
UC Irvine
ICS Technical Reports

Title
Dynamic runtime optimization

Permalink
https://escholarship.org/uc/item/8g19p0ns

Author
Kistler, Thomas

Publication Date
1996-11-20
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8g19p0ns
https://escholarship.org
http://www.cdlib.org/


Notice: This Materiai
may be protected
by Copyright Law
(Title 17 U.S.C.)

Dynamic Runtime Optimization

Thomas Kistler

Technical Report 96-54

Department of Information and Computer Science
University of California at Irvine

Irvine. CA 92697-3425

20th November 1996

SI j&AR

no



b9tDytO"IQ 0U YF3
weJ jriQiiyqcO
(.3.3.U \,r 9bii



Dynamic Runtime Optimization

Thomas Kistler

Department of Information and Computer Science
University of California at Irvine

Irvine. CA 92697-3425

Abstract. In the past few years, code optimization has become a ma
jor field of research. Many efforts have been undertaken to find new
sophisticated algorithms that fully exploit the computing power of to
day's advanced microprocessors. Most of these algorithms do very well
in statically linked, monolithic software systems, but perform percepti
bly worse in extensible systems. The modular structure of these systems
imposes a natural barrier for intermodular compile-time optimizations.
In this paper we discuss a different approach in which optimization is
no longer performed at compile-time, but is delayed until runtime. Re-
optimized module versions are generated on-the-fly while the system is
running, replacing earlier less optimized versions.
In the first part of this paper we argue that dynamic runtime reoptimiza-
tion will play an important role in future software systems and discuss
the requirements for a modular, extensible operating system to support
dynamic runtime optimization. In the second part we give an overview
of promising intermodular and profile-guided reoptimizations. We also
measure the characteristics of a modular, extensible operating system in
order to estimate the potential of such optimizations.

1 Introduction

Generating high quality code is a challenge that has not ju.st come into fashion
recently. The first computer programs, written by hand in assembly code, had
to be optimized to fit into the limited storage space and to complete their tasks
within an acceptable period of lime.

With the advent of high level programming languages and compilers that
automatically translate user programs into machine code, this kind of "hand
tweaking" of code more or less fell into oblivion. The primary goal of high level
languages was to simplify program development and to free the programmer
from writing machine dependent code. Generating optimized code was not of
primary concern. Although the underlying hardware was .seldom fully exploited,
the generated instruction sequences were of fciirly high quality. Besides, time-
critical sections could still be written in assembler.

Only recently, with the introduction of more sophisticated processor archi
tectures, the introduction of RISC computers, and the general availability of
cheap hardware resources, have optimization techniques experienced a revival.
Appropriate use of proces.sor features, such as caches, pipelines, multiple instruc
tion units, and register windows have lead to an increase in speed by an order



of magnitude. Since the use of processor features cannot usually be influenced
by the programmer, many efforts have been spent to increase the quality of the
generated code by enriching the compiler with optimization techniques.

Except for optimizations that directly operate on instruction sequences (e.g.
peephole optimization), most of today's algorithms are based on both seman
tic information that is collected statically at compile-time and precise knowl
edge about the underlying hardware architecture. Naturally, the more informa
tion that is available about a program, the better the results will b^'. Local
optimizations, operating on basic blocks only, perform perceptibly worse than
global optimization techniques that are based on modular dataflow analysis.
Some strategies have even been implemented to optimize code patterns across
compilation-unit boundaries — so called intermodular optimizations. Intermod
ular optimizations however are hardly feasible in modular systems. Key con
cepts like information hiding, data abstraction, or component reusability require
hiding implementation details. Since the compiler cannot usually see what the
programmer cannot see either, modularity can generally not be brought into
line with the requirements of intermodular optimizations. These optimizations
depend on global implementation knowledge. Only when a fixed number of mod
ules is linked together to form a monolithic self-contained application (in which
case global information is available to the compiler) can these systems profit,
from intermodular optimizations.

Today's optimization techniques have some other major drawbacks. First,
they are all based on static program analysis and do not take into account the
system's or even the program's dynamic behavior. Optimizations are applied
uniformly to each section in the program, even though it is well known that only
small portions of a program account for most of the execution-time [KnuTO,
Ing71].

Second, we are at the moment witnessing far-reaching changes in the field
of software architecture. Applications of the next generation are very likely to
come cis a set of small software components instead of one large monolithic ap
plication. Such components, often called "applets", are loaded dynamically on
demand and can be put together arbitrarily, forming new applications which axe
tailored to the specific needs of a user. Furthermore, new components can be
downloaded and linked into the system at any time, immediately extending the
functionality of an application. Although these systems have uncontested advan
tages, their highly dynamic nature imposes a natural barrier to interprocedural
and intermodular optimizations. Since neither the end-user-configuration nor the
components" interaction schemes are known to the optimizer at compile-time,
code-optimization is limited to mframodu/ar techniques.

Beside changes in the software architecture of future applications, we are
also seeing major transitions in software distribution. Nowadays, applications
are written to suit exactly one specific operating system and one specific pro
cessor type, forcing software vendors to maintain and distribute several different
versions of their applications. However, in the near future, software components
will be distributed in a portable format and will be able to run both on multi-



pie operating systems and on multiple processor architectures. The components
will either be interpreted at runtime, or machine code will be generated from
the portable object file on-the-fly at load-time. Consequently, static optimiza
tion cannot be performed anymore during compilation of tlie source code since
the compiler lacks information about both the target operating system and the
target architecture.

Last but not least, computing power has soared dramatically during the
past few years. Not only has the performance of new processor architectures
increased from one processor to the next, but the time between generations has
shortened as well, due to new innovative design and manufacturing techniques.
This development diminishes the effects of optimizations that can be achieved.
Applications optimized for one specific processor type cannot necessarily take
full advantage of the new features of its successor models.

For all of the above reasons, we propose a new system architecture that
delays program optimization until runtime. Optimization either takes place in
the background while the system is running, or on explicit request of the pro
grammer. Runtime optimization manages to combine the benefits of modular
concepts and intermodular optimizations. It can utilize more information about
user behavior or the target architecture than static optimizations and thus can
achieve superior results for most optimizations.

2 A New System Architecture

We ai-e currently implementing a system that performs optimization at runtime
rather than at compile-time. By moving the optimization stage from compile-
time to runtime we manage to eliminate all of the previously mentioned disad
vantages of static optimizations and even improve on them with new techniques.
Our system consists mainly of four parts that are shown in Fig. 1.

The compiler generates an object-file from the source code. In order to deal
with all aspects of portability, each object file contains a portable intermediate
representation of the program rather than native machine instructions. Except
for constant folding, which is target-invariant and can be implemented in a
straightforward manner, the compiler performs no code enhancements. Doing so
might obstruct the potential for future dynamic runtime optimizations.

.A.S soon as a module needs to be loaded, the dynamic code-generating loader
transforms the intei*mediate representation into a native instruction sequence
and executes the module body. Since many of the optimization algorithms have
a great runtime complexity, optimizations are forgone at load-time in favor of
fast module loading and short user response-time. This appears to be a good
choice since the overall code-quality generated by our loader is quite good. In
most cases, its code can compete with current non-optimizing compilers.

Once modules are loaded, the adaptive profiler starts collecting information
about the system's runtime behavior. Its primary goal is to provide all the nec
essary background information upon which to base optimization decisions. It
first monitors information on the level of procedures. In this context, the profiler



takes a close look at call-frequencies, call-sequences, and call-durations. Fur
thermore. information about parameters and their dynamic types can be very
valuable for certain optimizations. As soon as the measured results stabilize,
monitoring is narrowed down to statement-blocks or even single statements in
order to facilitate optimizations for long-running instruction sequences. It pri
marily keeps watch on variable-counts, execution-frequencies of loops and on
how often conditional paths are executed.

PoftBUe

Irusrmadiiats
Representation
(Obect FiW]

Fig. 1. System Architecture

The dynamic optimizer periodically recompiles modules that consume most
of the execution-time in the background. The key idea is to profit from idle time
(we have measured an average idle time of more than 90 percent in our interac
tive operating system) in order to perform optimizations that would take up a
lot of user-time if performed on explicit demand. The optimizer operates on the
intermediate program representation utilizing information accumulated by the
profiler. Basing the optimizations on a profiler has one big advantage. If the pro
filer manages to pinpoint all the time-consuming parts (in general 5% of the code
accounts for more than 50% of execution-time [Knu70. Ing71]), the optimizer is
capable of spending more time on increasing the code quality of the sections
that account for most of the execution-time. That way, most time is spent on
highly optimizing a few important sequences rather than applying optimizations
uniformly to each section of the program. Less frequently executed sections are
optimized sparsely and no optimization is performed on barely executed sections.
The challenging issue is to find the best balance between the number of blocks to
optimize and the resulting speed-up. Still, in some cases, optimizations can take



substantial time. To assume that the computing power is sufficient to recompile
the whole system in one step, without impact on response-time, is rather opti
mistic. at least nowadays. Timings taken from existing compilers [Bra95] iiave
shown that applying optimizations to a program takes at least 5 times as long as
compiling the program. Therefore it may be preferable to perform optimizations
gradually and to periodically reoptimize program parts.

Since the system knows exactly which modules are loaded at runtime and
how they interact with each other, it is not restricted to local optimizations.
Indeed, performing intermodular code improvements on loaded applications is
made possible only now by the introduction of runtime code optimization.

As soon as a set of optimizations has been applied to a module, the system
replaces the running instance with the optimized module version. This process
requires updating intermodular dependencies.

3 The Importance of the Intermediate Representation

An important aspect that has not been discussed thus far is the choice of the in
termediate representation. As we have seen earlier, it is used both for generating
a first native version of a module and later on for supplying semantic information
to the optimizer in order to achieve high code quality. Consequently the repre
sentation must hold enough information to perform the optimizations desired. It
must also facilitate on-the-fly compilation that is fast enough to compete with
loading of compiled code ajid that generates native code of high quality. Last
but not least, the intermediate representation should not contain any machine
dependent information in order to be highly portable.

For these reasons we base our system on slim binaries [Fra94, FK96]. Slim
binaries are a form of intermediate representation that does not contain any
object code at all. but a portable description of a module's contents. This makes
these files completely independent of the eventual target machine. Slim binaries
are based on an encoding of abstract syntax trees rather than on virtual instruc
tion sequences as employed in the Java virtual machine representation [LYJ96].
Using a predictive compression algorithm to encode recurring sub-expressions,
slim binaries facilitate storing and decoding programs efficiently, both in terms
of space and time. Moreover, object code generation can be carried out on-the-fiy
and takes about as much time as loading traditional object files [FK96].

A tree-based encoding is different from a virtual machine representation in
that it cannot be interpreted easily. Program interpretation was essential for
efficient linking and loading of object files in operating systems with limited
memory capacity and computing resources. However, with the recent increase
of computing power and the advent of on-the-fly compilers, this argument loses
force.

Tree-based encodings on the other hand have many valuable advantages over
low-level representations. First of all, they are completely independent of any
target machine, whereas chances of a virtual machine representation not suiting
a specific processor type are reasonable. Second and even more important, the



abstract syntax-tree preserves all the semantic program information which is
essential for effective optimization algorithms. It keeps all the control-flow and
maintains the notion of basic blocks. Tree-based encodings also contain all the
information necessary for debugging tools that operate on the language level
rather than on the instruction level.

In order for low-level representations such as byte-codes to achieve compa
rable optimization results, a tree or control-flow graph must be reconstructed
before performing optimizations. In the past, object files have therefore been in
strumented with hints about block boundaries [Han74]. Even worse, the absence
of type information in such low-level representations prevents a complete set of
optimizations like polymorphic inline caches [HCU91] or runtime type feedback
[HU94].

4 Promising Intermodular Optimizations

In this section, we will present optimizations that can profit specifically from the
execution profiles and semantic information available at runtime. Generally this
applies to all optimizations that are based on heuristics. They tend to achieve
much better results in our experimental system than on any statically compiled
system since they now are based on exact, measured execution profiles rather
than on imprecise assumptions and since they now can be applied to the whole
system rather than to single procedures. Optimizations that only rely on local
information will not be discussed here because they ai-e fundamental in every
system (e.g. copy propagation, common subexpression elimination, peephole op
timizations, strength reduction, instruction scheduling).

4.1 Intermodular Inlining

Perhaps one of the most auspicious optimizations is intermodular inlining. The
basic idea of inlining is to replace a call to a procedure by the body of that
procedure. This not only avoids the costs of calling and returning from a pro
cedure (i.e. copying parameters to registers or on the stack, and allocating and
disposing of the parameter-passing area) but also increases the potential for suc
cessive optimizations (e.g. common subexpression elimination) since it allows
the inlined body to be improved within the context of the caller. In general,
separately compiled systems are restricted to inlining procedures within mod
ule boundaries. Only by neglecting extensibility and portability can inlining be
performed across compilation units. This case is called intermodular inlining.

In our architecture, in which optimization is performed while the system is
running, there are no restrictions. In addition, the idea can be taken even one
step further by inlining calls to procedure variables if a procedure is bound to
only one variable at runtime. The same idea holds for method calls, given that
the method is never overridden at runtime. For object oriented systems, even
hardcoding method calls without actually inlining the calls results in noticeable
speed-ups as no method lookups are required as a result.



In most compilers, inline decisions are based on size heuristics since it is
extremely difficult to estimate how inlining affects runtime performance. No
simple rule can be given as to which procedures to inline. For example, while
the number of instructions that can be saved is easy to precalculate. the effect
of modified code locality on cache performance is very hard to predict. Only
with the availability of an integrated profiler can the system further refine these
decisions. Issues to take into account are call frequencies, call-durations, or even
the results of previous inline steps.

Instead of actually copying the call bodies into the call site, procedure cloning
[IBM94] and partial evaluation [Sur93. Jon93] are related techniques that gen
erate multiple versions of the procedure body, each customized for a specific set
of callers. These optimizations are usually preferred to inlining for larger pro
cedures that are called frequently with multiple, but partially fixed parameter
lists. These parameter lists are then hardcoded into the corresponding proce
dure clones in order to benefit from further optimizations. Since dynamic type
information is also present at runtime in our system, even dynamic types can
be hardcoded into call-chains and thus speed up message sends dramatically in
object oriented systems. As for inlining. we expect procedure cloning and partial
evaluation to do perceptibly better when applied to the whole system.

4.2 Intermodular Register Allocation

A second optimization from which we expect improved speed-ups is intermod-
u/ar register allocation. Recent RISC machines have been built with small and
simple in.struction sets and fast instructions that operate on registers only. The
few provided load and store instructions are. however, an order of magnitude
slower because they access main memory. Hence chip manufacturers rely on
smart compilers that keep as much data as possible in the lai'ge provided reg
ister .sets. Unfortunately non-optimizing compilers use only a small subset of
these registers, wasting a lot of computing power. Even popular register allo
cation schemes, like the ones developed by Chaitin and Chow [Cha82, CH84],
fail to yield satisfactory results for systems applying separate compilation. The
main problem is that register allocation has to be applied separately to every
single module instead of to the whole system. This results in different registers
being assigned to the same global variable or the same regi.ster being assigned to
different local variables. Only late code optimization can avoid these problems.

In our experimental system, registers are assigned at link-time over the entire
system, hence the same set of registers can be assigned to procedures that are
not alive at the same time. In addition when one procedure calls emother, the
optimizer can make sure that they use different registers. The same principle
holds for parameters. No particular parameter passing mechanism is enforced.
Rather parameters are assigned to disjunctive register sets for fast argument
passing, and in order to avoid saving and restoring data around procedure calls.
In some Ceises it might even be worth storing constants in particular registers.

In our runtime optimizer, all allocation strategies are based on an intermod
ular call graph as proposed by Wall [Wal86] and on execution profiles. The latter



aie particularly useful in estimating which registers to spill in case of shortconi-
ings.

4.3 Intermodular Code Elimination and Code Motion

A completely different group of optimizations deals with intermodular code elim
ination and code motion. The idea is to either remove code in case it cannot be
reached or to relocate it to program parts that are less frequently executed. Well
known optimizations are loop invariant code motion —which tries to move loop-
invariant code outside of loops — and partial dead code elimination or partial
redundancy elimination —that tries to move statements into conditional paths.

Just as with register allocation and inlining. good algorithms have been
around for single procedures and single modules, but only poor solutions have
been presented so far for intermodular analysis. We hope to improve this situa
tion by the introduction of dynamic runtime optimization.

4.4 Cache Optimizations

Today's new processor designs use fast on-chip caches and somewhat sloweroff-
chip second level caches in order to improve system performance. In the near
future, these caches will become dramatically faster than main memory. Even
today, it typically takes ten times longer to retrieve data from main memory
than from a cache. It is therefore very important to avoid cache misses whenever
possible. With the availability of on-the-fly compilers and runtime optimizers
cache optimizations can now try to meet these requirements.

Basically there are three groups of possible cache optimizations: data cache
optimizations, instruction cache optimizations, and optimizations that take into
account cache parameters but don't have the explicit goal of improving cache
performance. Data cache optimizations on the one hand are easy to implement
and achieve good results. The idea is to improve the temporal data locality by
grouping variables that are repeatedly used in the same period of time. Spatial
locality can also be improved and the size of the working set decreased by re
ordering and compacting records. Cache blocking is a further, but much more
complicated technique to improve data cache behavior, especially for numerical
programs [WL91]. All of the above data cache optimizations have in common
tliat they are based either on statically weighted access computations or on
execution profiles.

Instruction cache optimizations, on the other hand, are very hard to im
plement and not at all feasible at compile-time. Only if a time-critical section
consists of a small number of procedures that call each other can we ensure that
the bodies are located in separate cache lines. If. on the other hand, a time-
critical section spans over many procedures, as is normally the case for object
oriented systems, it is hardly possible to avoid lineconflicts. Therefore, we adapt,
existing optimizations to take into account cacheparameters {e.g. size, linesize,
degree of associativity) instead of writing new ones with the sole goalof improv
ing instruction cache performance. Consider loop unrolling as an example, where



the primary goal is to remove unnecessary control structures and to overlap the
execution of several loop iterations. Unfortunately, if the unrolled loop results
in more cache misses, the runtime performance may even be decreased by this
optimization. Hence cache characteristics should be considered in this kind of
code improvement.

5 Optimization Potential for an Extensible Modular
Operating System

In order to quantify the potential achievements of the presented optimizations,
we have collected statistics about the Oberon System [WG89] for Power Mac
intosh computers. The Oberon System is an interactive, extensible operating
system. It not only includes representative applications like a graphical user in
terface, a native and portable compiler, a text- and a graphics-editor but also
smoothly integrates Internet services that will be essential parts of future opy-
erating systems (e.g. e-mail. WWW-browser, ftp, news, telnet, gopher). The
included native compiler translates programs written in the programming lan
guage Oberon [Wir88] to PowerPC 601 machine instructions. Its code quality
can be roughly compared to the quality of non-optimizing C compilers.

Table 1 gives a general overview of the system. There are two interesting
points to be observed. First, there are more calls to external procedures than
to local ones. This might be surprising at first sight but actually reflects the
achievement of two key goals of modular systems: abstraction and reuse. Hence,
our claim that intermodular optimizations are very important to achieve good
speed-ups can be reemphasized at this point.

Number of modules 229

Number of procedures 6660
.Number of external procedure calls 20299
Number of local procedure calls 17217
Number of indirect procedure calls 3411
Number of references to external variables 7756

Number of references to local variables 43540

Table 1. General Static System Information

Second, unlike in dynamically typed object oriented systems, there are very
few indirect calls in our system. As a result, many code improvements that
could be implemented to accelerate message-calls like polymorphic inline caches
[HCU91j or runtime type feedback [HU94] would have very Uttle effect on our
system.



Table 2 and Table 3 show average counts of various properties per procedure.
The numbers given in Table 2 have been collected during compilation of all
modules. Thus they do not take into account the fact that some procedures are
executed more frequently than others.

Procedure size (bytes) 422.14
Number of statements per procedure ' 17.10

Number of external calls per procedure 3.05
Number of local calls per procedure 2.59
Number of indirect calls per procedure 0.51
Number of references to external variables per procedure 1.16
Number of references to local variables per procedure 6.54
Number of unused registers per procedure (on PowerPC) 15.82

Table 2. Static Procedure Information

Weighting the values with the effective execution-time spent in a procedure
during an average working session yields slightly different values (Table 3). The
most interesting result here is that almost 50% of the available registers are
unused during execution-time (the PowerPC architecture defines 32 user-level,
general-purpose registers). Consequently there is an enormous potential for reg
ister related optimizations. Not only would it be worthwhile to keep local vari
ables in registers since they are accessed ten times more often than external
variables, but we could cilso keep local variables and paicuneters of two succes
sively called procedures in disjunctive register sets to avoid expensive parameter-
passing and register-saving. In comparison to statically optimized code, speed-
ups in the range of 10-25%. have been reported for similar register allocation
schemes [Wal86].

Number of external calls per procedure 4.79
Number of local calls per procedure 3.25
Number of indirect calls per procedure 1.64
Number of references to external variables per procedure 1.02
Number of references to local variables per procedure 10.55
Number of unused registers per procedure (on PowerPC) 11.82

Table 3. Dynamic Procedure Information

We have also examined the distribution of procedure sizes which is given in



Fig. 2. In general, procedures in our system are small. Half of all procedures
are smaller than 240 bytes which corresponds roughly to 60 instructions or 10
Oberon source-code statements. The great potential for inlining is evident. Even
when considering only to inline leaf-procedures (i.e. procedures that do not call
any other procedure) still every tenth procedure would be a potential candidate.

o o o o
V CM O 00
CM « V ^

oooo ooo oSCM O 00 (O S ^ O
N- o S a> o ^ CM

procedure size (bytes)

Fig. 2. Procedure Size Distribution

o o o o

® S? Si(O ^

The results that we have measured during test runs were very promising.In
some cases, when inlining frequently-executed procedures, a speed-up factor of 9
could be achieved. In addition, small procedures have a second positive impact
on inlining. If the optimizer inlined every second call, the overall code size would
only grow by about 25%.

6 Related Work

Pioneering research in program reoptimization was done by Knuth [Knu70], In-
galls [Ing71], and Jasik [.]as71]. Their work can be classified as iterative opti
mization and involves a feedback loop between the system and the programmer.
A profiler monitors the execution of a program and creates data upon which
the programmer bases further optimizations. The program is then run again to
obtain updated profiles. The disadvantages of this approach are obvious. Not
only does the inclusion of the programmer in the compile-load-run cycle make
the results dependent on his knowledge, but also input, values may vary from
run to run, diminishing previous optimizations.



A group at the University of Washington examined value-specific data-de
pendent optimizations [KEH93]. where code is optimized at runtime around
particular input values. This strategy can best be comparedto i)artial evaluation
that is applied at runtime. Unfortunately the programmer is still involved in that
he/she has to explicitly identify the bottlenecks in the application. This is done
by marking sections using templates or fragments in the source code.

Removing the programmer from the feedback loop was one of the main ideas
in Hansen s [Han74] automated optimization system. For speed considerations,
his system was based on a non-portable intermediate representation that could
be interpreted directly. Only when exceedinga certain runtime threshold was the
representation translated just-in-time to native code and optimized for speed.
He reported that the new reoptimizing FORTRAN-IV system did better than
any single compiled system he examined.

Rather than optimizing programs at runtime, the Titan/Mahler project at
Digital Western Research Laboratory attempted to perform optimizations only
at the timeof linking. In order to avoid expensive loading, program analysis was
performed completely by the compiler. The results were then integrated into the
object files which were represented in a portable register transfer language. The
results confirmed the importance of intermodular optimizations. Although inlin-
ing or procedure cloning was not integrated, the built-in intermodular register
allocation scheme achieved a speed-up of 10-25% [Wal86]. Another speed-up in
the range of 5-10% was reported by the implementation of intermodular code
motion. In addition [SW93] stressed the importanceof dynamic profiles and de
scribed that previously collected variable-use profiles almost invariably achieve
better results than compiler estimates.

In order to make object oriented languages competitive with traditional lan
guages. eliminating the overhead of dynamic dispatching at runtime is probably
the most important and the most promising optimization. Several techniques
have been presented in the last few years to achieve this goal, such as class pre
diction [H6194] and iterative class analysis [CU90] (both of them have been in
tegrated into the SELF-system [US87]). Interprocedural class analysis, a related
technique, was proposed by Grove [Gro95]. However it is still an open question
whether traditional statically-typed languages can profit from these techniques.

7 Conclusion

Traditional static optimization algorithms suffer from two important deficien
cies. First, they cannot be applied to portable code, and second, intermodular
optimizations can only be performed on statically linked monolithic applications,
thus thwarting extensibility and reducing the applicability for modularsystems.

Since extensibility and portability will play an important role in future soft
waresystems, we are currently implementing a system architecture in which pro
gram optimization is performed in the background while the system is running.
Unlike earlier proposals, optimizations are not applied uniformly to eachsection
of the program but rather take into account the program's dynamic behaviorand



are only applied to the parts that account for most of the execution-time. The
system utilizes object files that are based on a tree-based intermediate represen
tation. and is guided by an adaptive profiler. A tree based encoding has many
advantages over most commonly used low-level intermediate representations.

Finally, we have presented some examples of intermodular optimization twh-
niques and illustrated their enormous potential for modern extensible operating
systems.

8 Acknowledgments

Michael Franz and Martin Burtscher provided many helpful comments on an
earlier version of this paper. Martin Burtscher also developed a prototype algo
rithm for intermodular inlining upon which some of the presented statistics are
based. More information about the Oberon project and research related topics
at the University of California at Irvine can be found on the World Wide Web
at http;//www.ics.uci.edu/''oberon.

References

[Bra95]

[Cha82]

[CH84]

[CU90]

[Fra94]

[FK96]

[Gro95)

(Han74]

(HCU91]

M. M. Brandis: Optimxztng Compilers for Structured Programming Lan
guages: (Doctoral Dissertation) Eidgenossische Technische Hochschule
Zurich; 199.5

G. J. Chaitin; Register Allocation i: Spilling via Graph Coloring; In Pro
ceedings of the ACM SIGPLAN '82 Symposium on Compiler Construc
tion, pp 98-105. Published as SIGPLAN Notices 17(6): June 1982
F. C. Chow, J. L. Hennessy: Register Allocation by Priority-Based Col
oring; In Proceedings of the ACM SIGPLAN '84 Symposium on Compiler
Construction, pp 222-232. Published as SIGPLAN Notices 19(6): June
1984

C. Chambers. D. Ungar; Iterative Type Analysis and Extended Message
Splitting: Optimizing Dynanhcally-Typed Object-Oriented Programs: In
Proceedings of the ACM SIGPLAN '90 Conference on Programming Lan
guage Design and Implementation, pp 150-164. Published as SIGPLAN
Notices 25(6): June 1990
M. Franz; Code-Generation On-the-Fly: A Key to Portable Software:
(Doctoral Dissertation) V'erlag der Fachvereine, Zurich; 1994

M. Franz. Th. Kistler; Slim Binaries: Technical Report 96-24, Department
of Information and Computer Science, UC Irvine; 1996
D. Grove: The Impact of Interprocedural Class Analysis on Optimiza
tions; CASCOM '95 Proceedings: .November 1995
G. J. Hansen; Adaptive Systems for the Dynamic Run-Time Optimiza
tion of Programs: (Ph.D. Dissertation) Department of Computer Science,
Carnegie-Mellon University; 1974
U. Holzle. C. C'hambers, D. Ungar; Optimizing Dynamically-Typed
Object-Oriented Languages With Polymorphic Inline Caches; In ECOOP
'91 Conference Proceedings. Published as Springer Verlag Lecture Notes
in Computer Science 512: 1991



U. Holzle: Adaptive Optiinization for SELF: Reconciling High PeTfov-
mance with Exploratory Programming: (Ph.D. Dissertation) Department
of Computer Science. Stanford University; 1994

U. Holzle. D. Ungar: Optimizing Dynamtcally-Dtspafched C'alls unlh Run
Time Type Feedback: In SIGPLAN '94 Conference on Programming Lan
guage Design and Implementation, pp 326-336. Published as SKiPLAN
Notices 29(6): June 1994

IBM; PowerPC and P0WER2: Technical Aspects of the New IBM RISC
System/6000: IBM Order Number SA23-2737-00

D. Ingalis; The Execution Time Profile as a Programming Tool: In Design
and Optimization of Compilers, pp 107-128, Prentice-Hall; 1971

S. Jasik; Monitoring Execution on the CDC 6000's; In Design and Opti
mization of Compilers, pp 129-136. Prentice-Hall; 1971

N. Jones; Special Issue on Partial Evaluation; Journal of Functional Pro

gramming 3(4)'< 1993

D. Keppel, S. J. Eggers, R. R. Henry; Evaluating Runtime-Compiled
Value-Specific Optimizations: Technical Report 93-11-02, Department of
Computer Science and Engineering, University of Washington; 1993

D. E. Knuth; An Empirical Study of FORTRAN Programs; IBM Report
RC 3276; 1970

T. Lindholm, F. Yellin. B. Joy, K. Walrath; The Java Virtual Machine
Specification: Addison-Wesley; 1996

R. Surati; A Parallelizing Compiler Based on Partial Evaluation: Techni
cal Report AITR-1377, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology; 1993

A. Srivastava, D. W. Wall; A Practical System for Intermodule C'ode
Optimization at Link-Time; Journal of Programming Languages: 1993

David I'ligar, R. B. Smith; SELF; The Power of Simplicity; In OOPSLA
'87 Conference Proceedings, pp 227-241. Published as SIGPLAN Notices
28(12): December !987

D. W. Wall; Giobal Register Allocation at Link Time; In Proceedings of
SIGPLAN '86 Sym.posinm on Compiler Construction, pp 264-275; July
1986

N. Wirth. J. Gutknecht: The Oberon System; In Software-Practice and
Experience 19(9). pp 857-893; September 1989

N. Wirth; The Programming Language Oberon: In Software-Practice and
Experience 18(7). pp 671-690; July 1988

M. Wolf, M. Lam: A Data Locality Optimization Algorithm; In Proceed
ings of the SIGPLAN '91 Conference on Programming Language De.sign
and Implementation, pp 30-44, Published as SIGPLAN Notices 26(6):
June 1991




