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Abs t rac t .  Reinforcement learning systems learn to act in an uncertain 
environment by executing actions and observing their long-term effects. 
A large number of time steps may be required before this trial-and-error 
process converges to a satisfactory policy. It is highly desirable that the 
number of experiences needed by the system to learn to perform its task 
be minimized, particularly if making errors costs much. One approach 
to achieve this goal is to use hypothetical experiences, which requires 
some additional computation, but may reduce the necessary number of 
much more costly real experiences. This well-known idea of augment- 
ing reinforcement learning by planning is revisited in this paper in the 
context of truncated TD(A), or TTD, a simple computational technique 
which allows reinforcement learning algorithms based on the methods of 
temporal differences to learn considerably faster with essentially no ad- 
ditional computational expense. Two different ways of combining TTD 
with planning are proposed which make it possible to benefit from A > 0 
in both the learning and planning processes. The algorithms are evalu- 
ated experimentally on a family of grid path-finding tasks and shown to 
indeed yield a considerable reduction of the number of real interactions 
with the environment necessary to converge, as well as an improvement 
of scaling properties. 

1 Introduction 

A rein]orcement learning (RL) system at  each step of discrete t ime observes the 
current state of its environment and executes an action. Then it receives a re- 
inforcement, or reward value, and a state transition takes place. Reinforcement 
values provide a measure of the quality of actions executed by the system. The 
objective of learning is to identify a decision policy (i.e., a state-action map-  
ping) tha t  maximizes the reinforcement values received by the learner in the 
long term. A typical performance measure is the expected total  discounted sum 
of reinforcement it receives during its lifetime in continuous learning tasks, or 
during a trial in episodic tasks. Rewards from subsequent t ime steps are mul- 
tiplied by the subsequent powers of a discount ]actor 0 ~ 7 ~ 1, which, for 
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positive 7, makes the learner take into account not only the immediate, but also 
the delayed consequences of its actions, and, for 7 < 1, to consider the rewards 
received soon more important that those from the far future. This involves the 
temporal credit assignment problem, commonly solved using algorithms based 
on the methods of temporal differences (TD) [11]. 

The key problem with the existing reinforcement learning algorithms is that 
they usually converge slowly, especially for tasks with large state spaces. A con- 
siderable part of current RL research is devoted to various possible ways of 
overcoming this painful deficiency. Of those, it is particularly worthwhile to 
mention state generalization by the use of function approximators [13,3], hierar- 
chical RL architectures [7,6], and integrating learning with planning [12,9]. The 
last approach is investigated in this paper in a new, promising context. Novel 
hybrid learning and planning algorithms are proposed, obtained by combining 
the frameworks of the Dyna architecture [12] and of the TTD procedure [2]. 
These two are briefly described in the next section. 

2 B a c k g r o u n d  

The Dyna architecture is a generic instantiation of the idea of combining rein- 
forcement learning with planning by means of learning from hypothetical ex- 
periences. The TTD procedure is a simple computational technique that allows 
one to efficiently implement TD-based reinforcement learning algorithms in their 
TD()~ > 0) versions, which usually converge faster than the simplest TD(0) ones. 
The discussion of these two foundations for this work is limited to the most es- 
sential points. The reader may refer to the cited literature for more details. 

2.1 Dyna Architecture 

The basic idea of Sutton's Dyna framework [12] is that one can reduce the 
number of interactions with the "real world" necessary to learn an acceptable 
policy by introducing a number of hypothetical interactions with a model, which 
predicts the consequences of the learner's actions in different states. The model 
is usually not known a priori and thus it is learned during the regular operation 
of the learning system. Hypothetical experiences are processed by essentially the 
same reinforcement learning algorithm as real ones. Learning from experiences 
generated by the model is referred to as planning. 

The generic Dyna algorithm is shown in Figure 1, as a sequence of operations 
performed at each time step. The current real experience, ~xt, at, rt, xt+l ~, is used 
to update the model in Step 4 and then passed to the underlying reinforcement 
learning algorithm, referred to as I~L. Additionally, a number of hypothetical 
experiences are processed, generated by applying a (forwards) model to different 
state-action pairs. 

