Skip to main content

Treatment of large air pollution models

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (WNAA 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1196))

Included in the following conference series:

  • 270 Accesses

Abstract

Large ozone concentrations have harmful effects on forests and crops when these exceed some critical levels. It is believed that the damages in USA due to high ozone concentrations exceed several billions dollars. Therefore it is worthwhile to investigate different actions that could be applied in the attempts to reduce the harmful effects. One needs reliable mathematical models in such studies. Reliable models are normally very big and it is difficult to treat them numerically, because they lead, after some kind of discretization and after the implementation of some appropriate splitting procedure, to several very huge systems of ordinary differential equations (up to order of 106). Moreover, these systems have to be treated numerically during many time-steps (typically several thousand time-steps per run are necessary). The use of modern parallel and/or vector machines is an important condition in the efforts to handle successfully big air pollution models. If the numerical algorithms are both sufficiently fast and sufficiently accurate, then different simulations can be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bott, A., ”A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes”, Mon. Weather Rev., 117(1989), 1006–1015.

    Google Scholar 

  2. Brandt, J., Wasniewski, J. and Zlatev, Z., ”Handling the chemical part in large air pollution models”, Appl. Math. and Comp. Sci., 6 (1996), 101–121.

    Google Scholar 

  3. Chock, D. P., Winkler, S. L. and Sun, P., ”Comparison of stiff chemistry solvers for air quality models”, Environ. Sci. Technol., 28 (1994), 1882–1892.

    Google Scholar 

  4. Crowley, W. P., ”Numerical advection experiments”, Mon. Weath. Rev., 96 (1968), 1–11.

    Google Scholar 

  5. Deuflhard, P., Nowak, U. and Wulkow, M., ”Recent development in chemical computing”, Computers Chem. Engng., 14 (1990), 1249–1258.

    Google Scholar 

  6. Forester, C. K., ”Higher order monotonic convective difference schemes”, J. Comput. Phys., 23(1977), 1–22.

    Google Scholar 

  7. Fornberg, B., ”A practical guide to pseidospectral methods”. Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  8. Hertel, O., Berkowicz, R., Christensen, J. and Hov, Ø., ”Test of two numerical schemes for use in atmospheric transport-chemistry models”, Atmos. Environ., 27A (1993), 2591–2611.

    Google Scholar 

  9. Hesstvedt, E., Hov, Ø. and Isaksen, I. A., ”Quasi-steady-state approximations in air pollution modelling: comparison of two numerical schemes for oxidant prediction”, Internat. J. Chem. Kinetics, 10 (1978), 971–994.

    Google Scholar 

  10. Holm, E. V., ”High-order numerical methods for advection in atmospheric models”, PhD Thesis, Department of Meteorology, Stockholm University, 1994.

    Google Scholar 

  11. Hov, Ø., Zlatev, Z., Berkowicz, R., Eliassen, A. and Prahm, L. P., ”Comparison of numerical techniques for use in air pollution models with non-linear chemical reactions”, Atmos. Environ., 23 (1988), 967–983.

    Google Scholar 

  12. Lambert, J. D., ”Numerical methods for ordinary differential equations”, Wiley, Chichester-New York-Brisbane-Toronto-Singapore, 1991.

    Google Scholar 

  13. Marchuk, G. I., ”Mathematical modeling for the problem of the environment”, Studies in Mathematics and Applications, No. 16, North-Holland, Amsterdam, 1985.

    Google Scholar 

  14. McRae G. J., Goodin, W. R. and Seinfeld, J. H., ”Numerical solution of the atmospheric diffusion equations for chemically reacting flows”, J. Comp. Phys., 45 (1984), 1–42.

    Google Scholar 

  15. Molenkampf, C. R., ”Accuracy of finite-difference methods applied to the advection equation”, J. Appl. Meteor., 7 (1968), 160–167.

    Google Scholar 

  16. Odman, M. T., Kumar, N. and Russell, A. G., ”A comparison of fast chemical kinetic solvers for air quality modeling”, Atmos. Environ., 26A (1992), 1783–1789.

    Google Scholar 

  17. Peters, L. K., Berkowitz, C. M., Carmichael, G. R., Easter, R. C., Fairweather, G., Ghan, S. J., Hales, J. M., Leung, L. R., Pennell, W. R., Potra, F. A., Saylor, R. D. and Tsang, T. T., ”The current state and future direction of Eulerian models in simulating the tropospherical chemistry and transport of trace species: A review”, Atmos. Environ., 29 (1995), 189–221

    Google Scholar 

  18. Petzold, L. R., ”Order results for implicit Runge-Kutta methods applied to differential-algebraic systems”, SIAM J. Numer. Anal., 23 (1986), 837–852.

    Google Scholar 

  19. Shieh, D. S., Chang, Y. and Carmichael, G. R., ”The evaluation of numerical techniques for solution of stiff ordinary differential equations arising from chemical kinetic problems”, Environ. Software, 3 (1988), 28–38.

    Google Scholar 

  20. Skelboe, S. and Zlatev, Z., ”Exploiting the natural partitioning in the numerical solution of ODE systems arising in atmospheric chemistry”, Springer, Berlin, to appear.

    Google Scholar 

  21. Verwer, J. G. and Simpson, D., ”Explicit methods for stiff ODE's from atmospheric chemistry”, Appl. Numer. Math., to appear.

    Google Scholar 

  22. Zlatev, Z., ”Application of predictor-corrector schemes with several correctors in solving air pollution problems”, BIT, 24 (1984), 700–715.

    Google Scholar 

  23. Zlatev, Z., ”Computer treatment of large air pollution models”, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.

    Google Scholar 

  24. Zlatev, Z., Fenger, J. and Mortensen, L., ”Relationships between emission sources and excess ozone concentrations”, Comput. Math. Applics., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lubin Vulkov Jerzy Waśniewski Plamen Yalamov

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandt, J., Christensen, J., Dimov, I., Georgiev, K., Uria, I., Zlatev, Z. (1997). Treatment of large air pollution models. In: Vulkov, L., Waśniewski, J., Yalamov, P. (eds) Numerical Analysis and Its Applications. WNAA 1996. Lecture Notes in Computer Science, vol 1196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62598-4_80

Download citation

  • DOI: https://doi.org/10.1007/3-540-62598-4_80

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62598-8

  • Online ISBN: 978-3-540-68326-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics