vs > 0. The problem consists in finding the optimal cost function
u, defined by:

(s) =9(y(s)) s>0, y(0) ==z (1)

w(z) = z(i,?éz J(z,2(.)), Vo € R" (3)

where N
Taa() = [ pls)e s+ 3 alu(6.,2(0.)e™" 4

v=1

f is the instantaneous cost, A > 0 is the discount rate and ¢(z, z) is the cost of applying
each impulsion.

Properties of the optimal cost function u

We assume that Vx, £ € Q, Vz € Z:

g(z,.),q(x,.), continuous ¥V x € Q (5)

l9(x) —g@) IS Lg lz—2 |, [l 9(z) I< M, (6)
lf(@) - f@| <Ly lle -2, [f(@)] <My (7)

I 9(z,2) —9(&,2) IS Lg e = Z I, [l g9(z,2) [|< M (8)
lg(z,2) = q(@,2)| S Lo [l z =2 ||, |e(z,2)| < M, (9)
qo = 1mnf q(z,z) >0 (10)

We call (H) the set of hypotheses (6) - (9). By virtue of (5), (H) and (10) we can prove (see
[18]) that:

INRIA
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My

1
Lemma 2.1 If a control z(.) has more than py = impulsions in [t,t+6), with 6 = X

then there exists another control Z with cost strictly lower, i.e:
J(z,z) < J(z,2). (11)

Remark 2.1 By Lemma 2.1 we can deduce that for optimization purpose, we can consider
only controls with at most oy impulsions in [t,t + 6). In consequence hereafter we shall
assume that the controls verify this condition.

If we denote by u(s) = u(s,z) the number of impulsions in [0, s), with p(oco0) the total number
of impulsions of a generic control z(.), we have:

u(s) < po(1+3) (12)

If we call us = % = Ao, by virtue of (12) we have:

u(s) < po + ps s (13)
As
v—1=p(b,) < po+ps 0u, (14)
and by equation (14), we have:
v—1—po
0, > ————. (15)
Hs

To obtain the regularity properties of the optimal cost function w, it is necessary to study
the behavior of the trajectories as a function of the initial position. So we define:

. W
/\E:sup{“x-'_g(x’lfi_zl i 9(=,72) | : z€Z, v,7' €Q, :c;éx’}. (16)

By (8) we obtain that A\; < 1+ L;. We can prove (see [18]), that:
Lemma 2.2 Under hypotheses (5) and (H) we have:
ly(s) ='(s) [ (A€o |z —a' |

where y,y' are solutions of (1)-(2) for the same impulsive control, with initial condition
y(0) =2 and y'(0) = 2.

Remark 2.2 By virtue of Lemma 2.2 we have that:
elss ||z —2' || if \g <1,

ly(s) —y'(s) I< (17)
(Ag)ro elralmdatlo)s || o — ol || 4f Ay > 1.

RR n"2926



6 Mabel Tidball

Lemma 2.3 Under hypotheses (5), (H) and (10), u satisfies:

M
u(@)| < Tf lu(@) —u(@)| < Cllw—a"|7.

A
For allz,2’ € R" andy=1if A>L,v€(0,1) ifA:L,’y:Zif)\<L, with

L= (us Inxg)" + L, (18)

For the proof see [29].

The Hamilton-Jacobi-Bellman equation

A function w € C(IR"™) is called a viscosity solution of the equation:

ou
in{ — -g+ f — Mu — = 19
min { e f—=2u, Mu u} 0, (19)

where
Mu(z) = mzin {u(z + g(z,2)) + q(z, 2)},

if for all ¢ € C(IR™) satisfies:
0
i) u — ¢ has a local maximun in xy, then min {8—¢ g+ f—Au, Mu —u} > 0 in zg.
b

9¢

ii) u — ¢ has a local minimun in z1, then min{a— g+ f— ), Mu—u} <0in 2;.
x

Employing the usual techniques and reazonig of dynamical programming (see [10]), we
can prove:

Theorem 2.1 The optimal cost function u is the unique solution, in the sense of viscosity
of equation (19).

Remark 2.3 We can define the problem with finite horizon, that is:

ur(tyr) = inf Jn(t,7,5()) Vt € [0,T], Vz € R™. (20)

where Z7 C Z such thatt < 6; < ...<Oy <T.

N

T
Jr(t, 2, 2(.)) :/t Fy() e ™+ ay(6;,2(6,)) e (21)

v=1

INRIA



Rate of convergence of a numerical procedure for impulsive control problems 7

y(.) is solution of:
V)=o) se 1), v =

If conditions (5), (H) and (10) are satisfied and keeping (17) in mind we obtain that the
optimal cost functions with finite horizon is bounded and Lipschitz continuous, i.e.

CleE=MT=t) _ 1| ||z —a'|| if L#X
lur(t,z) —up(t,z')| < (22)
C(T—-t)|||z—2"| if L=X\

and
|u(z) — ur(0,z)] < Ce T,

The proofs are analogous to the one presented in [21].

3 Time discretization of the Hamilton-Jacobi-Bellman
equation

3.1 Time discretization scheme

Let h be suitably small. To find a discrete time approximation of (3) we consider the solution
of
u=Tu (23)

where T : X — X, X = C%" with

|u(@1) — u(@s)|

Il Il = sup [u(z)] + S o —mp (24)
and T defined in the following way:
T = min(Py, P,) (25)
where
Pyu(z) = (1 = Ah) w(z + hg(z)) + h f(z) (26)

Piu(z) = mzin {g(z,2) + h f(z + g(z, 2)) + (1 = Ah)u(z + g(x, 2) + hg(z + g(z, 2)))} . (27)

Py and P, are time discretizations of (19). We can easily prove, following the same ideas
of [11] that Py and P; are contractive operators, and so is 7. Then we have the following
Lemma:

Lemma 3.1 There exists a unique solution of (23) that we call u”.

RR n"2926



8 Mabel Tidball

Interpertation of u”.
For all z € IR" the following representation for «” is valid:

ut () = z(fglei%h J"(x,2(.)) (28)
where:
zh = {Z() €Z:0;,= TL,‘]’L, n; € IN,n; < TL,‘+17i = 1,...} (29)
Tz, 2()) = h Y Fh ()1 =AY+~ a(yy, (n5), 25)(1 — A)™ (30)
=0 i=1

Let I(z(.)) = {j:3i/j=n;}. We define la sequence y,(j) by the following recurrence
formulae:

(v, (G +1) =y, () + hy(y; (7))
Y (n5) = yy (n3) + 9(y;, (ny), ) if j € I(z(.))
yn (7) = v, (7) it j & I(z(.))
[ 44 (0) =2

Remark 3.1 With the same arguments used in [18], we can prove that there exists an opti-
mal discrete policy that realizes u”, i.e., there exists Z(.) € Z" such that u"(z) = J"(z,%(.)).
Moreover, we can prove (as in the continuous case), that the optimal policy has at most g

impulsions in each interval of lenght %
Remark 3.2 We can easily prove, by virtue of Remark 3.1 that u* is also a fized point of

operator P™, where:

n=ly (32)

[x] represents the integer part of x.
SZ(S—,')?, with 8; € {071}7 |S|:ZS—,', 52{57 |S| SNO}v PS :H(PO(I_Si)+P18i)
=1 1

and

P"w = min(P,w).
s€eS

We are going to use this remark latter.

Remark 3.3 We define function ul.(n,x), the time discrete problem with finite horizon, for

h= %, NeW,n=0,..N (we suppose h € V).
ub(n —1,2) = min J%(n,z,2(.)) (33)
z(.)€Zh

INRIA



Rate of convergence of a numerical procedure for impulsive control problems 9

where Zh = {z(.) € Z:0, = n;h, n, € N,n; <n;p1 <N,i=1,...N -1}

N-1 N
Tp(mw,2()) = h 30 FE (D)1= M) + D alyy (), 2)(1 =M™ (34)

and the sequence yn(j) is given by (31) but now defined for all1 < j < N —1. We can
obtain the following results:

Ilyn () — Fn(5) IS Ce™" ||z — 7 |, (35)

where §n(§),j = 1,..., N — 1 is the solution of (31) with initial condition .

UZ}(TL - 1,33) = T(ug"(nvx))v u}ill"(Nv .’L‘) =0 (36)

We will call us(n,x) = ul, and (0, 2) = vl (z).

n’

The function u’ is Lipschitz continuous and its Lipschitz constant is bounded by:

Cell=NT 4 L >\
< C if L<\ (37)
CT if L=\

L

h
UN

Moreover

|u"(z) — ul(0,2)| < Ce 7.
For the proof of these properties see [29)].
The discrete solution u” has the following properties:

Lemma 3.2 Under hypotheses (5), (H) and (10), u” satisfies:

M
@< =55 @) et @) <O fle ol (38)
A
Vz,2' € R" and y =14 A> L, v€(0,1) ifA:L,'yzz if A< L.

The proof follows by the properties of function u’. given in Remark 3.3.

Remark 3.4 From here, and in order to obtain simplicity of notation and clarity of argu-
ments, we will use the letters C, M, K to denote arbitrary constants, which values depends
on the context where they appear, on the problem data (constants A\, My, Ly, ... etc), but do
not depend on the parameter of discretization h.

RR n"2926



10 Mabel Tidball

3.2 Rate of convergence of the h-approximate solution

We want to find an estimate of the rate of convergence of |ur(z) — u/(z)|, so we consider
the following auxiliary problem:

e,h _ s
ugp(z) = in, Jr(z,2(.)) (39)
then
ur(z) — wi(2)] < |ur(z) - ui"(@)] + [uz" (2) — ui(o)] (40)

We will bound each term of (40). It is easy to prove that:
3" (@) — uh(2)] < CLyy h. (41)

This is just the estimate of the error associated to the Euler’s integration method.

Now we must estimate |up(z) — us"(z)|. Let z € Zp. Tt is necessary to obtain a policy
7z € Z% that approximates z. Since the two parameters that determine Z are 8, and %(6,),
we consider the following definition for z:

8, = max {au_l +h, hE(%)} 38, = #(8) (42)

where @y =0, E(z) = [z] + 1if 2 ¢ IV and E(z) = v if x € IV.

We call 7(.) the solution of (1) corresponding to control z(.).

We estimate the difference || y(¢)—7(t) ||- Let ng be such that till ngh there are no impulsions
for z(.) and in (ng + 1)h, ..., (ng + p)h there are impulsions, (we know that p < ug). For the
continuous time control z(.), there will exist 6,,1,...,6,,p such that:

noh < 0,,41 < (no + 1)h, Oy, +p < (no + p)h.

The worst case occurs when all the impulsions of the continuous control are in the first
considered interval, i.e., when 6,, 1, < (ng + 1)h.

Lemma 3.3 Let y(t) be the solution of (1) under the action of the control z(.) and §(t) the
solution of (1) under the action of the approzimate control z(.) defined in (42). Then, for
all t ¢ N[0,,0,] we have:

I'y(t) = (1) |< Che™* (43)

Proof: Let t; = th and
er = gr—l + g(?j'r—ly z(euj'-l—r))-
Then by (2)

” y(auj-l—'r) yN’f‘ ||<— )‘5_7 || y(euj—l—r) g’f‘*l ||<— )‘5_7 || y(eu-+7‘fl> g?‘*l ” Ch.
7
From this last inequality, it is easy to prove that:

1967, 45) — G 1< (Xa)? 1 9(65) — G0 | +Ch,

INRIA
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and the same argument is valid for g(.), i.e.:
I 7(te1p) = B0 1< (A2)” 1 9(t5,) — G0 || +Ch.

Taking §o = y(0;),), we have:

19065 1p) — T(ti, 1) 1< (A9) [ 9(65) — G(t3,) | +Ch
From this inequality we obtain:

I Y(tnotp) = G(tho4p) IS Ag) [l Y(tng) = G(tno) | +Ch (44)
We define E; =|| y(t}) — 9(t}) ||. Then From (44) we have:

En0+p < ()‘E)pEno +Ch (45)

When no impulsions occur we have:

Engtp1 < Engyp + /t n0+p+1(g(y(5)) —9(9(s)))ds <

n0+p

tng+p+1
< By + / ((0(tns0)) — 9(F(tnosp))ds + Ch < (1 + hLy)Engp + Ch.

t'n.0+p

From (45) we have:
Engtpt1 < (L+hLg)(Ag)" Eny + Ch

Then, after the n — pg remaining intervals, we consider the worst case, i.e. ng = 0 and if we
denote ny; = nh, we have:

E,, <1+ hLy)"" " (A\g)PE,, + Ch
By recurrence and considering that Ey = 0, we have:
En, < {(14RAL,)" " (AP} + Ch (46)
Then by virtue of (46) we obtain Vt € N[6,,,8,]:
Iy(t) = 5(t) II< Che™*
A%

Remark 3.5 We can easily obtain that u;’h(x) —ur(z) < ChL,s. By (H), (43) and the

inequality 0 < 8, — 0, < uoh, we have ur(z) — u%h(x) <0, then considering (40) and (41),
we obtain:
lur(z) — wip(2)] < CLyp h (47)

RR n"2926



12 Mabel Tidball

Theorem 3.1 If (5), (H) and (10) hold, then:
lu(z) —u"(z)| < ChY,
where y =14 A>L,vye (0,1) if \=1L, 'y:% if A< L.
Proof: Keeping in mind (47), and the fact that
u(z) —u"(2)] < Ju(@)—ur(@)|+|ur (@) —up(@)|+ug (@) —u"(2)| < Ce ™ +lur(z) —uy(2)]
we obtain an estimate that depends on T'. Taking the minimun in 7" we obtain the thesis.

Remark 3.6 We can work with a non contractive scheme of discretization. The time dis-
cretization of (19) can be understood as a problem where we allow simultaneous impulsions.

We can consider the solution of: B
u="Tu (48)

where T : X — X is defined as T = min(P,, P,), Py is defined in (26) and
Pu(X) = mzin(q(x, 2) +u(z + g(z, 2)))

By using mainly the hypotheses (10) and the theory of B-L (Bensoussan-Lions) algorithm,
introduced in [24] and the techniques decribed in [20], we obtain that there exists a unique
solution of (48) that we call @". Moreover we have that problems (23) and (48) are equivalent

in the following sense:
0<u" —a" < Ch

For the proof see [29].

4  The fully discrete solution of HJB equation

4.1 Description of the fully discrete problem

The above introduced time discretization remains a theoretical one. To obtain computa-
tional results it is also necessary to perform a space discretization. We will use the same
discretization as the one introduced in [13], [14], [19], [22] and [27]. Let © be an open set of
IR" and S¥ a family of regular triangulations of €2, we define Q; = U;S¥, k = max; (diamS?).
Let Wy : Qx — IR be the set of finite linear elements. Then, the fully discrete problem is:

[Problem Py: Find the fixed point of operator T in W]

We understand operator T (see Py and P; definitions) as an operator T : W* — Wk,
thats means we understand, for example, u(z +hg(z)) = >_; Aiju(z;) where z;, j =1,..., N
is the set of nodes of the triangulation and );; the baricentric coordenates such that x+hg(x)
belongs to the simplex S;.

INRIA
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Theorem 4.1 There erists a unique solution of problem Py that we call ul.

Remark 4.1 To obtain ul it is only necessary to compute ul(z;), i = 1,...,N, where
{3:1- =1, ...7N} is the set of nodes of the triangulation.

Definitions and auxiliary results
Let 81(.) € C=(IR"), f1(x) > 0 Vz, support of 1 C By ={z € R" :|| z ||< 1},

1 T
SR Bi(x)dz =1, B,(x) = p—nﬁ1(;), p€R*.
We define w2 , and @} ,, the regularized function of u); and its linear interpolation respecti-
vely, in the following way:

uh (@) = (ul % 8,)(x) = / uh(z — )6, (v)dy

B(p)

We define @l , the element of Wy, such that @ ,(z;) = u® (z:), Vi=1,..,N.
We easily obtain that these functions are Lipschitz continuous, with Lipschitz constant L. .

We define recursively ufc‘,n the fully discrete optimal cost function for the problem with

T
finite horizon, 1 <n < N = W in the following way: “Z,n € Wy and

u;cl,n—l = TuZ,n? uZ,N =0 (49)
and we will denote uy y = uj o
We are going to obtain an estimate of the difference between the time discrete solution and
the fully discrete solution. The following two Lemmas are devoted to prove that u” defined
in (36) is “almost” a subsolution for the fully discrete problem.

Lemma 4.1 if (5), (H) and (10) are valid, then:

ﬂﬁ,p(xi) < Uz,k(xi) Vz;
2M
Y a— f ~h
where d, , = —P()\—H +(1- p)un,p and
Lf(]- + L—) + L Luh, 2 I + L_Luh
p = pmax - M - ot uh k_Qvu (50)
AL+ M) b1 hp .

Proof: From (36) we know that:

() < { (1= Ah)ulyy (@ + hg(a)) + hf(x)
n min, {¢(z,2) + hf(z +g(z,2)) + (1 = Ah)ul  (x + §(z, 2) + hg(z + §(z, 2))) }

RR n"2926



14 Mabel Tidball

By the definition of convolution and by the last inequality, we obtain:

(1= Ah)ul,y (x4 hg(z)) + hf(z) + hp(Ls + LgLqu)
min; {¢(z,z) + hf(z + §(z, 2))

h < 1
umpl?) < (= Aty @+ g(e.2) + gl + g2y O
+hp(Lg(1+ Lg) + Lg)‘ﬁLuhl) +p(Lq + L§Luz+1)
The function u” , has second derivatives bounded by:
| D?uy , |I< (52)

where C is a constant, (because uf; o

(see [19]), we can bound the difference between u;
following way:

is the regularization of a Lipschitz function) Then,

h , and its linear interpolation aht , in the

2
h ||< CLuhk—

Il o = 5

then by (51) we have:

(1= AR)itl (@ + hg(2)) + B (@) + ho(Ls + LoLyy )+ CLyy

un’p(@ < min {q(z, 2) +(/if_(x)\4’;)g(x7z)

)
1@+ 3(z,2) + hg(z + 3z, 2))) }
+hp(Lf(]. + g) +

LoAgLus )+ p(Lg+LgLyn )+ CLyn | E
(53)
Defining
. 2M -
u'}rLL,p = p(Tf + 1) (1 - p)“z,p

from (53), we have:
(1= Ah)aiyy ,(z + hg(z)) + hf(x) + hp(Ly + Lo Ly )

+CLyp, 5 —pAR(1+ %L
iy ,(x) << min, {g(z,2) + hf(fv +9(z,2)+ (1 - /\h)”ﬁ+1,p(w +9(2,2) + hg(x + g(z, 22)))}

+hp(Ls(1+ Ly )+L AgLyn )+ p(Lg+ LgLyn ) +CL, 2+1k7

—pA(L+ M pgy
Then, if we define:
L(1+L)+LL71 2 L,+ LzL»
p = pmax ! Tt O L %,u
A1+ o) n+1 hp 9

we obtain:

i) < { (L= M0)ith (2 + hy () + hf(2)
" min, {g(z, 2) + hf (o + (2, 2)) + (1= M)y (2 + 5(2, 2) + hy(x + g(,2)}

INRIA
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in consequence @, , is a subsolution of (49) and @ , < u} .
¢
Lemma 4.2 If (5), (H) and (10) are valid, then for alln =1,...,N, we have:
uﬁ(xi) < uﬁyk(mi) + CLZhnH%
Proof: Taking in definition (50) p = L we obtain p = CLx i, so:
v b VR
(1 = p)ian, ,(2:) < ugp (i) +p(2My +1)
that implies:
(2 < (e + Ly, -
Then, by definition of @ ,, we obtain:
1) S wh () + CLyy |
finally, keeping in mind that:
lun(z) = upr (@) < Lugp
we obtain: .
ul(ws) <l y (@) + CLyn 7h
¢

The following two Lemmas are devoted to prove that u” is “almost” a supersolution for the
fully discrete problem.

1
Lemma 4.3 Let nh = Y T = N h, Exy =0 and assume that in each interval of length h,

relation (54) is verified at most o times and relation (55) holds in the remaining points.

E; < (1= Ah)Eipy + CLy | % (54)
E; <(1=AR)Eiy1 + CLy  k Vh (55)

then: &
Ey < Mﬁ (56)

RR n"2926
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For the proof see [29].

Lemma 4.4 If (5), (H) and (10) are valid, then, Vx;:

vk
Vh

Proof: As u” corresponds to the optimization porblem (36), there exists 3, with |3| < pgAT,
such that uf = Psufy. Calling v1, ..., v55,1) the indices j such that s; = 1 we have that for
such indices the following relations hold:

ul (i) < ul(z;) + Celi™)

an, > {q(w,2) + hf(x + gz, 2)) + (1 = AR)iip (2 + §(x, 2) + hg(z + §(x, 2)))
k2
—hp(Lf(l + Lg) -+ LgAﬁLu2+1) — p(Lq + LgLu2+1) — CL"Z+1 ; (57)
up i < q(,2) + hf(z + (@, 2)) + (1 = M)agyy (¢ + 3z, 2) + hg(z + §(=, 2)))  (58)
and for j such that s; = 0 the following relations hold:

. - k?
it p 2 hf () + (1= M)k 1,0+ (@) = hp(L (14 L)+ Ly Ly ) = CLuy |, = (59)
upp < (1= AR)AL, (2 + hyg(z)) + hf(2) (60)

If we define E,, = max; {uﬁ’k(x,) — ﬂz’p(xi)}, from (57) and (58) for j such that s; = 1 we
obtain, minimizing in p, that:

k
En < (1= M0)Bnii + CLuy
while for j such that s; = 0, by relations (59) and (60) we obtain
En < (1= Ah)Eny1 +CLy  k vh

then,by Lemma 4.3 we obtain

k
Ey < M—
Y/
Then
k
e il + O S i, — | il + Celt VT 7 <
2

<ul 4 CelLNTZ L CellNTp 4 CelE-NT —_ <y 4 C’e(L)‘)T%

2%
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Remark 4.2 We have just obtain the rate of convergence for the problem with finite horizon.
Indeed if (5), (H) and (10) hold, then:

k
Vi

The proof is obvious by virtue of Lemma 4.2 and Lemma 4.4.

luf(z) — uk (@) < Celt=NT —

4.2 Rate of convergence of the fully discrete solution
Theorem 4.2 If (5), (H) and (10) hold, then:

u(z) — ui(2)] < C(h+ ﬁ)”

where y =14 A > L, v€(0,1) if/\:L,'y:%if/\<L.

Proof: The proof is evident by virtue of the following inequality and Remark 4.2.

u(z) — ui (2)] < |u(x) — ur(z)| + lur(z) — up(z)
+ut(z )—UZT( )|+|ukT( ) — ug(z)] <
< Ce™™ + up(z) — wh(x)| + |uf(x) — up 7 ()

2%

Remark 4.3 In the usual case, i.e. when h is the same order than k ( which means when
there exists my1 and mo such that mih < k < mah), formula (61) becomes:

Ju(x) — uj(x)| < Mk3"2

Remark 4.4 Optimising (61) in h, we obtain the optimal value for h = k3 and then:

2

fu() - ul()] < METS

w

5 Numerical example

We consider a problem where Q = (0,2), f(z) = —z, g(z, 2) = qo, and the dynamics of the

system given by:
% = —by(s), y(0) =z, b>0

while no impulsive control is applied. When an impulsion is applied the jump is given by:

i ={ 1 ifo<y<1
W=V 2y if1<y<?2

RR n"2926
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In this case we can find the analytical solution of the problem. If we call £ the point where
the system jumps the solution is given by:

3 _em2(2)

u)(3)" -5~ i {<e<2
w@) =9 w(@) + g ifl<z<é (62)
w(z+ 1)+ qo if0<e<1

Remark 5.1 ¢ is given by a relation between the data problem. In effect of (62), we obtain:

_s—(i/sb)*/” p
_ _ +
(€ is given by the greasted point where the last equality is valid).

Remark 5.2 The structure of an optimal feedback policy is the following: (&,2) is the set
of continuation; (0,&) is the set of application of impulsive control.

In this example, with A = 0.5, go = 0.5, b = 0.125, we obtain £ = 1.5 and u(2) = —3.125.
Table 2 gives us the maximun error between the real and the approximate solution for
different values of N using space discretization h = k. Table 1 shows the same measure
using h = k3.

Table 1 Table 2
N error N error
80 0.24473 80 0.076639
160 0.01215 160  0.04788

320  0.0060813 320  0.030016
640  0.0029928 640 0.018822
1280 0.0014999 1280 0.011816

6 Optimal switching problems

6.1 Description of the problem

We consider in this section a deterministic optimal switching problem, (see [10]), of a system
described by an ordinary differential equation, which dynamics can be modified, at the price
of a positive switching cost, into anyone of a different setting.

The problem consists in finding the optimal way to modify the dynamics with the purpose
of minimizing an associated cost.

INRIA
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More precisely, let us define an admissible control «(.) = {(6,,d,) : v =1,2,..} to be a
sequence of switching times 6, and control setting or switching decisions d,_; — d,, where

01/ € [07+OO>7 91/ < 01/+1 du S .D = {1, 7m}
then, the control d(.) remains constant in each interval [0,,60,41) being:

d(t) = deD if0<t<b
"l d,eD if0,<t<b,41, v>1

For each d € D we also define A%, the set of all admissible controls with initial setting d.
For a given z € IR", d € D, a € A%, the response of the system to the control a(.) is given
by the following ordinary differential equation:

d
T =9(s).d), 0, <t<bn y(0)=o
Our goal is to desing for each z € IR", d € D, an optimal control &, such that:

ul(z) = inf J%z,0) = J%z,a)
acAd

where ,
Jd(xv Oé) = { ’ f(y(s)v dvfl)eiksds + Q(dl/flv dv)eikgu }

[+ R" x D — IR is the instantaneous cost and q(d, d) is the transition cost to replace d by
d. Besides the usual assumptions of regularity and boundedness for f, g and ¢, we assume
that: ~ ~ . L

q(d,d) > g0 > 0, q(d,d) < q(d,d) + q(d, d) (63)
We understand this last inequality as follows: it is always cheaper to switch directly from
setting d to setting d than to switch though an intermediate setting d.

Remark 6.1 We can prove following a reasoning analogous at [10] that there exists an
optimal switching control with o simple structure in terms of feedback policies. The key to
the proof consists in showing that there exists ¢ > 0 such that ; > 6; 1 + 0.

Remark 6.2 We can prove, (see [10]), that the set of inequalities (63) can be replaced by:
dqgo > 0 such that for all closed sequences of indices dy, ..., dyr, with dy = d,,, we have:

q(do,dr) +q(da,d3) + ... + q(dn—1,drn) > qo

obtaining in this case the existence of the optimal cost function.

RR n"2926
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6.2 Equivalent impulsive problem

To obtain a fully discrete solution of the optimal switching problem and to estimate the rate
of convergence towards the real solution, we are going to prove that this type of problem is
equivalent to a special impulsive control problem.

We consider the following generalized version of the impulsive control problem presented in
81, extended for 2 = D x IR™, where the evolution of the system takes the form:

(d,)(s) = (o s(6) + | 9(u(0),.)d)
valid for 0, < s < 6,41.
The jumps of the generalized state at instant €, concern only the first component of the
state, i.e.

(d,y(6,)) = (d,9(6,)) + (d — d,0)
Remark 6.3 It is easy to see that A = 1. that is, in this case by (18) L = L,.

It is evident that optimal switching problems can be considered as particular cases of impul-
sive control problems, where the dynamics associated to the impulsive part is not expansive.
So we can anounce the following results:

d
min{aa%'g+f—)\ud,Mud—ud} =0

where

Mu®(z) = min u‘i(a:) +¢(d, d)
min { J

and the following rate of convergence of the discrete solution is valid:

() — ™ (@)| < O(h + -y

Vh

A

wherey =1if A> L, y€ (0,1)if A\ =Ly, v= I if A < L,. Note that this last inequality
g
give a smaller estimate than (61) because L = L.

7 Conclusions

We have studied the fully discrete solution of an impulsive control problem. We have obtai-
ned the rate of convergence of the discrete solutions to the real solution, with a delay scheme
and with a scheme that considers instantaneous impulsions. We have obtained an estimate
of type (h + %)7 When h is of order k and v = 1, that is when u is Lipschitz continuous,

we have obtained an estimate of type k%, which improves the estimate obtained in [15] and
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[19], where they obtain an estimate of type kZ |In(k)|.

When we have done the time optimization with respect to h, considering fixed k, we have
obtained a bound that depends only on the parameter k of order S

We have also proved that the optimal switching problem is a special case of an impulsive
control problem.

We have developed a simple numerical example, where the exact solution is known, in or-
der to show the error between the real and the approximate solution for different relations
between the time and the space discretization.
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