The operation written as F~(x ,  a) is intended to return a pair (r, x') such 
that executing action a in state x is predicted to result in a transition to state x ~ 
and a reinforcement value ofr.  Of course a model must be sufficiently accurate to 
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At each time step t: 

1. observe current state x,; 
2. at := select_action(x,); 
3. perform action a,; observe new state x,+~ and immediate reinforcement r,; 
4. update__model(x,, at, rt, xt+l); 
5. RL(xt, at,rt,xt+l); 
6. repeat K times 

(a) choose a hypothetical state x; 
(b) a := select_action(x); 
(c) (r,x') := ~ ( ~ , a ) ;  
(d) ~(~,a,r,~'). 

Fig. 1. The generic Dyna algorithm. 

be useful, and a very poor model may be harmful. The learner may be supplied 
with some initial model as a part of its background "innate" knowledge. Each 
real experience may be used to update the model and to verify its reliability. 
Planning should be performed only if the current model is found to be reliablc 
in a practical implementation of the algorithm from Figure 1, Step 6 should be 
probably conditioned by the reliability status of the model. 

In order to instantiate the Dyna architecture, one has to select its three ma- 
jor components: model representation and learning algorithms, a strategy for 
choosing hypothetical experiences, and a reinforcement learning algorithm. The 
task of learning a model is a typical supervised learning task and there are sev- 
eral methods that can be applied to accomplish it. The proper choice of one 
of them depends, first of all, on the state and action representation. Peng and 
Williams [9], and independently Moore and Atkeson [8] developed heuristic plan- 
ning strategies for deciding which hypothetical experiences are most promising 
and should be presented to the learner. The essential idea of these heuristics is 
to assign a priority number to each of candidate experiences, based on the mag- 
nitude of the reinforcement learning error value recently used to update some 
of its possible successor states, and to maintain a priority queue of experiences. 
Then each time when a planning step is to be performed, a promising hypothet- 
ical experience may be extracted from the queue. This simple idea is reused by 
one of the algorithms proposed later in this paper. 

2.2 Q-Learning 

The Q-learning algorithm [14] is currently the most popular TD-based reinforce- 
ment learning algorithm, used also in this work. It learns a Q-function, assigning 
to each state-action pair (x, a) an estimate of the cumulative discounted sum of 
future rewards received after executing action a in state x and performing opti- 
mally thereafter. The Q-learning update rule, in its generic TD(0) version, may 
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be written as follows: 

update ~ (Q, xt, at, rt + ~maaxQ(xt+l, a) - Q(xt, at)), (1) 

which is the notation used throughout this paper to express that Q(xt, at) is 
updated using an error value of rt + 7maxa Q(xt+l, a) - Q(xt, at), to a degree 
controlled by a step-size parameter ft. 

The implementation of the update operation given by Equation 1 depends 
on the function representation method used. For a simple look-up table repre- 
sentation, used in this paper, it simply consists in adding/~A, where A is the 
error value, to the value stored in the appropriate table entry. 

Another issue that needs more specification in a practical implementation is 
how actions to perform at each time step are selected. In the experiments pre- 
sented in this paper a standard Boltzmann distribution-based stochastic strat- 
egy is used, with the selection probability of action a in state x proportional to 
exp(Q(x, a)/T),  where T > 0 is a temperature parameter, adjusting the amount 
of randomness. This action selection mechanism is known not to perform very 
well in many cases, but it keeps the algorithms experimented with as generic as 
possible. 

2.3 T T D  Procedure  

The TTD procedure [2,4] allows one to implement TD-based reinforcement learn- 
ing algorithms in their TD()~ > 0) versions without conceptually appealing, but 
computationally demanding eligibility traces [1,10,4]. Only its particular instan- 
tiation for the Q-learning algorithm is discussed below, but modifications for 
other RL algorithms are straightforward [2]. 

TTD relies on applying, at time t, the following update operation to the state 
and action from time t - m + h 

A~rn 
update ~ (Q, Xt--m+l; at-m+1, Zt_m+ I - -  Q(xt-m+l,  at-m+1)), (2) 

where zt ~'m is the TTD()~, m) return for time t, defined as 

Zt~'rn : E (~A)k[?~t+k @~(1- ,~ )m~xQ(x t+k+l , a ) ]  
k:o (3) 
+ +  max a) ]  

a 

This can be implemented by maintaining an m-step experience buffer, at time t 
storing records of xt -k ,  at-k, rt-~, and maxa Q(xt-k+l,  a) for k = 0, 1 , . . . ,  m - 
1. For convenience, the corresponding buffer elements are designated by X[k], 
a[k], r[k], and U[k], respectively. Under this notational convention, the Q-learning 
version of the TTD()~, m) procedure is presented in Figure 2, as a sequence 
of operations performed to process an experience (x, a, r, x~). A pair of square 
brackets appears as an additional argument of the procedure to indicate the 
indexing mechanism used to access the experience huller. 
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ttd_procedure~'m (x, a, r, x', [ ]): 

1. x[o] := x; a[0] := a; rio] := r; u[0] := maxa, Q(x~,a~); 
2. z := ttd-xeturn~([m- 1]); 
3. update/~ (Q, x[,~-l],a[m-1], z-Q(x[m-1],a[m-1])); 
4. shift the indices of the experience buffer; 
5. return z. 

Fig. 2. The TTD procedure. 

The operation of Step 2, written as ttd_return~([m - 1]), computes the 
TTD()Lm) return for time t -  m + 1, i.e., for the least recent experience stored 
in the buffer (designated by [m - 1]). This can be performed either iteratively, 
based directly on the definition of TTD returns, or in an incremental manner, 
which is particularly efficient. The appropriate algorithms are described in detail 
in the existing TTD literature [2,4]. 

3 Combination of TTD and Dyna 

The generic Dyna architecture, as presented in Figure 1, does not make any 
explicit assumptions about the reinforcement learning algorithm used, except 
that it performs updates based on quadruples consisting of a state, an action, 
a resulting reward value, and a successor state. In particular, the architecture 
might be used in the same way for TD-based algorithms, regardless of whether 
they learn with TD(0) or TD()~ > 0). However, while the learning process may 
benefit from positive A as usual, it does not have any effect for the planning 
process, since hypothetical experiences do not form a temporal sequence. This 
section presents simple modifications of Dyna, based on preliminary ideas first 
formulated in [5], which use sequences of hypothetical experiences, and thus 
allow the planning process to benefit from )~ > 0. They rely on applying the 
TTD procedure to hypothetical experiences similarly as it is applied to real 
o n e s .  

3.1 Forwards  and Backwards  Planning with TTD 

The most straightforward approach to applying TTD effectively to hypothetical 
experiences, if they form a temporal sequence, is to process them in exactly the 
same way as real experiences, using a separate n-element hypothetical experience 
buffer. Similarly as in the generic Dyna architecture, a forwards model is used to 
predict for a state-action pair a corresponding reward value and successor state. 

Another way of combining Dyna with TTD is to use for planning the TTD 
returns computed during the regular operation of the procedure (when running 
for real experiences), rather than maintain a separate experience buffer and per- 
form TTD for hypothetical experiences separately. When, during regular TTD 
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learning a t  t ime  t, the  T T D  re tu rn  for t ime  t - m + 1 is compu ted ,  it contains  
meaningful  in format ion  not  only for Xt -m+l ,  but  for its possible  predecessors ,  
their  predecessors ,  etc. For this idea to be  prac t ica l ly  useful, a backwards  mode l  
is needed,  t h a t  would re tu rn  for a s ta te  x * a t r iple of (x, a, r )  such t ha t  pe r fo rm-  
ing act ion a in s ta te  x is p red ic ted  to result  in a re inforcement  value of r and  a 
successor s ta te  x ~. The  opera t ion  of such a mode l  will be  referred to as BIYI[(x~). 

3.2 TTDyna Algorithm 

The  two ideas out l ined above m a y  be  appl ied together ,  using two models ,  a 
forwards  and  a backwards  one (or a single model  provid ing  the  funct ional i ty  
of bo th ) .  The  resul t ing a lgor i thm,  called T T D y n a ,  pe r fo rms  one regular  T T D  
u p d a t e  for the  current  real experiences a t  each t ime  step,  and  a f te rwards  it p ro-  
cesses several  hypothe t ica l  experiences in the forwards  p lann ing  and  backwards  
p lanning  mode.  Figure  3 presents  the details. 

At each t ime step t: 

1. observe current state xt; 
2. at := select_action(xt); 
3. perform action at; observe new state xt+l and immediate reinforcement rt; 
4. update-model(xt ,  at, rt, xt+l); 
5. z := ttd_procedure:~'m(xt, at,re, X~+l, []); 
6. F := 0; while F < Nf  do 

(a) F : = F + l ; i f t = 0 o r f > n f  then f : = 0 ;  
(b) if f = 0 then 

choose a hypothetical state x; 
(c) a := select.action(x); 
(d) if ( r ,x ' )  := FM(x,a)  then 

i. ttd_procedure:~'n(z, a, r, x', { }); 
ii. x : = x ' ; . f : = f + l ;  

else f := 0. 
7. B := 0; b := 0; while B <: Nb do 

(a) B : = B + l ; i f b : > n b  t h e n b : = 0 ;  
(b) if b = 0 then 

z ~ : :  Z; x ~ : :  X[ra-1]; 
(C) if (x, a, r) := BM(x') then 

i. u '  := maxa, Q(x',a');  z' := r + 7(Az' + (1 - A)u'); 
ii. update  ~ (Q, x ,a,  z' - Q(x,a));  

iii. x ~ : = x; 
else b := 0. 

Fig. 3. The T T D y n a  algorithm. 

Steps  5 and  6(d)i  refer to the basic T T D  a lgor i thm presen ted  in Figure  2, the  
former  for the  current  real experience,  and  the la t te r  for a hypo the t i ca l  exper i -  
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ence from the currently processed sequence. As already said above, TTD uses a 
separate experience buffer for hypothetical experiences, which is denoted using 
curly braces { } instead of square brackets [ ]. The forwards planning process is 
controlled by two parameters: Nf is the maximum number of hypothetical ex- 
periences to use at a time step, and nf  is the maximum length of a hypothetical 
experience sequence. If n I < NI, more than one hypothetical sequence is used 
at one time step. The sequence started at time t may be continued at subsequent 
time steps. 

The actual number of hypothetical experiences processed during forwards 
planning and the length of individual sequences may be different from N f and n f, 
respectively, depending on whether the model succeeds at predicting the con- 
sequences of state-action pairs it is requested to. The FM(x, a) operation is as- 
sumed to return false whenever the model is unable to give a reliable prediction 
of a reward and successor state resulting from performing action a in state x. 
On success, the model is assumed to return a (possibly different on each call) 
reward and successor state for a given state-action pair. A simple implementa- 
tion of such a model, used in the experiments presented later in this paper, will 
be described in Section 3.3. 

The backwards planning part of the algorithm performs at each time step 
a maximum of Nb updates for hypothetical experiences, which may form a se- 
quence with the maximum length nb ~_ Nb. Each sequence starts from the (just 
updated) state X[m-q and goes backwards in time, along its possible predeces- 
sors. Given the TTD return for X[m-1] (assumed to be returned by the call to 
the TTD procedure in Step 5), their TTD returns may be computed iteratively, 
as demonstrated by Step 7(c)i. The backwards model is assumed to return false 
when it is unable to produce a new reliable prediction, and on success to return 
a (possibly different on each call) state-action-reward triple for the hypothetical 
successor state for which it is invoked. 

3.3 Mode l  I m p l e m e n t a t i o n  

The algorithm described above strongly depends on model implementation. This 
in turn is a hard problem itself and deserves separate, extensive studies, which are 
beyond the scope of this preliminary work. In the experiments presented in this 
chapter, similarly as for function representation, we use a look-up table model 
representation, although it may be hypothesized that some generalizing function 
approximators that have proved themselves useful for the former purpose, may 
turn out to be useful for the latter as welt. 

For a forward model, a separate look-up table is used for every action, as- 
suming a discrete action space. Each table entry corresponds to one environment 
state and stores a predicted reward value r and an estimate p of the occurrence 
likelihood of each state as a successor state (which also assumes a discrete state 
space). The operation of model update: 

update.znodel(x, a, r, x') (4) 
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may be then implemented by 

FMa[x].r := (1 - o0FMa[x].r + c~r (5) 

and 

( 1  - a)FMa[x].py + a  i f y  = x' 

FMa[x].p~:= (1 a)FM=[xl.P~ otherwise, (6) 

where a is a step-size parameter, FMa denotes the look-up table corresponding 
to action a, brackets are used to indicate for which state the table entry is 
referred to, and dots to designate access to the two components of each entry. The 
successor state x', returned by FI~ (x, a), may be then chosen based on FMa [x].p 
either deterministically, as arg maxy FMa [x].py (this is the approach adopted in 
the experiments presented later in this paper), or stochastically, which may be 
appropriate if there are multiple possible successor states for a given state-action 
pair. 

To predict backwards, a single look-up table may be used, containing, for 
every state, the corresponding likelihood estimates for the predecessor state and 
action, and a reward value. The update operations for states and rewards are 
analogous to those presented above for a forwards model: 

(1 - a)BM[x'].py + 
BM[x'].p~:= (1 a)BM[x'].py 

i fy  = x  (r) 
otherwise, 

and 

BM[x'l.r := (1 - a)BM[x].r + ar. (8) 

For actions the update operation is a straightforward analog of Equation 6: 

(1 -  )BM[x'].qb + 
BM[x'].qb :=  (1 a)BM[x'].qb 

i f b = a  
(9) 

otherwise, 

where q is an estimate of the occurrence likelihood of each action in a preceding 
experience. 

This is indeed a very simple approach to model learning and it has many ob- 
vious deficiencies. First, similarly as a tabular function representation, it is only 
applicable to relatively small tasks. Second, and maybe even more important, in 
the backwards case it provides no clear way of dealing with states for which there 
may be multiple predecessor state-action pairs. While a forwards model with such 
a limitation is still sufficiently powerful for deterministic tasks, for a backwards 
model it is much more painful. There are some relatively simple possibilities of 
overcoming these drawbacks, at least in part. One could deal with continuous 
states by applying the ideas which have already shown themselves useful for 
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function representation in reinforcement learning, i.e., by replacing look-up ta- 
bles with some kinds of function approximators. In particular, it looks possible 
to use CMAC4ike sparse coarse-coded look-up tables to implement continuous- 
state models. To allow multiple predecessor state-action pairs for a given state x ~ 
in a backwards model, it might be reasonable to first select (e.g., stochastically) 
a predecessor state x, based on the estimated probability distribution BM[xq.p, 
and then select an action that, if executed in state x, can be predicted to cause 
a transition to x ~. If there are relatively few actions, which is often the case, 
one could simply make a forward prediction for x and each possible action, to 
see whether it can bring the system to state x I. These possible extensions have 
been, however, postponed for future work, so that this work focuses exclusively 
on the usefulness of a particular way of using models for reinforcement learning 
rather than on the usefulness of particular models themselves. 

4 T T D  S w e e p i n g  

Unlike the two TTDyna algorithms, the approach described in this section is 
intended not to require any models, except for the very simplest one: the memory 
of a number of past real experiences. This eliminates the problem of choosing 
an appropriate model representation and learning method and thus may be 
sometimes more attractive, if it turned out to give similarly good performance. 

The basic idea of TTD sweeping, or TTD-SW for short, is to store a relatively 
large number M of past experiences in the TTD experience buffer, which is 
made much longer than m, say, several thousand steps instead of one or two 
dozens. The TTD procedure still operates as usual, on a fraction of the buffer 
corresponding to the most recent m experiences, but additionally T T D  sweeps 
are performed for some other regions of the buffer. A sweep for a buffer region 
delimited by ks < k2 consists in performing sequentially updates for experiences 
[k], k = k l , k l  + 1 , . . .  ,k2, according to: 

update ~ (Q, x[k], a[k], z[Ak'] k-kl+l -- Q(X[k], a[k])), (10) 

where z ~'k-kl+l denotes the (k - kl + 1)-step TTD return for experience [k]. 
Figure 4 shows how this process is exactly organized. 

Whenever an update of the Q-function for experience [k] is performed, either 
during regular learning or sweeping, two additional operations take place. First, 
u[k+l] is updated to reflect the new Qwalues for x[k ] . Second, experience [k + #] 
(which must have been observed # time steps before experience [k]) becomes 
a candidate for sweeping and its index is inserted into a queue, possibly with 
some priority value, e.g., depending on the magnitude of the error value used for 
the update. The maximum queue length, designated by q, limits the number of 
high-priority experiments which are candidates for further updates. 

At each time step a maximum of Ns sweeps are performed, for buffer regions 
determined as follows. An experience [s] is taken out from the queue. We still 
assume that the buffer's indices are shifted appropriately at each time step, so 



66 

At eas time step t: 

1, 
2. 
3. 
4. 
5. 
6. 
7. 

observe current state xt; 
at := select_action(xt); 
perform action at; observe new state xt+l and immediate reinforcement rt; 
ttd-procedure~'m(xt, at, rt, xt+l, [ ]); 
u[m] := maxa Q(x[m-1], a); 
to_queue(fro - 1 + #]); 
repeat Ns times 
(a) [s] := from_queue(); p := correct(iz); 
(b) z := u[~-~+l]; 
(c) f o r k - - s - ~ + l , s - / ~ + 2 , . . . , s d o  

i z := rl,k j + ~(~z + (1 - A)~[kl); 
ii. update (Q, x~l,aI~l, ~-Q(xlkl, aI~l)); 

iii. u[k+l] := max~ Q(x[k],a); 
iv. to_queue([k + #]). 

Fig. 4. The TTD sweeping algorithm. 

that  [0] always refers to the current real experience. Therefore the implementa- 
tion must provide an appropriate index translation mechanism, to ensure that  
the index value retrieved from the queue points to the same experience buffer 
element which was pointed to when the corresponding entry was inserted to the 
queue. The maximum sweep length is #, but it may be reduced, which is writ- 
ten/5 = correct(#), to ensure that  experiences [s -/5] through [s] do belong to 
the same sequence and that  sweeping does not interfere with the regular TTD 
operation, which involves the first m buffer elements, i.e., s - /~  + 1 > m. Then 
a sweep is performed for a buffer region delimited by s - / 5  + 1 and s. 

5 E x p e r i m e n t a l  R e s u l t s  

In this section the results of preliminary experiments with the algorithms pro- 
posed above are presented, designed so as to verify the usefulness of their most 
generic versions. The performance of the TTDyna  and TTD sweeping approaches 
to planning are compared to each other, as well to the performance of their TD(0) 
versions and of TD(0) and TTD()~ > 0) without planning. 

5.1 L e a r n i n g  Tasks  

Three simple grid path-finding tasks, differing in the grid size, are used for the 
experiments. Figure 5 illustrates the 10 • 10 grid world which is the basis for 
these tasks. The state representation supplied to the learning agent is simply the 
number of the cell it is currently in. At each step the agent can choose any of 
the four allowed actions of going North, South, East, or West. At the beginning 



67 

of each trial the agent is placed in its fixed initial location. A trial ends when 
the agent reaches the goal location. The agent receives a reinforcement value of 
- 1  at all steps except when it enters the goal cell, when the reinforcement is 0. 

Agent Goal 

I I  I I  " 
I I  I , I  / 

�9 . , - i .n  I J / e l - - = /  
I I I  / I l l s  ~ # 
llJ/ III w= I --E 

~1,711 III 
,, -,~1 I ~ , -  - ,  s 

I I  I I  
I I  I I  

Fig. 5. The grid environment. 

Obstacle 

Apart  from the basic 10 x 10 task, more difficult 20 • 20 and 50 x 50 tasks 
are used, obtained by dividing each cell (including the barrier and goal cells) of 
the environment shown in Figure 5 into, respectively, 22 = 4 and 52 = 25 equal 
smaller cells. The agent's starting location is at (2, 6) for the 10 x 10 task, at 
(4, 12) for the 20 x 20 task, and at (12, 32) for the 50 x 50 task, assuming that  the 
coordinates count from 0 and start  from the left upper corner. The shortest pa th  
to any goal cell for the three tasks consists, respectively, of 20 steps, 36 steps, 
and 84 steps. 

5.2 Experimental Design and Results 

The following algorithms were applied to each of the three grid tasks: 

- the TTD procedure with )~ = 0 and )~ = 0.5, 
- T TDyna  with )~ = 0 and )~ = 0.5, 
- T T D  sweeping with )~ = 0 and )~ = 0.5. 

The TTD procedure used m = 25. For all algorithms 7 was set to 0.95 and T 
to 0.01. These values appeared reasonable based on prior work with TTD  [2,4]. 
Additionally, for T T D y n a  we used Nj  = 10, n f  = 5, and Nb =nb = 5, and for 
TTD sweeping M = 500, Ns = 3, # = 8, and a priority queue of length q = 25. A 
number of preliminary runs with different settings of these planning parameters  
were carried out and the above were found to be roughly best, but  not crucial for 
successful performance. Both the algorithms performed similarly for a wide range 
of parameter  values. The step-size parameters used for updating the Q-function 
were equal 0.5 for ), = 0 and 0.125 for )~ = 0.5, the values optimized in a series 
of preliminary runs. Twice larger or smaller/7 appeared to yield only slightly 
worse results. Model update operations for TTDyna ,  implemented according to 
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Equations 5 and 6, used a = 1, which is a natural choice for deterministic tasks. 
The Q-values were initiMized to -5  for the 10 x 10 task, - 7  for the 20 x 20 task, 
and -10 for the 50 • 50 task, to provide a reliable initial guess. 

Figure 6 compares the learning curves obtained by using TTDyna, TTD- 
SW, and "pure" TTD for the two A values tried. The results are averaged over 
25 independent experimental runs. Table 1 presents the total number of real 
interactions performed by each of the algorithms before convergence. To better 
illustrate how the learning speed of the investigated algorithms scales up with 
the size of the state space, Table 2 presents the factors by which the numbers of 
steps and trials necessary to converge for all the algorithms in the 20 x 20 and 
50 • 50 tasks are greater than in the 10 • 10 task~ 

Table 1. The average numbers of real interactions before convergence. 

Task/Algorithm 10 x 10 20 x 20 50 x 50 task 
TTD(0) ~ 1,938,440 

TTD(0.5) 1,821,950 
TTDyna(0) 264,970 

TTDyna(0.5) 247,705 
TTD-SW(0) 716,453 

TTD-SW(0.5) 667,253 

Table 2. The factors by which the numbers of steps and trials before convergence for 
the 20 x 20 and 50 x 50 tasks are greater than for the 10 • 10 task. 

Task/AlgorithmII 20x20 I 50x50 ] 

TTD(0) 
TTD(0.5) 

TTDyna(0) 
TTDyna(0.5) 
TTD-SW(0) 

TTD-SW(0.5) 

We can observe that 

- without planning, )~ > 0 considerably improves convergence speed, 
- for A = 0, both TTDyna and TTD-SW result in much faster learning than 

for "pure" TD(0), 
- A > 0 gives a significant further learning speed improvement for TTD-SW, 
- unlike in the 10 • 10 task, for the larger tasks the learning speed of TTDyna 

improves for positive A, 
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Fig.  6. Learning curves for TTD, TTDyna,  and TTD-SW. 
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- in general, the improvements due to planning and )~ > 0 are clearly more 
significant for the two larger tasks than for the 10 • 10 one, 

- the advantages of TTDyna and TTD-SW over TTD are particularly no- 
ticeable when one compares the number of (real) time steps necessary to 
converge, 

- while A > 0 reduces the number of trials until convergence for both TTD 
and the two planning algorithms, it does not always reduce (and may even 
increase) the number of steps (except for TTD), because the first few trials 
are, on the average, longer than for )~ = 0, 

- with respect to the number of trials necessary to converge, TTDyna and 
TTD-SW scale up noticeably better with the size of the state space than non- 
planning TTD, and using positive )~ further improves their scaling properties, 

- the effects of planning and positive A on scaling with respect to the number 
of steps necessary to converge is not quite clear, but the combination of 
TTDyna and TTD-SW with A > 0 appears to give some improvement over 
TTDyna(0) and TTD-SW(0), as well as over TTD()~ > 0). 

6 R e l a t e d  W o r k  

The two presented algorithms borrow heavily from prior work on model-based 
reinforcement learning and on TD() 0. The TTDyna algorithm is a combination 
of Sutton's [12] Dyna architecture with TTD [2]. Its novelty consists essentially 
in a special way of using hypothetical experiences, so that they form temporal 
sequences and thus can be reasonably processed by TTD. The TTD sweeping 
algorithm is related to the prioritized sweeping technique of Moore and Atkeson 
[8] and a similar Queue-Dyna algorithm of Peng and Williams [9] on one hand, 
and Lin's [6] experience replay. 

The primary improvement of prioritized sweeping (and Queue-Dyna) over 
the original Dyna algorithm is that hypothetical experiences to process are cho- 
sen in a special way, according to their heuristically estimated usefulness. The 
model used is no longer a simple forwards model: it additionally stores each 
state's predecessors, as in a backwards model. States have also certain priority 
values assigned and at each time step K states with the highest priorities are 
used to generate hypothetical experiences by applying the model. Whenever a 
state's utility is updated with a large error value, the priorities of its possible 
predecessors are increased appropriately (to a degree proportional to the cor- 
responding estimated transition probabilities). This idea is adopted by TTD 
sweeping, although used in a very simplified form: no model is maintained, ex- 
cept for a memory of a number of past time steps. It would be interesting and 
possibly useful to extend the TTD-SW algorithm, so that it handles multiple 
potential predecessors of each state as well. 

In experience replay, as used by Lin [6], after completing a trial a number 
of past experiences are processed in the reversed chronological order. This is 
actually the same as a single sweep of the TTD-SW algorithm. Thus, TTD 
sweeping is in effect a combination of experience replay with a Dyna-like control 
strategy, which determines which experiences it is most useful to replay. 
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7 C o n c l u s i o n  

This paper investigated some possible ways of implementing the well-known 
idea of augmenting reinforcement learning by model-based planning in a more 
effective way. The motivation was to make the planning process benefit from 
TD()~ > 0) in a similar way as learning. The TTD procedure, which implements 
TD(),) without eligibility traces, was found particularly useful for this purpose. 

The presented experimental results show that the two proposed techniques 
indeed reduce the necessary number of real experiences necessary of converge by 
a large factor, at least several times. TTDyna appeared to perform better than 
TTD-SW, though an attractive feature of the latter is that it does not need 
any explicit models. However, given more carefully designed and reliable models 
than the simple ones used in the experiments, the advantages of TTDyna are 
likely to be even more evident. 

The learning speed improvement due to TTDyna and TTD-SW is particu- 
larly noticeable in comparison to TD(0) without planning. It is apparently less 
spectacular in comparison to TTD(~ > 0) without planning, because )~ > 0 
alone gives much faster learning. However, when one compares the number of 
(real) time steps before convergence rather than the number of trials, it turns 
out that the effects of planning are definitely more significant than the effects 
of positive ~. For the planning using )~ > 0 appeared not to give any further 
reduction of the number of steps necessary to converge, because the first few 
trials, before any meaningful Q-values have been learned, were relatively longer 
than for A = 0, which is certainly somewhat disappointing. This effect may be 
due to the rather ad hoc settings of other parameters and the primitive action 
selection mechanism, and thus there is a chance that it will be eventually over- 
come. Positive )~ was found to be still useful for the planning process anyway, as 
it may give some further reduction of the necessary number of trials, particularly 
for large tasks. In many cases minimizing the number of trials may be equally 
or more important as minimizing the number of steps. It is therefore important 
to note that, with respect to the number of trials necessary to converge, the 
proposed algorithms appear to scale better with the size of the state space than 
TTD without planning, particularly for )~ > 0. 

It must be stressed that the reported results have been obtained by using 
the most generic versions of the algorithms. It seems likely that much greater 
performance gain can be obtained by using better model representation methods 
for TTDyna and better TTD sweeping heuristics. This is what should be verified 
by future work. 
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