Skip to main content

Stabilizing large control linear systems on multicomputers

  • Conference paper
  • First Online:
  • 114 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Abstract

In this paper we present several parallel algorithms for solving the stabilization problem of control linear systems. The first stabilizing algorithm, based on Bass' method, consists of matrix computations which result difficult to parallelize. A different two-stage approach, based on highly parallel spectral division techniques, is then described and used to develop parallel algorithms for the stabilization of large linear systems. The new approach consists of two well-defined stages. First, an efficient spectral division technique is used to identify the stable part of the linear system. Then, the unstable part of the system is stabilized by means of Bass' algorithm. The experimental results on a multicomputer show considerable performance improvements of these two-stage approaches over Bass' algorithm.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. O. Anderson, J. B. Moore. Linear Optimal Control. (Prentice-Hall Int., Englewood Cliffs, USA, 1971).

    Google Scholar 

  2. E. Anderson et al. Lapack user's guide. SIAM, 1992.

    Google Scholar 

  3. E. S. Armstrong. An extension of Bass' algorithm for stabilizing linear continuous systems. IEEE Trans. on Automatic Control, AC-20, pp. 153–154, 1975.

    Google Scholar 

  4. Z. Bai, J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, part I. Computer Science Division Report UCB//CSD-92-718, University of California at Berkeley, 1992.

    Google Scholar 

  5. Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson. The spectral decomposition of nonsymmetric matrices on distributed memory parallel machines. Computer Science Division Report, Work in progress, University of California at Berkeley, 1994.

    Google Scholar 

  6. Z. Bai, J. Demmel, M. Gu. Inverse free parallel spectral divide and conquer algorithms for nonsymmetric eigenproblems. Computer Science Division Report, UCB//CSD-94-793, University of California at Berkeley, 1994.

    Google Scholar 

  7. Z. Bai, Q. Qian. Inverse free parallel method for the numerical solution of algebraic Riccati equations. Proceedings of the Fifth SIAM Conference on Applied Linear Algebra (Ed. J. G. Lewis), SIAM, pp. 167–171, 1994.

    Google Scholar 

  8. L. A. Balzer. Accelerated convergence of the matrix sign function. Int. Journal of Control, 32, pp. 1057–1078, 1980.

    Google Scholar 

  9. R. Bartels, G. W. Stewart. Algorithm 432: The solution of the matrix equation AX-XB=C. Comm. of the ACM, 15, pp. 820–826, 1972.

    Google Scholar 

  10. C. H. Bischof, G. Quintana. Computing rank-revealing QR factorizations of dense matrices. Tech. Report MCS-P559-0196, Mathematics and Computer Science Division, Argonne National Laboratory, 1996.

    Google Scholar 

  11. D. Boley, R. Maier. A parallel QR algorithm for the non-symmetric eigenvalue problem. Technical Report TR.-88-12, Dept. of Computer Science, Univ. of Minnesota, 1988.

    Google Scholar 

  12. A. Ya. Bulgakov, S. K. Godunov. Circular dichotomy of the spectrum of a matrix. Siberian Math. J., 29, pp. 734–744, 1988.

    Google Scholar 

  13. P. A. Businger, G. H. Golub. Linear least squares solutions by Householder transformations. Numerische Mathematik, 7, pp. 269–276, 1965.

    Google Scholar 

  14. R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Lin. Algebra & Its Appl., 85, pp. 267–279, 1987.

    Google Scholar 

  15. J. Choi, J. Dongarra, D. Walker. Level 3 BLAS for distributed memory concurrent computers. Proceedings of the CNRS-NSF Workshop, 1992.

    Google Scholar 

  16. J. M. Claver, V. Hernández, E. S. Quintana. Solving discrete-time Lyapunov equations for the Cholesky factor on a shared memory multiprocessor. Parallel Processing Letters, (to be published) 1996

    Google Scholar 

  17. J. J. Dongarra et al. A set of level 3 BLAS basic linear algebra subprograms. Tech. Report ANL-MCS-TM-88, Dept. of Computer Science, Argonne National Laboratory, 1988.

    Google Scholar 

  18. J. J. Dongarra, S. Hammarling, D. C. Sorensen. Block reduction of matrices to condensed form for eigenvalue computations. Tech. Report ANL-MCS-TM88, Dept. of Computer Science, Argonne National Laboratory, 1987.

    Google Scholar 

  19. J. J. Dongarra et al. An extended set of Fortran basic linear algebra subprograms. ACM Trans. on Mathematical Software, 14, pp. 1–17, 1988.

    Google Scholar 

  20. J. Du Croz, N. J. Higham. Stability of methods for matrix inversion. IMA J. of Numerical Analysis, 12, pp. 1–19, 1992.

    Google Scholar 

  21. J. D. Gardiner. A stabilized matrix sign function algorithm for solving algebraic Riccati equations. SIAM J. Scientific & Statistical Computing, (to be published), 1996.

    Google Scholar 

  22. G. A. Geist et al. PVM: Parallel Virtual Machine. A users' guide and tutorial for networked parallel computing. (The MIT Press, Cambridge, USA, 1994).

    Google Scholar 

  23. S. K. Godunov. Problem of the dichotomy of the spectrum of a matrix. Siberian Math. J., 27, pp. 649–660, 1986.

    Google Scholar 

  24. G. H. Golub, S. Nash, C. F. Van Loan. A Hessenberg-Schur method for the problem AX + XB=C. IEEE Trans. on Automatic Control, AC-24, pp. 909–913, 1979.

    Google Scholar 

  25. G. H. Golub, C. F. Van Loan. Matrix computations. (The Johns Hopkins University Press, Baltimore, USA, 1989).

    Google Scholar 

  26. S. J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA Journal of Numerical Analysis, 2, pp. 303–323, 1982.

    Google Scholar 

  27. C. He, V. Mehrmann. Stabilization of large linear systems. Proceedings of the IEEE Workshop (Eds. M. Karny and K. Warwick), Praga, Eslovaquia, 1994.

