
Outermost-Fair Rewriting

Femke van Raamsdonk

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. A rewrite sequence is said to be outermost-fair if every out­
ermost redex occurrence is eventually eliminated. O'Donnell has shown
that outermost-fair rewriting is normalising for almost orthogonal :6.rst­
order term rewriting systems. In this paper we extend this result to the
higher-order case.

1 Introduction

It may occur that a term can be rewritten to normal form but is also the starting
point of an infinite rewrite sequence. In that case it is important to know how to
rewrite the term such that eventually a normal form is obtained. The question of
how to rewrite a term can be answered by a strategy, which selects one or more
redex occurrences in every term that is not in normal form. If repeatedly con­
tracting the redex occurrences that are selected by the strategy yields a normal
form whenever the initial term has one, the strategy is said to be normalising.

A classical result for >.-calculus with ,B-reduction is that the strategy selecting
the leftmost redex occurrence is normalising. This is proved in [CFC58]. For
orthogonal first-order term rewriting systems, O'Donnell has shown in [O'D77]
that the parallel-outermost strategy, which selects all redex occurrences that
are outermost to be contracted simultaneously, is normalising. This result is a
consequence of a stronger result which is also proved in [O'D77], namely that
every outermost-fair rewrite sequence eventually ends in a normal form whenever
the initial term has one. A rewrite sequence is said to be outermost-fair if every
outermost redex occurrence is eventually eliminated.

This paper is concerned with the question of how to find a normal form
in a higher-order rewriting system, in which rewriting is defined modulo simply
typed .A-calculus. We extend the result by O'Donnell to the higher-order case: we
show that outermost-fair rewriting is normalising for almost orthogonal higher­
order rewriting systems, that satisfy some condition on the bound variables.
This condition is called full extendedness. As in the first-order case, an immediate
corollary of the main result is that the parallel-outermost strategy is normalising
for orthogonal higher-order rewriting systems that are fully extended.

Our result extends and corrects a result by Bergstra and Klop, proved in the
appendix of [BK86], which states that outermost-fair rewriting is normalising for
orthogonal Combinatory Reduction Systems. Unfortunately, the proof presented
in [BK86] is not entirely correct.

The remainder of this paper is organised as follows. The next section is con­
cerned with the preliminaries. In Section 3 the notion of outermost-fair rewriting

285

is explained. In Section 4 the main result of this paper is proved, namely that
outermost-fair rewriting is normalising for the class of almost orthogonal and
fully extended higher-order rewriting systems. The present paper is rather con­
cise in nature; for a detailed account the interested reader is referred to [Raa96).

2 Preliminaries

In this section we recall the definition of higher-order rewriting systems [Nip91,
MN94), following the presentation in [Oos94, Raa96]. We further give the def­
initions of almost orthogonality and full extendedness. The reader is supposed
to be familiar with simply typed .X-calculus with .B-reduction (denoted by -+~)
and restricted 7]-expansion (denoted by -+ij); see for instance [Bar92, Aka.93).
Simple types, written as A, B, C, ... are built from base types and the binary
type constructor-+. We suppose that for every type A there are infinitely many
variables of type A, written as xA, yA, zA,

Higher-Order Rewriting Systems. The meta-language of higher-order rewriting
systems, which we call the substitution calculus as in [Oos94, OR94, Raa96], is
simply typed .X-calculus.

A higher-order rewriting system is specified by a pair (A, 'R) consisting of a
rewrite alphabet and a set of rewrite rules over A.

A rewrite alphabet is a set A consisting of simply typed function symbols. A
preterm of type A over A is a simply typed .X-term of type A over A. Preterms
are denoted by s, t, Instead of >.xA .s we will write xA .s. We will often omit
the superscript denoting the type of a variable. Preterms are considered modulo
the equivalence relation generated by a, f3 and TJ. Every af3TJ-equivalence class
contains a f377-normal form that is unique up to a-conversion. Such a representa­
tive is called a term. Terms are the objects that are rewritten in a higher-order
rewriting system.

In the following, all preterms are supposed to be in 7]-normal form. Note that
the set of 7]-normal forms is closed under .B-reduction.

For the definition of a rewrite rule we first need to introduce the notion
of rule-pattern, which is an adaptation of the notion of pattern due to Miller
[Mil91]. A rule-pattern is a closed term of the form X1 ..•• . xm.f s1 ••. Sn such that
every y E { x1 , ... , xm} occurs in f s 1 ... s .. , and it occurs only in subterms of the
form yz1 ••• Zp with z1, ... , Zp the Tj-normal forms of different bound variables
not among x1 , ... , Xm. The function symbol f is called the head-symbol of the
rule-pattern.

A rewrite rule over a rewrite alphabet A is defined as a pair of closed terms
over A of the same type of the form x1 .••. . Xm.S-+ x1 •... . Xrn.t, with x1 ...• • Xm.s
a rule-pattern. The head-symbol of a rewrite rule is the head-symbol of its left­
hand side. Rewrite rules are denoted by R, R',

The next thing to define is the rewrite relation of a higher-order rewriting
system (A, 'R). To that end we need to introduce the notion of context. We use
the symbol oA to denote a variable of type A that is supposed to be free. A

286

context of type A is a term with one occurrence of oA. A context of type A is
denoted by QOA and the preterm obtained by replacing OA by a term s of type
A is denoted by C[s].

Now the rewrite relation of a higher-order rewriting system (A, R), denoted
by -+, is defined as follows : we have S -+ t if there is a context COA and a
rewrite rule l -+ r in n with l and r of type A such that s is the ,6-normal
form of C[l] and t is the ,6-normal form of C[r]. That is, such a rewrite step is
decomposed as

s b*"" C[l] -+ C(r] -*b t

where """*b denotes a ,6-reduction to ,6-normal form. Note that the rewrite relation
is defined on terms, not on preterms. The rewrite relation is decidable because
the left-hand sides of rewrite rules are required to be rule-patterns.

As an example, we consider untyped lambda-calculus with beta-reduction
and eta-reduction in the format of higher-order rewriting systems. The rewrite
alphabet consists of the function symbols app: 0-+ 0-+ 0 and abs: (0-+ 0)-+ O
with 0 the only base type. The rewrite rules are given as follows:

I (b)' I I z.z .app a s x.zx z -+beta z.z .zz

z.abs(x.appzx) -+eta z.z

The rewrite step app(abs x.x)y -+beta y is obtained as follows:

app(absx.x)y b~ (z.z'.app(absx.zx)z')(x.x)y -+beta (z.z'.zz')(x.x)y -+>~ y.

In the sequel, types won't be mentioned explicitly.

Residuals. In the remainder of this paper the notions of redex occurrence and
residual will be important. For their definitions we need two auxiliary notions
we suppose the reader is familiar with.

The first one is the notion of position, and an ordering j on positions. A
position is a finite sequence over {O, 1}. We write positions as </>, x, 'If;, There
is an operator for concatenating positions that is denoted by juxtaposition and
is supposed to be associative. The neutral element for concatenation of positions
is the empty sequence denoted by e.

The set of positions of a (pre)term, and the sub(pre)term of a (pre)term at
position </> are defined as in >.-calculus. For instance, the set of positions of the
term J(x.x)a is {e,0,00,01,010, 1}. The subterm of f(x.x)a at position 01 is x.x
and the subterm of f(x.x)a at position 1 is a.

The ordering j on the set of positions is defined as follows: we have </> j x if
there exists a position ef/ such that </> </>' = X· The strict variant of this order is
obtained by requiring in addition that ef/ f. e.

The second auxiliary notion needed for the definition of the residual rela­
tion of a higher-order rewriting system, is a descendant relation tracing posi­
tions along ,6-reductions. We illustrate this notion by an example. Consider the
preterm f((x.y.xx)ab) and its reduction to ,6-normal form J((x.y.xx)ab) """*b
f(aa). The descendant of the position 0 in f((x.y.xx)ab) is the position 0 in

287

f(aa), the descendants of the position 101 in f((x.y.x:c)ab) are the positions 10
and 11 in f(aa), and the descendant of the position 10000 in f((x.y.xx)ab) is
the position 1 in f(aa).

A redex occurrence in a term s is a pair (if>, l --+ r) consisting of a position
in s and a rewrite rule such that 4> is the descendant of the position of the
head-symbol of l along the reduction C[l] -11b s. A redex occurrence (</J, l --+ r)

as above is said to be contracted in the rewrite step s --+ t with s b- C[l] and
C[r] -11b t. Redex occurrences are denoted by u, v, w,

In the remainder of the paper it will often be essential to know which redex
occurrence is contracted in a rewrite step. This is made explicit by writing u :
s --+tor s ~ t, if the redex occurrence u is contracted in the rewrite step s --+ t.

The ordering on positions induces an ordering on redex occurrences as follows.
Let (i/>, l --+ r) and (i/>1, l 1 --+ r1) be redex occurrences in a term t. Suppose that
l = X1 ••.• • Xm ·f 81 •..• . Sn and l' = X1 .•.•. Xm' .f' s~ s~,. Then 4> = 4>o om
and 4>' = 4>~ om for some 4>o and </J~. Now an ordering on redex occurrences,
also denoted by ~, is defined as follows: (</>, l --+ r) :j (</>', l' --+ r1) if <Po ~ </>~.
For example, if x.fx -+R, x.gx and a -+R2 b are rewrite rules, then we have
(0, R1) ~ (1, R2) in the term fa. For the intuition behind the ordering on redex
occurrences, it might be helpful to think off s 1 ••. Sm as f(s 1, ... , sm)·

The descendant relation for a higher-order rewriting system is defined using
the descendant relation for (J as follows. Let s b- C[l] --+ C[r] -11b s' be the
decomposition of a rewrite step s --+ s'. A position </> in s descends to a position
</>' in s' if there is a position x in the CO-part of C[l], which is hence also a
position in C[r], such that x descends to 4> along C[l] -~ s and x descends to
</>1 along C[r] -b s'. Note that a position in s which descends from a position
in the l-part of C[l] along C[l] -1113 s does not have a descendant ins'.

As an example, we consider the higher-order rewriting system defined by the
rewrite rule

x.f x --+ x.gxx.

We have the rewrite step h(f a) --+ h(gaa) which is obtained as follows:

h(fa) ~- h((x.fx)a)--+ h((x.gxx)a) -11b h(gaa).

The descendant of the position 0 in h(fa) is the position 0 in h(gaa), the de­
scendant of the position 11 in h(fa) are the positions 101 and 11 in h(gaa) and
the position 10 in h(fa) doesn't have a descendant in h(gaa).

In this paper we will be concerned with higher-order rewriting systems that
have the following property: if (i/>, l --+ r) is a redex occurrence in s, and <P
descends to <P' along the rewrite step u : s --+ s1 , then (4>', l --+ r) is a redex
occurrence in s'. The redex occurrence (</>', l --+ r) is then said to be a residual
of the redex occurrence (</>, l --+ r). If u and v are redex occurrences in a term
s, then the set of residuals of v after performing the rewrite step u : s --+ t is
denoted by Res(s, u)(v). The residual relation is extended in a straightforward
way to rewrite sequences consisting possibly of more than one step and sets of
redex occurrences.

288

Almost Orthogonality and Full Extendedness. The main result of this paper is
concerned with higher-order rewriting systems that are almost orthogonal and
fully extended. We will now explain the notions of almost orthogonality and full
extendedness.

For the definition of almost orthogonality we need the notion of left-linearity.
A rule-pattern x1 Xm.fs1 .•• Sn is linear if every y E {x1, ... ,xm} occurs
at most once (and hence, by the definition of a rule-pattern, exactly once) in
f s1 •.• Sn· A rewrite rule is said to be left-linear if its left-hand side is linear,
and a higher-order rewriting system is said to be left-linear if all its rewrite rules
are left-linear. For example, the rewrite rule x.fx -+ x.gx is left-linear, but the
rewrite rule x.f xx -+ x.gx is not.

A higher-order rewriting system is said to be orthogonal if it is left-linear and
has no critical pairs. A higher-order rewriting system is said to be weakly orthog­
onal if it is left-linear and all its critical pairs are trivial. Almost orthogonality
lies in between orthogonality and weak orthogonality. A higher-order rewriting
system is said to be almost orthogonal if it is weakly orthogonal with the addi­
tional property that overlap between redex occurrences occurs only at the root
of the redex occurrences. The notion of overlapping redex occurrences is defined
below. The notion of critical pair is the usual one, as defined in [Hue80]. The
formal definition for higher-order rewriting systems is not given in the present
paper.

Definition 1. Let u = (</>on, l -+ r) and u' = (</>'on', l' -+ r') with l =
X1 Xm.f s1 ••• Sn and l' = X1 .•.. . Xm• .f' s~ ... s~, be redex occurrences in a
terms.

1. The redex occurrence u nests the redex occurrence u' if <P' = <P x 'ljJ such that
the subterm of f s1 ... Sn at position x Oi is a variable y E { x1, ... , Xm}, and
'I/; is an arbitrary position.

2. The redex occurrences u and u' are overlapping if
(a) they are different,
(b) </> :::; <P' and u does not nest u', or <P' :; </> and u' does not nest u.

Definition 2. 1. A higher-order rewriting system is said to be weakly head­
ambiguous if for every term s and for every two overlapping redex occurrences
U = (cp0n,l-+ r) and U 1 = (</>1 on' 1 l'-+ r1) With l = X1 Xm.f 81, .. Sn and
l' = x1 ••.• • Xm• .f' s~ ... s~, in s, we have u : s -+ t and u' : s -+ t, that
is, u and u' define the same rewrite step, and moreover <P = <//, and hence
necessarily n = n'.

2. A higher-order rewriting system is said to be almost orthogonal if it is left­
linear and weakly head-ambiguous.

The rewriting system defined by the rewrite rules

x.fx-+ x.g:c

a-+ b

289

is orthogonal. The rewriting system defined by the rewrite rules

fa-> fb

a-> b

is weakly orthogonal but not almost orthogonal. The rewriting system for parallel
or defined by the rewrite rules

x.fax-+ x.a

x.fxa-+ x.a

is almost orthogonal but not orthogonal.
We will use the following notation. By u U v we denote that the redex oc­

currences u and v are overlapping. Two overlapping redex occurrences are by
definition different, so the relation U is not reflexive. In an almost orthogonal
rewriting system, we have the following: if u U v and v U w, then u U w or u = w.
This implication does not hold in a weakly orthogonal rewriting system. Con­
sider for instance the weakly orthogonal higher-order rewriting system defined
by the following rewrite rules:

x.f(gx) ->R1 x.f(gb)

ga _,R2 gb

a -tRs b

In the term J(ga), we have (0, Ri) U (10, R2) and (10, R2) U (11, Ra) but not
(0, Ri) tt (11, Ra).

We denote by u II v that the redex occurrences u and v are not overlapping.
The relation II is reflexive. It is extended in the obvious way to denote that a
redex occurrence is not overlapping with a set of redex occurrences.

Finally, the notion of full extendedness will be needed. The definition is given
in [HP96, Oos96a].

Definition 3. A rewrite rule x1 xm.s -> x1 Xm.t is said to be fully ex­
tended if every occurrence of y E {x1 , ... ,xm} ins has the 1}-normal form of
every bound variable in which scope it occurs as argument.

A higher-order rewriting system is fully extended if every rewrite rule of it is.

An example of a rewrite rule that is fully extended is the rule for beta in the
higher-order rewriting system representing lambda-calculus. The rewrite rule
for eta in the same system is not fully extended, because in abs(x.appzx), the
variable z does not have the variable x as an argument. Note that the traditional
version of the eta-reduction rule contains a side-condition concerning the bound
variable.

In Section 4 it will be explained which restrictions imposed on higher-order
rewriting systems are necessary for outermost-fair rewriting to be normalising,
and which are mainly there to make the proof work.

290

The Weakly Orthogonal Projection. The weakly orthogonal projection is defined
by van Oostrom in [Oos94, p.49). It is used to prove confluence of weakly or­
thogonal higher-order rewriting systems by developments. Here we recall the
construction of the weakly orthogonal projection which, as the terminology in­
dicates, is defined for all weakly orthogonal higher-order rewriting system. We
will use it for the smaller class consisting of all almost orthogonal and fully
extended higher-order rewriting systems.

The reader is supposed to be familiar with complete developments and the
projection of a rewrite sequence over a rewrite step in the orthogonal case. A
complete development of a set of (non-overlapping) redex occurrences U is de-

noted by U : s-e-; t or by s ~ t. If v is a redex occurrence in s, then the
set of residuals of v after performing a complete development of U is denoted
by Res(s,U)(v). A development rewrite sequence is obtained by concatenating
complete developments.

Let 1-l. be a weakly orthogonal higher-order rewriting system. Consider a finite
or infinite rewrite sequence

and a rewrite step
v: so -+ t 0 .

Let Vo = { v} and define for m ~ 0 the following:

_ {Um if Um JI Vm,
Um - Vm if Um~ Vm for some Vm E Vm,

Vm+l = Res(sm,um)(Vm)·

Since the rewriting system is weakly orthogonal, we have for every m ~ O that
Um : Sm-+ Sm+l if Um: Sm-+ sm+l· Let Cl be the rewrite sequence

By construction, we have for every m ~ 0 that Um II Vm. Note that Vm is the
set of residuals of v in Sm. For every m ~ 0 we define

Um= Res(sm, Vm)(um)·

Let r be the development rewrite sequence

Uo U1 U2 U3
r : to -e-; t1 -e-; t2 -e-; t3 -e-; •.•.

In a diagram, the situation is depicted as follows:

(j :

(! :

r:

291

We use the following terminology. The rewrite sequence u is said to be a sim­
ulation of the rewrite sequence 0-. The development rewrite sequence r is said
to be the orthogonal projection of the rewrite sequence u over the rewrite step
v: so -t to. The development rewrite sequencer is said to be a weakly orthogonal
projection of the rewrite sequence iJ over the rewrite step v : s0 .- to.

In almost orthogonal higher-order rewriting systems, a simulation of a rewrite
sequence constructed for the weakly orthogonal projection is unique. This is
the case since if we have Um ~ Vm and Um ~ v:n in the notation as above,
then by almost orthogonality Vm ~ v:,.. or Vm = v:n. Since Vm consists of non­
overlapping redex occurrences, we have Vm = v:,... In a weakly orthogonal higher­
order rewriting system, a simulation of a rewrite sequence constructed for the
weakly orthogonal projection is not necessarily unique.

We conclude this section with an example of the weakly orthogonal projec­
tion.

Example 1. Consider the rewriting system defined by the following rules:

x.f ax -tR1 x.a

x.f xa -tR2 x.a

x.gx -tR3 x.hxx

It is almost orthogonal but not orthogonal. We construct the weakly orthogonal
projection of the rewrite sequence

iJ : g(f aa) ~ h(Jaa)(f aa) ~ ha(Jaa)

with u0 = (0, Ra) and u1 = (0100, R2) over the rewrite step v : g(f aa) -t ga with
v = (100, R1). This yields the following:

0-: g(faa) ~ h(faa)(faa) ~ ha(faa)

with

uo = (0, Ra) Uo = {(O, R.a)}
u1 = (0100, R1) U1 = 0

and

292

3 Outermost-Fair Rewriting

A rewrite sequence is said to be outermost-fair, or in the terminology of [O'D77],
eventually outermost, if every outermost redex occurrence is eventually elimi­
nated. So a rewrite sequence is outermost-fair either if it ends in a normal form
or if it is impossible to trace infinitely long an outermost redex occurrence. In
order to formalise the notion of an outermost-fair rewrite sequence, the defini­
tion of an infinite outermost chain is given. First the definition of an outermost
redex occurrence is presented.

Definition 4. A redex occurrence (</>, l -t r) in a term s is said to be outermost
if for every redex occurrence (</>', l1 -t r') in s we have the following: if (</>1 , l' --+

r') :::::5 (</>,l -t r) then</>'=</>.

The term g(faa) in the rewriting system of Example 1 contains one outermost
red ex occurrence, namely (0, R3). The term f aa in the same rewriting system
contains two outermost redex occurrences, namely {00, Rl) and (00, R2}· This
shows that, in an almost orthogonal higher-order rewriting system, outermost
redex occurrences may be overlapping.

Definition 5. Let u : s0 ~ 8 1 ~ 82 ~ ••• be an infinite rewrite sequence.
An infinite outermost chain in u is an infinite sequence of redex occurrences
Wm, Wm+l • .•• such that

1. w 11 is an outermost redex occurrence in 8p for every p?: m,
2. w11 is a residual of w11 _ 1 for every p > m.

Note that in the previous definition w11 II u 11 for every p ?: m. Now the key
definition of this paper can be given.

Definition 6. A rewrite sequence is said to be outermost-fair either if it ends
in a normal form or if it is infinite and does not contain an infinite outermost
chain.

The definition of an outermost-fair rewrite sequence is illustrated by the following
example.

Example 2. Consider the higher-order rewriting system defined by the following
rewrite rules:

1. The rewrite sequence

x.f cx -tR1 x.fbx

b -tR2 c

a-tR3 a

u : fca ~ fba ~ f ca ~ ...

293

with U2m = (00, R1) and U2m+i = (01, R2) for every m 2'.: 0 is outermost-fair.
Note that there is an infinite sequence of residuals starting in the first term
of u, namely (1, R3), (1, R3), (1, R3), This infinite sequence of residuals is
however not an infinite outermost chain, although infinitely many residuals
in it are outermost.

2. The rewrite sequence

u : f aa ~ f aa ~ f aa ~ ...

with Um = (01, R3) for every m 2'.: 0 is not outermost-fair since we have an
infinite outermost chain, namely (1, R3), (1, R3), (1, R3),

4 Outermost-Fair Rewriting is Normalising

In this section we present the proof of the main result of this paper, namely that
outermost-fair rewriting is normalising for almost orthogonal and fully extended
higher-order rewriting systems.

The Structure of the Proof. The structure of the proof is as follows. Suppose
that the finite or infinite rewrite sequence

is outermost-fair. Let v : so -? to be a rewrite step and construct the weakly
orthogonal projection of ii over v as explained in Section 2. In a diagram:

iT:
Uo fi1 U2 ii.s

So -----'--? S1 --+ S2 --+ S3 --+ · · ·

(j:

'T :

The proof consists of the following steps:

1. If ii is outermost-fair, then u is outermost-fair (Proposition 7).
2. If u is outermost-fair, then r is outermost-fair (Proposition 8).
3. If <T is outermost-fair and r ends in a normal form t, then u ends in t

(Proposition 9).
4. If a term s has a normal form t then every outermost-fair rewrite sequence

starting in s eventually ends in t (Theorem 10).

The notation in the proof will be such that the diagram above applies.

294

Some Observations. Three restrictions are imposed on the higher-order rewrit­
ing systems that we consider: rewrite rules must be left-linear, all critical pairs
are trivial and overlap occurs only at the root of redex occurrences, and finally
rewrite rules must be fully extended. Before we embark on the proof, we first
analyse the role of these restrictions.

The restriction to left-linear systems is necessary, since outermost-fair rewrit­
ing may not be normalising in a higher-order rewriting system that is not left­
linear. This is illustrated by the following example:

x.f xx -tR1 x.b

x.gx -tR:i x.gx

a -tRs b

The rewrite sequence f(ga)(gb) -t f(ga)(gb) -t ... in which alternately the
outermost redex occurrence (010, R2) and the outermost redex occurrence (10, R2)

are contracted, is outermost-fair but does not end in the normal form b, although
we have J(ga)(gb) -t f(gb)(gb) -t b.

The restriction to fully extended systems is also necessary. This was pointed
out to me by Vincent van Oostrom [Oos96b], who gave the following example.
Consider the higher-order rewriting system defined by the following rewrite rules:

z.f(x.z) -tR1 z.a

z.gz -tR2 z.a

z.hz -tR3 z.hz

It is not fully extended because of the rewrite rule R1: the variable z in f(x.z)
doesn't have the variable x as an argument. The rewrite sequence J(x.h(gx)) -t
f(x.h(gx)) -t ... in which in every step the outermost redex occurrence (100, R3)

is contracted, is outermost-fair but does not end in the normal form a, although
we have f(x.h(gx)) -t f(x.ha) -ta. Note that (O,R1) is not a redex occurrence
in f(x.h(gx)) because of the occurrence of x at position 1011.

In both cases the problem is that an outermost-redex occurrence can be
created by contracting a redex occurrence that is not outermost. In a higher-order
rewriting system that is almost orthogonal and fully extended, an outermost
redex occurrence can only be created by contracting a redex occurrence that is
outermost itself.

Another important point is the elimination of outermost redex occurrences.
In a higher-order rewriting system that is almost orthogonal and fully extended,
an outermost redex occurrence can only be eliminated by contracting a redex
occurrence that is also outermost itself. To be more precise, an outermost redex
occurrence w can be eliminated in one of the following three ways:

1. by contracting w,
2. by contracting a redex occurrence that is overlapping with w,
3. by contracting a redex occurrence that creates a new outermost redex oc­

currence such that the residual of w is not outermost anymore.

295

It is quite easy to see that if a system is not left-linear, it can happen that an
outermost redex occurrence is eliminated by contracting a redex occurrence that
is not outermost.

Finally we discuss the restriction to higher-order rewriting systems that are
weakly head-ambiguous. In a system that is weakly orthogonal but not almost
orthogonal, it can happen that an outermost redex occurrence is created by con­
tra.cting a redex occurrence that is not outermost, and it can also happen that an
outermost redex occurrence is eliminated by contracting a redex occurrence that
is not outermost. In both cases, the redex occurrence creating or eliminating an
outermost redex occurrence is not necessarily outermost itself, but it is overlap­
ping with an outermost redex occurrence. Consider for instance the higher-order
rewriting system defined by the following rewrite rules:

fa ->R, fb

a -.R, b

b -.R3 c

In the rewrite step (l,R2): fa-> fb the outermost redex occurrence (O,R1) is
eliminated although the red ex occurrence (1, R2) is not outermost itself. More­
over, in the same rewrite step the outermost redex occurrence (l,R3) is created.

We conclude that the restrictions of left-linearity and fully extendedness are
necessary for the result to hold; the restriction to critical pairs that are trivial
and that have overlap only at the root of the redex occurrences is mainly there to
make the proof work. It is imaginable that a proof can be given for the larger class
of weakly orthogonal and fully extended higher-order rewriting systems. In fact,
in an earlier version we erroneously claimed to prove normalisation of outermost­
fair rewriting for weakly orthogonal systems. The restriction on critical pairs can
probably not be relaxed much more: for left-linear higher-order rewriting systems
that are parallel-closed as defined by Huet in Section 3.3 of [Hue80], outermost­
fair rewriting is not normalising. This is illustrated by the higher-order rewriting
system defined by the following rewrite rules:

a -.R, b

x.hx ->R2 x.hx

g(hb) ->a3 b

It is easy to see that it is left-linear and parallel-closed. The rewrite sequence
g(ha) -. g(ha) -. g(ha) -. ... in which in each rewrite step the redex occurrence
(10, R2) is contracted, is outermost-fair but does not end in a normal form,
although we have g(ha) -> g(hb) -> b.

The Proof. In the following, we consider an almost orthogonal and fully extended
higher-order rewriting system 'H.

Proposition 7. Let ii be an outermost-fair rewrite sequence issuing from so and
let v : s 0 -> t0 be a rewrite step. Let u be the simulation of ii constructed for the
weakly orthogonal projection of ii over v : s0 -> to. Then u is outermost-fair.

296

Proof. Let a- : so ~ s1 ~ s2 ~ ••• be an outermost-fair rewrite sequence and
let u be the simulation of a- for the weakly orthogonal projection of 0- over some
rewrite step v : so -+ to.

H 0- ends in a normal form, then u also ends in a normal form, so we restrict
attention to the case that 0- is infinite and does not contain an infinite outermost
chain. It is sufficient to show the following: if an outermost redex occurrence
Wm in Sm is eliminated in a rewrite step Um : Sm -+ s ... +1, then w ... is also
eliminated in the rewrite step Um : Sm -+ Sm+i · There are two possibilities:
either Um =Um or um ~ u In the first case, the outermost redex occurrence
Wm is clearly eliminated in the rewrite step Um : Sm -+ sTn+l • For the case that
Um U u7n, we consider the different possibilities in which the redex occurrences
Wm is eliminated in the rewrite step Um : Sm -+ sTn+l •

1. If Um =Wm, then we have Um U Wm, and hence the outermost redex occur­
rence Wm is eliminated in the rewrite step Um : s7n -+ Sm+l ·

2. If Um U w7n, then we have either Um =Wm or u7n U Wm, and in both cases
the outermost redex occurrence Wm is eliminated in the rewrite step uTn :

Sm-+ Sm+l·

3. Finally, the outermost redex occurrence Wm can be eliminated in the rewrite
step Um : Sm -+ sm+l because an outermost redex occurrence is created
above the residual of Wm. The same outermost redex occurrence is created
by contracting um, so also in that case the outermost redex occurrence w ...
is eliminated in the rewrite step Um : Sm -+ Sm+l · 0

The proof of the following proposition requires some auxiliary definitions and
results and is for lack of space omitted. The interested reader is referred to
Proposition 6.2.11 in [Raa.96). Some of the ideas of the proof are also present in
the proof of Proposition 9.

Proposition 8. Let u : s0 ~ s 1 ~ s2 ~ • • . be an infinite rewrite sequence.
. Uo U1 U2

Let v : s0 -+ t0 be a rewrite step. Let r : to -e-+ ti -e-+ t2 -e-+ . . • be the
orthogonal projection of the rewrite sequence u over the rewrite step v : so -+ to .
If r contains an infinite outermost chain, then u contains an infinite outermost
chain.

A direct consequence of Proposition 8 is that if a rewrite sequence is outermost­
fair, then its orthogonal projection over some rewrite step is also outermost-fair.

Proposition 9. Let u : so ~ s1 ~ s2 ~ • • • be an outermost-fair rewrite
Uo U1 U2

sequence. Let r : to -e-+ ti -e-+ t2 -e-+ . . . be the orthogonal projection of u over
the rewrite step v : so -+ to. If r ends in a normal form t then u ends also in t.

Proof. Let u : so ~ s1 ~ ••• be an outermost-fair rewrite sequence. Let r :

to ~ ti !1J.+ ... be the orthogonal projection of u over the rewrite step v : s0 -+

to. Suppose that rends in a normal form t = tm. In a picture:

297

u:

T:

\Ve have 0 = Um = Um+l = ... , so t = tm = tm+I = Now we define the
following:

1. t~ = s"",
2. W! = Vm,
3. V! is the set of all outermost redex occurrences of W~ in t~.

For i > 0 we define:

1. t~ 1 is the term obtained by performing a complete development of v:,. in
t~,

2. w;: 1 = Res(t~, v:,,)(W:,.),
3. v:,:- 1 is the set of all outermost redex occurrences of w:,;- 1 in t~ 1 .

Let moreover p be the smallest natural number such that V!:, = 0. We consider
the following stepwise development of Vm:

_ 0 v~ 1 v~ v::_- 1 P
Sm - tm _.,. tm ~ ... ~ tm = tm.

Note that indeed t~ = tm since tm is a normal form. Projecting u over this
rewrite sequence yields the following:

t0 'Um tO um+!
m ----7 m+l --7 · · ·

V~ 1 V~+ 11
t;,, -o-+ t;,,+l -o--+ · · ·

tp-l -o-+ tp- l -o--7
m. m+l

vp-11 vp-'l m m+l

t~ -o-+ t!:,+l -o--+ · · .

We have that Vj is a set of outermost redex occurrences in t; for every i E
{O, ... ,p- l} and j ~ m.

Now we show that there exists an n such that V~ = ... = v~- 1 = 0. That is,
eventually the rewrite sequences rr and T coincide and u also ends in t.

Let j ~ m arbitrary. We define f (j) to be the smallest number such that
vf U) =J. 0. Then vJU) consists of outermost redex occurrences in Sj (= tJ).
Since the rewrite sequence a is outermost-fair, a redex occurrence Wj in vf(j)
will eventually be eliminated. This elimination can happen in one of the following
two ways:

298

1. because w; is contracted,
2. because a redex occurrence overlapping with w; is contracted.

It cannot happen that w; is eliminated because a redex occurrence is contracted
that creates a redex occurrence above the residual of w; because otherwise t1J
would not be a normal form, which is a contradiction since t1J = t; = t. Hence

there exists a j' such that v!,W = 0.
This shows that eventual{y u coincides with r and hence u ends in the normal

form t. D

Finally we present the proof of the main result.

Theorem 10. Let s0 be a weakly normalising term. Every outermost-fair rewrite
sequence starting in s0 eventually ends in a normal form.

Proof. Let s0 be a weakly normalising term and consider an outermost-fair

rewrite sequence u : s0 ~ s1 ~ s2 ~ . • . starting in so. Let t be the nor­
mal form of s0 . We fix a rewrite sequence p : s0 - t from so to its normal form
consisting of m rewrite steps. Now we prove by induction on m that u eventually
ends in the normal form t.

If m = 0, then s0 = t and hence the statement trivially holds.
If m > 0, then the rewrite sequence p is of the form so ~ to - t. We

construct the weakly orthogonal projection of the rewrite sequence u over the
rewrite step v : so -+ to. Let u be the simulation of u and let r be the orthogonal
projection of u over v. By hypothesis 0- is outermost-fair. Hence by Proposition
7 the rewrite sequence u is outermost-fair. By Proposition 8 this yields that
T is outermost-fair. By the induction hypothesis, r ends in the normal form t.
Applying now Proposition 9 yields that the rewrite sequence u also ends in the
normal form t. Since u is the simulation of 0-, we have that u also ends in the
normal form t. This completes the proof. O

An immediate consequence of the main result of this paper is that the parallel­
outermost strategy, which selects all outermost redex occurrences to be con­
tracted simultaneously, is normalising for higher-order rewriting systems that
are orthogonal and fully extended.

Acknowledgements. I thank Vincent van Oostrom for corrections and inspiring
discussions. I further wish to thank Pierre-Louis Curien, Zurab Khasidashvili,
Jan Willem Klop, Aart Middeldorp and the anonymous referees for comments
and suggestions. The diagrams are made using the package Xy-pic: of Kristoffer
H. Rose.

References

(Aka93] Yohji Aka.ma. On Mints' reduction for ccc-calculus. In M. Bezem and J.F.
Groote, editors, Proceedings of the International Conference on Typed Lambda
Calculi and Applications (TLCA '99), pages 1-12, Utrecht, The Netherlands,
March 1993. Volume 664 of Lecture Notes in Computer Science.

299

[Bar92] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gab­
bay, and T.S.E Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, pages 117-310. Oxford University Press, New York, 1992.

[BK86J J.A. Bergstra and J.W. Klop. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Sciences, 32:323-362, 1986.

[CFC58] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic, vol­
ume I. Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company, Amsterdam, 1958.

[HP96J Michael Hanus and Christian Prehofer. Higher-order narrowing with defini­
tional trees. In Harald Ganzinger, editor, Proceedings of the 7th International
Conference on Rewriting Techniques and Applications (RTA 'g6), volume
1103 of Lecture Notes in Computer Science, pages 138-152, New Brunswick,
USA, 1996.

[Hue80] Gerard Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the Association for Computing Machinery,
27(4):797-821, October 1980.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, func­
tion variables, and simple unification. Journal of Logic and Computation,
1(4):497-536, 1991.

[MN94] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their
confluence. Technical Report TUM-19433, Technische Universitat Miinchen,
August 1994.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proceedings of the sixth annual
IEEE Symposium on Logic in Computer Science (LICS 'gt), pages 342-349,
Amsterdam, The Netherlands, July 1991.

[O'D77] Michael J. O'Donnell. Computing in Systems Described by Equations, vol­
ume 58 of Lecture Notes in Computer Science. Springer Verlag, 1977.

[Oos94] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewrit­
ing. PhD thesis, Vrije Universiteit, Amsterdam, March 1994. Available at
http://wwv.cs.vu.nl/-oostrom.

[Oos96a] Vincent van Oostrom. Higher-order families. In Harald Ganzinger, editor,
Proceedings of the 7th International Conference on Rewriting Techniques and
Applications (RTA '96), volume 1103 of Lecture Notes in Computer Science,
pages 392-407, New Brunswick, USA, 1996.

[Oos96b] Vincent van Oostrom. Personal communication, 1996.
[OR94] Vincent van Oostrom and Femke van Raamsdonk. Weak orthogonality im­

plies confluence: the higher-order case. In A. Nerode and Yu.V. Matiyasevich,
editors, Proceedings of the Third International Symposium on Logical Foun­
dations of Computer Science (LFCS '94), volume 813 of Lecture Notes in
Computer Science, pages 379-392, St. Petersburg, July 1994.

[Raa96] Femke van Raamsdonk. Confluence and Normalisation for Higher-Order
Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, May 1996. Available
at http://www.cwi.nl;-femke.