    Google Scholar 

  28. M. T. Heath, C. H. Romine. Parallel solution of triangular systems on distributedmemory multiprocessors. SIAM J. Scientific & Statistical Computing, 9, pp. 558–588, 1988.

    Google Scholar 

  29. G. Henry, R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric algebraic eigenvalue problem: myths and reality. Lapack Working note #79, 1994.

    Google Scholar 

  30. V. Hernández, E. S. Quintana, M. Marqués. Solving linear matrix equations in control problems on distributed memory multiprocessors. Proceedings of the 33rd Conference on Decision and Control, pp. 449–454, Lake Buena Vista, USA, 1994.

    Google Scholar 

  31. C. Kenney, A. J. Laub. On scaling Newton's method for polar decomposition and the matrix sign function. Report No. SCL 89-11, Dept. of Electrical and Computer Engineering, University of California, 1989.

    Google Scholar 

  32. C. Kenney, A. J. Laub. Rational iterative methods for the matrix sign function. SIAM J. Matrix Analysis & Appl., 12, pp. 273–291, 1991.

    Google Scholar 

  33. C. Kenney, A. J. Laub, P. M. Papadopoulos. A Newton-squaring algorithm for computing the negative invariant subspace of a matrix. IEEE Trans. on Automatic Control, AC-38, pp. 1284–1289, 1993.

    Google Scholar 

  34. D. L. Kleinmann. An easy way to stabilize a linear constant system. IEEE Trans. on Automatic Control, AC-15, pp. 692, 1970.

    Google Scholar 

  35. Z. Kovarik. Some iterative methods for improving orthonormality. SIAM J. Nuerical Analysis, 7, pp. 386–389, 1970.

    Google Scholar 

  36. A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. on Automatic Control, AC-24, pp. 913–921, 1979.

    Google Scholar 

  37. C. L. Lawson et al. Basic linear algebra subprograms for Fortran usage. ACM Trans. on Mathematical Software, 5, pp. 308–323, 1979.

    Google Scholar 

  38. R. B. Leipnik. Rapidly convergent recursive solution of quadratic operator equations. Numerische Mathematik, 17, pp. 1–16, 1971.

    Google Scholar 

  39. G. Li, T. Coleman. A Parallel triangular solver for a distributed-memory multiprocessor. SIAM J. Scientific & Statistical Computing, 9, pp. 485–502, 1989.

    Google Scholar 

  40. G. Li, T. Coleman. A new method for solving triangular systems on distributedmemory message-passing multiprocessor. SIAM J. Scientific & Statistical Computing, 10, pp. 382–396, 1989.

    Google Scholar 

  41. A. N. Malyshev. Parallel algorithm for solving some spectral problems of linear algebra. Linear Algebra & Its Appl., 188–189, pp. 489–520, 1993.

    Google Scholar 

  42. V. Mehrmann. The autonomous linear quadratic control problem. (Springer-Verlag Berlin, Alemania, 1991).

    Google Scholar 

  43. P. Pandey, C. Kenney, A. J. Laub. A parallel algorithm for the matrix sign function. Int. J. of High Speed Computing, 2, pp. 181–191, 1990.

    Google Scholar 

  44. P. Hr. Petkov, N. D. Christov, M. M. Konstantinov. Computational methods for linear control systems. (Prentice-Hall International Ltd., United Kingdom, 1991).

    Google Scholar 

  45. E. S. Quintana, V. Hernández. Parallel algorithms for solving the algebraic Riccati equation via the matrix sign function. Proceedings of the 3rd IFAC Workshop on Algorithms and Architectures for Real-Time Control — AARTC'95, pp. 533–542, Ostend, Belgium, 1995.

    Google Scholar 

  46. E. S. Quintana, V. Hernández. Parallel solvers based on the Schur vectors for the algebraic Riccati equation. Conference on Mathematical Theory of Networks and Systems, St. Louis, USA, (to be published) 1996.

    Google Scholar 

  47. E. S. Quintana, V. Hernández. Algoritmos por bloques y paralelos para la estabilización de sistemas dinámicos lineales. Tech. report DSIC-II/5/96, Dpto. de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, 1996.

    Google Scholar 

  48. G. Quintana, E. S. Quintana. Parallel bidimensional algorithms for computing rank-revealing QR factorizations. Conference on High Performance Computing and Local Area Gigabyte Networks, Essen, Germany, (to be published), 1996.

    Google Scholar 

  49. G. Quintana, X. Sun, C. H. Bischof. A BLAS-3 version of the QR factorization with column pivoting. Tech. Report ANL-MCS-P551-1295, Dept. of Computer Science, Argonne National Laboratory, 1996.

    Google Scholar 

  50. J. Roberts. Linear model reduction and solution of the algebraic Riccati equation by the use of the sign function. Int. Journal of Control, 32, pp. 677–687, 1980.

    Google Scholar 

  51. G. W. Stewart. A parallel implementation of the QR, algorithm. Parallel Computing, 5, pp. 187–196, 1987.

    Google Scholar 

  52. V. Sima. An efficient Schur method to solve the stabilization problem. IEEE Trans. on Automatic Control, AC-26, pp. 724–725, 1981.

    Google Scholar 

  53. R. A. van de Geijn, D. G. Hudson. An efficient parallel implementation of the non-symmetric QR algorithm. Proceedings of the 4th Conference on Hypercube Concurrent Computers and Appl., 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernández, V., Quintana-Ortí, E.S. (1997). Stabilizing large control linear systems on multicomputers. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_129

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_129

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics