
Integrated Learning and Planning
Based on Truncating Temporal Differences

Pawet Cichosz

Institute of Electronics Fundamentals
Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
phone: +48-22/660-77-18, fax: +48-22/25-23-00

cichosz@ipe.pw.edu.pl
http://www.ipe.pw.edu.pl/~cichosz

Abs t rac t . Reinforcement learning systems learn to act in an uncertain
environment by executing actions and observing their long-term effects.
A large number of time steps may be required before this trial-and-error
process converges to a satisfactory policy. It is highly desirable that the
number of experiences needed by the system to learn to perform its task
be minimized, particularly if making errors costs much. One approach
to achieve this goal is to use hypothetical experiences, which requires
some additional computation, but may reduce the necessary number of
much more costly real experiences. This well-known idea of augment-
ing reinforcement learning by planning is revisited in this paper in the
context of truncated TD(A), or TTD, a simple computational technique
which allows reinforcement learning algorithms based on the methods of
temporal differences to learn considerably faster with essentially no ad-
ditional computational expense. Two different ways of combining TTD
with planning are proposed which make it possible to benefit from A > 0
in both the learning and planning processes. The algorithms are evalu-
ated experimentally on a family of grid path-finding tasks and shown to
indeed yield a considerable reduction of the number of real interactions
with the environment necessary to converge, as well as an improvement
of scaling properties.

1 Introduction

A rein]orcement learning (RL) system at each step of discrete t ime observes the
current state of its environment and executes an action. Then it receives a re-
inforcement, or reward value, and a state transition takes place. Reinforcement
values provide a measure of the quality of actions executed by the system. The
objective of learning is to identify a decision policy (i.e., a state-action map-
ping) tha t maximizes the reinforcement values received by the learner in the
long term. A typical performance measure is the expected total discounted sum
of reinforcement it receives during its lifetime in continuous learning tasks, or
during a trial in episodic tasks. Rewards from subsequent t ime steps are mul-
tiplied by the subsequent powers of a discount]actor 0 ~ 7 ~ 1, which, for

58

positive 7, makes the learner take into account not only the immediate, but also
the delayed consequences of its actions, and, for 7 < 1, to consider the rewards
received soon more important that those from the far future. This involves the
temporal credit assignment problem, commonly solved using algorithms based
on the methods of temporal differences (TD) [11].

The key problem with the existing reinforcement learning algorithms is that
they usually converge slowly, especially for tasks with large state spaces. A con-
siderable part of current RL research is devoted to various possible ways of
overcoming this painful deficiency. Of those, it is particularly worthwhile to
mention state generalization by the use of function approximators [13,3], hierar-
chical RL architectures [7,6], and integrating learning with planning [12,9]. The
last approach is investigated in this paper in a new, promising context. Novel
hybrid learning and planning algorithms are proposed, obtained by combining
the frameworks of the Dyna architecture [12] and of the TTD procedure [2].
These two are briefly described in the next section.

2 B a c k g r o u n d

The Dyna architecture is a generic instantiation of the idea of combining rein-
forcement learning with planning by means of learning from hypothetical ex-
periences. The TTD procedure is a simple computational technique that allows
one to efficiently implement TD-based reinforcement learning algorithms in their
TD()~ > 0) versions, which usually converge faster than the simplest TD(0) ones.
The discussion of these two foundations for this work is limited to the most es-
sential points. The reader may refer to the cited literature for more details.

2.1 Dyna Architecture

The basic idea of Sutton's Dyna framework [12] is that one can reduce the
number of interactions with the "real world" necessary to learn an acceptable
policy by introducing a number of hypothetical interactions with a model, which
predicts the consequences of the learner's actions in different states. The model
is usually not known a priori and thus it is learned during the regular operation
of the learning system. Hypothetical experiences are processed by essentially the
same reinforcement learning algorithm as real ones. Learning from experiences
generated by the model is referred to as planning.

The generic Dyna algorithm is shown in Figure 1, as a sequence of operations
performed at each time step. The current real experience, ~xt, at, rt, xt+l ~, is used
to update the model in Step 4 and then passed to the underlying reinforcement
learning algorithm, referred to as I~L. Additionally, a number of hypothetical
experiences are processed, generated by applying a (forwards) model to different
state-action pairs.

The operation written as F~(x , a) is intended to return a pair (r, x') such
that executing action a in state x is predicted to result in a transition to state x ~
and a reinforcement value ofr. Of course a model must be sufficiently accurate to

59

At each time step t:

1. observe current state x,;
2. at := select_action(x,);
3. perform action a,; observe new state x,+~ and immediate reinforcement r,;
4. update__model(x,, at, rt, xt+l);
5. RL(xt, at,rt,xt+l);
6. repeat K times

(a) choose a hypothetical state x;
(b) a := select_action(x);
(c) (r,x') := ~ (~ , a) ;
(d) ~(~,a,r,~').

Fig. 1. The generic Dyna algorithm.

be useful, and a very poor model may be harmful. The learner may be supplied
with some initial model as a part of its background "innate" knowledge. Each
real experience may be used to update the model and to verify its reliability.
Planning should be performed only if the current model is found to be reliablc
in a practical implementation of the algorithm from Figure 1, Step 6 should be
probably conditioned by the reliability status of the model.

In order to instantiate the Dyna architecture, one has to select its three ma-
jor components: model representation and learning algorithms, a strategy for
choosing hypothetical experiences, and a reinforcement learning algorithm. The
task of learning a model is a typical supervised learning task and there are sev-
eral methods that can be applied to accomplish it. The proper choice of one
of them depends, first of all, on the state and action representation. Peng and
Williams [9], and independently Moore and Atkeson [8] developed heuristic plan-
ning strategies for deciding which hypothetical experiences are most promising
and should be presented to the learner. The essential idea of these heuristics is
to assign a priority number to each of candidate experiences, based on the mag-
nitude of the reinforcement learning error value recently used to update some
of its possible successor states, and to maintain a priority queue of experiences.
Then each time when a planning step is to be performed, a promising hypothet-
ical experience may be extracted from the queue. This simple idea is reused by
one of the algorithms proposed later in this paper.

2.2 Q-Learning

The Q-learning algorithm [14] is currently the most popular TD-based reinforce-
ment learning algorithm, used also in this work. It learns a Q-function, assigning
to each state-action pair (x, a) an estimate of the cumulative discounted sum of
future rewards received after executing action a in state x and performing opti-
mally thereafter. The Q-learning update rule, in its generic TD(0) version, may

60

be written as follows:

update ~ (Q, xt, at, rt + ~maaxQ(xt+l, a) - Q(xt, at)), (1)

which is the notation used throughout this paper to express that Q(xt, at) is
updated using an error value of rt + 7maxa Q(xt+l, a) - Q(xt, at), to a degree
controlled by a step-size parameter ft.

The implementation of the update operation given by Equation 1 depends
on the function representation method used. For a simple look-up table repre-
sentation, used in this paper, it simply consists in adding/~A, where A is the
error value, to the value stored in the appropriate table entry.

Another issue that needs more specification in a practical implementation is
how actions to perform at each time step are selected. In the experiments pre-
sented in this paper a standard Boltzmann distribution-based stochastic strat-
egy is used, with the selection probability of action a in state x proportional to
exp(Q(x, a)/T), where T > 0 is a temperature parameter, adjusting the amount
of randomness. This action selection mechanism is known not to perform very
well in many cases, but it keeps the algorithms experimented with as generic as
possible.

2.3 T T D Procedure

The TTD procedure [2,4] allows one to implement TD-based reinforcement learn-
ing algorithms in their TD()~ > 0) versions without conceptually appealing, but
computationally demanding eligibility traces [1,10,4]. Only its particular instan-
tiation for the Q-learning algorithm is discussed below, but modifications for
other RL algorithms are straightforward [2].

TTD relies on applying, at time t, the following update operation to the state
and action from time t - m + h

A~rn
update ~ (Q, Xt--m+l; at-m+1, Zt_m+ I - - Q(xt-m+l, at-m+1)), (2)

where zt ~'m is the TTD()~, m) return for time t, defined as

Zt~'rn : E (~A)k[?~t+k @~(1- ,~)m~xQ(x t+k+l , a)]
k:o (3)
+ + max a)]

a

This can be implemented by maintaining an m-step experience buffer, at time t
storing records of xt -k , at-k, rt-~, and maxa Q(xt-k+l, a) for k = 0, 1 , . . . , m -
1. For convenience, the corresponding buffer elements are designated by X[k],
a[k], r[k], and U[k], respectively. Under this notational convention, the Q-learning
version of the TTD()~, m) procedure is presented in Figure 2, as a sequence
of operations performed to process an experience (x, a, r, x~). A pair of square
brackets appears as an additional argument of the procedure to indicate the
indexing mechanism used to access the experience huller.

61

ttd_procedure~'m (x, a, r, x', []):

1. x[o] := x; a[0] := a; rio] := r; u[0] := maxa, Q(x~,a~);
2. z := ttd-xeturn~([m- 1]);
3. update/~ (Q, x[,~-l],a[m-1], z-Q(x[m-1],a[m-1]));
4. shift the indices of the experience buffer;
5. return z.

Fig. 2. The TTD procedure.

The operation of Step 2, written as ttd_return~([m - 1]), computes the
TTD()Lm) return for time t - m + 1, i.e., for the least recent experience stored
in the buffer (designated by [m - 1]). This can be performed either iteratively,
based directly on the definition of TTD returns, or in an incremental manner,
which is particularly efficient. The appropriate algorithms are described in detail
in the existing TTD literature [2,4].

3 Combination of TTD and Dyna

The generic Dyna architecture, as presented in Figure 1, does not make any
explicit assumptions about the reinforcement learning algorithm used, except
that it performs updates based on quadruples consisting of a state, an action,
a resulting reward value, and a successor state. In particular, the architecture
might be used in the same way for TD-based algorithms, regardless of whether
they learn with TD(0) or TD()~ > 0). However, while the learning process may
benefit from positive A as usual, it does not have any effect for the planning
process, since hypothetical experiences do not form a temporal sequence. This
section presents simple modifications of Dyna, based on preliminary ideas first
formulated in [5], which use sequences of hypothetical experiences, and thus
allow the planning process to benefit from)~ > 0. They rely on applying the
TTD procedure to hypothetical experiences similarly as it is applied to real
o n e s .

3.1 Forwards and Backwards Planning with TTD

The most straightforward approach to applying TTD effectively to hypothetical
experiences, if they form a temporal sequence, is to process them in exactly the
same way as real experiences, using a separate n-element hypothetical experience
buffer. Similarly as in the generic Dyna architecture, a forwards model is used to
predict for a state-action pair a corresponding reward value and successor state.

Another way of combining Dyna with TTD is to use for planning the TTD
returns computed during the regular operation of the procedure (when running
for real experiences), rather than maintain a separate experience buffer and per-
form TTD for hypothetical experiences separately. When, during regular TTD

62

learning a t t ime t, the T T D re tu rn for t ime t - m + 1 is compu ted , it contains
meaningful in format ion not only for Xt -m+l , but for its possible predecessors ,
their predecessors , etc. For this idea to be prac t ica l ly useful, a backwards mode l
is needed, t h a t would re tu rn for a s ta te x * a t r iple of (x, a, r) such t ha t pe r fo rm-
ing act ion a in s ta te x is p red ic ted to result in a re inforcement value of r and a
successor s ta te x ~. The opera t ion of such a mode l will be referred to as BIYI[(x~).

3.2 TTDyna Algorithm

The two ideas out l ined above m a y be appl ied together , using two models , a
forwards and a backwards one (or a single model provid ing the funct ional i ty
of bo th) . The resul t ing a lgor i thm, called T T D y n a , pe r fo rms one regular T T D
u p d a t e for the current real experiences a t each t ime step, and a f te rwards it p ro-
cesses several hypothe t ica l experiences in the forwards p lann ing and backwards
p lanning mode. Figure 3 presents the details.

At each t ime step t:

1. observe current state xt;
2. at := select_action(xt);
3. perform action at; observe new state xt+l and immediate reinforcement rt;
4. update-model(xt , at, rt, xt+l);
5. z := ttd_procedure:~'m(xt, at,re, X~+l, []);
6. F := 0; while F < Nf do

(a) F : = F + l ; i f t = 0 o r f > n f then f : = 0 ;
(b) if f = 0 then

choose a hypothetical state x;
(c) a := select.action(x);
(d) if (r ,x ') := FM(x,a) then

i. ttd_procedure:~'n(z, a, r, x', { });
ii. x : = x ' ; . f : = f + l ;

else f := 0.
7. B := 0; b := 0; while B <: Nb do

(a) B : = B + l ; i f b : > n b t h e n b : = 0 ;
(b) if b = 0 then

z ~ : : Z; x ~ : : X[ra-1];
(C) if (x, a, r) := BM(x') then

i. u ' := maxa, Q(x',a'); z' := r + 7(Az' + (1 - A)u');
ii. update ~ (Q, x ,a, z' - Q(x,a));

iii. x ~ : = x;
else b := 0.

Fig. 3. The T T D y n a algorithm.

Steps 5 and 6(d)i refer to the basic T T D a lgor i thm presen ted in Figure 2, the
former for the current real experience, and the la t te r for a hypo the t i ca l exper i -

63

ence from the currently processed sequence. As already said above, TTD uses a
separate experience buffer for hypothetical experiences, which is denoted using
curly braces { } instead of square brackets []. The forwards planning process is
controlled by two parameters: Nf is the maximum number of hypothetical ex-
periences to use at a time step, and nf is the maximum length of a hypothetical
experience sequence. If n I < NI, more than one hypothetical sequence is used
at one time step. The sequence started at time t may be continued at subsequent
time steps.

The actual number of hypothetical experiences processed during forwards
planning and the length of individual sequences may be different from N f and n f,
respectively, depending on whether the model succeeds at predicting the con-
sequences of state-action pairs it is requested to. The FM(x, a) operation is as-
sumed to return false whenever the model is unable to give a reliable prediction
of a reward and successor state resulting from performing action a in state x.
On success, the model is assumed to return a (possibly different on each call)
reward and successor state for a given state-action pair. A simple implementa-
tion of such a model, used in the experiments presented later in this paper, will
be described in Section 3.3.

The backwards planning part of the algorithm performs at each time step
a maximum of Nb updates for hypothetical experiences, which may form a se-
quence with the maximum length nb ~_ Nb. Each sequence starts from the (just
updated) state X[m-q and goes backwards in time, along its possible predeces-
sors. Given the TTD return for X[m-1] (assumed to be returned by the call to
the TTD procedure in Step 5), their TTD returns may be computed iteratively,
as demonstrated by Step 7(c)i. The backwards model is assumed to return false
when it is unable to produce a new reliable prediction, and on success to return
a (possibly different on each call) state-action-reward triple for the hypothetical
successor state for which it is invoked.

3.3 Mode l I m p l e m e n t a t i o n

The algorithm described above strongly depends on model implementation. This
in turn is a hard problem itself and deserves separate, extensive studies, which are
beyond the scope of this preliminary work. In the experiments presented in this
chapter, similarly as for function representation, we use a look-up table model
representation, although it may be hypothesized that some generalizing function
approximators that have proved themselves useful for the former purpose, may
turn out to be useful for the latter as welt.

For a forward model, a separate look-up table is used for every action, as-
suming a discrete action space. Each table entry corresponds to one environment
state and stores a predicted reward value r and an estimate p of the occurrence
likelihood of each state as a successor state (which also assumes a discrete state
space). The operation of model update:

update.znodel(x, a, r, x') (4)

64

may be then implemented by

FMa[x].r := (1 - o0FMa[x].r + c~r (5)

and

(1 - a)FMa[x].py + a i f y = x'

FMa[x].p~:= (1 a)FM=[xl.P~ otherwise, (6)

where a is a step-size parameter, FMa denotes the look-up table corresponding
to action a, brackets are used to indicate for which state the table entry is
referred to, and dots to designate access to the two components of each entry. The
successor state x', returned by FI~ (x, a), may be then chosen based on FMa [x].p
either deterministically, as arg maxy FMa [x].py (this is the approach adopted in
the experiments presented later in this paper), or stochastically, which may be
appropriate if there are multiple possible successor states for a given state-action
pair.

To predict backwards, a single look-up table may be used, containing, for
every state, the corresponding likelihood estimates for the predecessor state and
action, and a reward value. The update operations for states and rewards are
analogous to those presented above for a forwards model:

(1 - a)BM[x'].py +
BM[x'].p~:= (1 a)BM[x'].py

i fy = x (r)
otherwise,

and

BM[x'l.r := (1 - a)BM[x].r + ar. (8)

For actions the update operation is a straightforward analog of Equation 6:

(1 -)BM[x'].qb +
BM[x'].qb := (1 a)BM[x'].qb

i f b = a
(9)

otherwise,

where q is an estimate of the occurrence likelihood of each action in a preceding
experience.

This is indeed a very simple approach to model learning and it has many ob-
vious deficiencies. First, similarly as a tabular function representation, it is only
applicable to relatively small tasks. Second, and maybe even more important, in
the backwards case it provides no clear way of dealing with states for which there
may be multiple predecessor state-action pairs. While a forwards model with such
a limitation is still sufficiently powerful for deterministic tasks, for a backwards
model it is much more painful. There are some relatively simple possibilities of
overcoming these drawbacks, at least in part. One could deal with continuous
states by applying the ideas which have already shown themselves useful for

65

function representation in reinforcement learning, i.e., by replacing look-up ta-
bles with some kinds of function approximators. In particular, it looks possible
to use CMAC4ike sparse coarse-coded look-up tables to implement continuous-
state models. To allow multiple predecessor state-action pairs for a given state x ~
in a backwards model, it might be reasonable to first select (e.g., stochastically)
a predecessor state x, based on the estimated probability distribution BM[xq.p,
and then select an action that, if executed in state x, can be predicted to cause
a transition to x ~. If there are relatively few actions, which is often the case,
one could simply make a forward prediction for x and each possible action, to
see whether it can bring the system to state x I. These possible extensions have
been, however, postponed for future work, so that this work focuses exclusively
on the usefulness of a particular way of using models for reinforcement learning
rather than on the usefulness of particular models themselves.

4 T T D S w e e p i n g

Unlike the two TTDyna algorithms, the approach described in this section is
intended not to require any models, except for the very simplest one: the memory
of a number of past real experiences. This eliminates the problem of choosing
an appropriate model representation and learning method and thus may be
sometimes more attractive, if it turned out to give similarly good performance.

The basic idea of TTD sweeping, or TTD-SW for short, is to store a relatively
large number M of past experiences in the TTD experience buffer, which is
made much longer than m, say, several thousand steps instead of one or two
dozens. The TTD procedure still operates as usual, on a fraction of the buffer
corresponding to the most recent m experiences, but additionally T T D sweeps
are performed for some other regions of the buffer. A sweep for a buffer region
delimited by ks < k2 consists in performing sequentially updates for experiences
[k], k = k l , k l + 1 , . . . ,k2, according to:

update ~ (Q, x[k], a[k], z[Ak'] k-kl+l -- Q(X[k], a[k])), (10)

where z ~'k-kl+l denotes the (k - kl + 1)-step TTD return for experience [k].
Figure 4 shows how this process is exactly organized.

Whenever an update of the Q-function for experience [k] is performed, either
during regular learning or sweeping, two additional operations take place. First,
u[k+l] is updated to reflect the new Qwalues for x[k] . Second, experience [k + #]
(which must have been observed # time steps before experience [k]) becomes
a candidate for sweeping and its index is inserted into a queue, possibly with
some priority value, e.g., depending on the magnitude of the error value used for
the update. The maximum queue length, designated by q, limits the number of
high-priority experiments which are candidates for further updates.

At each time step a maximum of Ns sweeps are performed, for buffer regions
determined as follows. An experience [s] is taken out from the queue. We still
assume that the buffer's indices are shifted appropriately at each time step, so

66

At eas time step t:

1,
2.
3.
4.
5.
6.
7.

observe current state xt;
at := select_action(xt);
perform action at; observe new state xt+l and immediate reinforcement rt;
ttd-procedure~'m(xt, at, rt, xt+l, []);
u[m] := maxa Q(x[m-1], a);
to_queue(fro - 1 + #]);
repeat Ns times
(a) [s] := from_queue(); p := correct(iz);
(b) z := u[~-~+l];
(c) f o r k - - s - ~ + l , s - / ~ + 2 , . . . , s d o

i z := rl,k j + ~(~z + (1 - A)~[kl);
ii. update (Q, x~l,aI~l, ~-Q(xlkl, aI~l));

iii. u[k+l] := max~ Q(x[k],a);
iv. to_queue([k + #]).

Fig. 4. The TTD sweeping algorithm.

that [0] always refers to the current real experience. Therefore the implementa-
tion must provide an appropriate index translation mechanism, to ensure that
the index value retrieved from the queue points to the same experience buffer
element which was pointed to when the corresponding entry was inserted to the
queue. The maximum sweep length is #, but it may be reduced, which is writ-
ten/5 = correct(#), to ensure that experiences [s -/5] through [s] do belong to
the same sequence and that sweeping does not interfere with the regular TTD
operation, which involves the first m buffer elements, i.e., s - /~ + 1 > m. Then
a sweep is performed for a buffer region delimited by s - / 5 + 1 and s.

5 E x p e r i m e n t a l R e s u l t s

In this section the results of preliminary experiments with the algorithms pro-
posed above are presented, designed so as to verify the usefulness of their most
generic versions. The performance of the TTDyna and TTD sweeping approaches
to planning are compared to each other, as well to the performance of their TD(0)
versions and of TD(0) and TTD()~ > 0) without planning.

5.1 L e a r n i n g Tasks

Three simple grid path-finding tasks, differing in the grid size, are used for the
experiments. Figure 5 illustrates the 10 • 10 grid world which is the basis for
these tasks. The state representation supplied to the learning agent is simply the
number of the cell it is currently in. At each step the agent can choose any of
the four allowed actions of going North, South, East, or West. At the beginning

67

of each trial the agent is placed in its fixed initial location. A trial ends when
the agent reaches the goal location. The agent receives a reinforcement value of
- 1 at all steps except when it enters the goal cell, when the reinforcement is 0.

Agent Goal

I I I I "
I I I , I /

�9 . , - i .n I J / e l - - = /
I I I / I l l s ~ #
llJ/ III w= I --E

~1,711 III
,, -,~1 I ~ , - - , s

I I I I
I I I I

Fig. 5. The grid environment.

Obstacle

Apart from the basic 10 x 10 task, more difficult 20 • 20 and 50 x 50 tasks
are used, obtained by dividing each cell (including the barrier and goal cells) of
the environment shown in Figure 5 into, respectively, 22 = 4 and 52 = 25 equal
smaller cells. The agent's starting location is at (2, 6) for the 10 x 10 task, at
(4, 12) for the 20 x 20 task, and at (12, 32) for the 50 x 50 task, assuming that the
coordinates count from 0 and start from the left upper corner. The shortest pa th
to any goal cell for the three tasks consists, respectively, of 20 steps, 36 steps,
and 84 steps.

5.2 Experimental Design and Results

The following algorithms were applied to each of the three grid tasks:

- the TTD procedure with)~ = 0 and)~ = 0.5,
- T TDyna with)~ = 0 and)~ = 0.5,
- T T D sweeping with)~ = 0 and)~ = 0.5.

The TTD procedure used m = 25. For all algorithms 7 was set to 0.95 and T
to 0.01. These values appeared reasonable based on prior work with TTD [2,4].
Additionally, for T T D y n a we used Nj = 10, n f = 5, and Nb =nb = 5, and for
TTD sweeping M = 500, Ns = 3, # = 8, and a priority queue of length q = 25. A
number of preliminary runs with different settings of these planning parameters
were carried out and the above were found to be roughly best, but not crucial for
successful performance. Both the algorithms performed similarly for a wide range
of parameter values. The step-size parameters used for updating the Q-function
were equal 0.5 for), = 0 and 0.125 for)~ = 0.5, the values optimized in a series
of preliminary runs. Twice larger or smaller/7 appeared to yield only slightly
worse results. Model update operations for TTDyna , implemented according to

68

Equations 5 and 6, used a = 1, which is a natural choice for deterministic tasks.
The Q-values were initiMized to -5 for the 10 x 10 task, - 7 for the 20 x 20 task,
and -10 for the 50 • 50 task, to provide a reliable initial guess.

Figure 6 compares the learning curves obtained by using TTDyna, TTD-
SW, and "pure" TTD for the two A values tried. The results are averaged over
25 independent experimental runs. Table 1 presents the total number of real
interactions performed by each of the algorithms before convergence. To better
illustrate how the learning speed of the investigated algorithms scales up with
the size of the state space, Table 2 presents the factors by which the numbers of
steps and trials necessary to converge for all the algorithms in the 20 x 20 and
50 • 50 tasks are greater than in the 10 • 10 task~

Table 1. The average numbers of real interactions before convergence.

Task/Algorithm 10 x 10 20 x 20 50 x 50 task
TTD(0) ~ 1,938,440

TTD(0.5) 1,821,950
TTDyna(0) 264,970

TTDyna(0.5) 247,705
TTD-SW(0) 716,453

TTD-SW(0.5) 667,253

Table 2. The factors by which the numbers of steps and trials before convergence for
the 20 x 20 and 50 x 50 tasks are greater than for the 10 • 10 task.

Task/AlgorithmII 20x20 I 50x50]

TTD(0)
TTD(0.5)

TTDyna(0)
TTDyna(0.5)
TTD-SW(0)

TTD-SW(0.5)

We can observe that

- without planning,)~ > 0 considerably improves convergence speed,
- for A = 0, both TTDyna and TTD-SW result in much faster learning than

for "pure" TD(0),
- A > 0 gives a significant further learning speed improvement for TTD-SW,
- unlike in the 10 • 10 task, for the larger tasks the learning speed of TTDyna

improves for positive A,

69

S t e p s / T r l a l

1000

500

100

20

.',:,. I I I I --

%.~�9 TTDyna (O)

\�9149 TTDyna(0.5)

';.~ TTD(0)

'\ "'. TTD(0.6)
\ ",

-

0 20 40 60

T r i a l

"'1
80 100

(a) TTDyna, 10 x 10 task

S t e p s / T r i a l

6000 :',, I I I I I I I I I
~; TTDyaa(O) ,

~%,~ TTDyna(0.6) ------

1000 ~ TTD(0)

"%" �9 i
500 "",'~ �9 TTD(0.6) --

o.% -.. �9

~ �9

100 -, �9

4o I L - q . ~ l �9 I --

0 20 40 60 80 I0 0 120 140 160 180 200

TriaL

(c) TTDyna, 20 x 20 task

S t e p s / T r i a l

20000 ,
I I I I I I I

10000 T T D y n a (O)

TTDyaa(0.5) ------ --
5000

% TTD(0)

"~ T T D (0 . 5)

I 0 0 0

500

90 I " ' F - . J

250 500 760 1000 1260 1500 1760 2000

Tr i~I

(e) TTDyna, 50 x 50 task

S t e p s / T r i a l

1000

5 0 0

100

20

~,, I I I I
%~ TTD-SW(0) -

~ l , \ ~ ~" T T D - S W (0 . 5 }

~ "*,'~�9 TTD(0)

~\ ~ ". T T D (0 . 5)
ll~ \ " ",

I \ �9
't ": �9 �9

_ t L _ 2 ; a _ .

20 40 60 80 100

Trial

(b) TTD-SW, 10 x 10 task

Steps/Trial

5000

1000

500

100

40

.~:'\ i i I I i I i I i
~ C , T T D - S W (0)

~,~ TTD-SW(0.6)
k*.
~r :~'," - TTD(0)

-- ~ ' ",, ", TTD[0.5) -- % 4 ". ~

% ~ ~.. �9
% "% ~.

0 20 40 60 80 100 120 140 100 180 200

T r i a l

20000

10000

5000

1000

500

(d) TTD-SW, 20 x 20 task

S t e p s / T r i a l

f , ~ I I I i I I i
T T D - S W (0)

TTD-SW(0.5) --

T T D [0)

, TTD(0.5)

0 260 600 750 I 0 0 0 1250 1600 1750 2000

T r i a l

(f) TTD-SW, 50 x 50 task

Fig. 6. Learning curves for TTD, TTDyna, and TTD-SW.

70

- in general, the improvements due to planning and)~ > 0 are clearly more
significant for the two larger tasks than for the 10 • 10 one,

- the advantages of TTDyna and TTD-SW over TTD are particularly no-
ticeable when one compares the number of (real) time steps necessary to
converge,

- while A > 0 reduces the number of trials until convergence for both TTD
and the two planning algorithms, it does not always reduce (and may even
increase) the number of steps (except for TTD), because the first few trials
are, on the average, longer than for)~ = 0,

- with respect to the number of trials necessary to converge, TTDyna and
TTD-SW scale up noticeably better with the size of the state space than non-
planning TTD, and using positive)~ further improves their scaling properties,

- the effects of planning and positive A on scaling with respect to the number
of steps necessary to converge is not quite clear, but the combination of
TTDyna and TTD-SW with A > 0 appears to give some improvement over
TTDyna(0) and TTD-SW(0), as well as over TTD()~ > 0).

6 R e l a t e d W o r k

The two presented algorithms borrow heavily from prior work on model-based
reinforcement learning and on TD() 0. The TTDyna algorithm is a combination
of Sutton's [12] Dyna architecture with TTD [2]. Its novelty consists essentially
in a special way of using hypothetical experiences, so that they form temporal
sequences and thus can be reasonably processed by TTD. The TTD sweeping
algorithm is related to the prioritized sweeping technique of Moore and Atkeson
[8] and a similar Queue-Dyna algorithm of Peng and Williams [9] on one hand,
and Lin's [6] experience replay.

The primary improvement of prioritized sweeping (and Queue-Dyna) over
the original Dyna algorithm is that hypothetical experiences to process are cho-
sen in a special way, according to their heuristically estimated usefulness. The
model used is no longer a simple forwards model: it additionally stores each
state's predecessors, as in a backwards model. States have also certain priority
values assigned and at each time step K states with the highest priorities are
used to generate hypothetical experiences by applying the model. Whenever a
state's utility is updated with a large error value, the priorities of its possible
predecessors are increased appropriately (to a degree proportional to the cor-
responding estimated transition probabilities). This idea is adopted by TTD
sweeping, although used in a very simplified form: no model is maintained, ex-
cept for a memory of a number of past time steps. It would be interesting and
possibly useful to extend the TTD-SW algorithm, so that it handles multiple
potential predecessors of each state as well.

In experience replay, as used by Lin [6], after completing a trial a number
of past experiences are processed in the reversed chronological order. This is
actually the same as a single sweep of the TTD-SW algorithm. Thus, TTD
sweeping is in effect a combination of experience replay with a Dyna-like control
strategy, which determines which experiences it is most useful to replay.

71

7 C o n c l u s i o n

This paper investigated some possible ways of implementing the well-known
idea of augmenting reinforcement learning by model-based planning in a more
effective way. The motivation was to make the planning process benefit from
TD()~ > 0) in a similar way as learning. The TTD procedure, which implements
TD(),) without eligibility traces, was found particularly useful for this purpose.

The presented experimental results show that the two proposed techniques
indeed reduce the necessary number of real experiences necessary of converge by
a large factor, at least several times. TTDyna appeared to perform better than
TTD-SW, though an attractive feature of the latter is that it does not need
any explicit models. However, given more carefully designed and reliable models
than the simple ones used in the experiments, the advantages of TTDyna are
likely to be even more evident.

The learning speed improvement due to TTDyna and TTD-SW is particu-
larly noticeable in comparison to TD(0) without planning. It is apparently less
spectacular in comparison to TTD(~ > 0) without planning, because)~ > 0
alone gives much faster learning. However, when one compares the number of
(real) time steps before convergence rather than the number of trials, it turns
out that the effects of planning are definitely more significant than the effects
of positive ~. For the planning using)~ > 0 appeared not to give any further
reduction of the number of steps necessary to converge, because the first few
trials, before any meaningful Q-values have been learned, were relatively longer
than for A = 0, which is certainly somewhat disappointing. This effect may be
due to the rather ad hoc settings of other parameters and the primitive action
selection mechanism, and thus there is a chance that it will be eventually over-
come. Positive)~ was found to be still useful for the planning process anyway, as
it may give some further reduction of the necessary number of trials, particularly
for large tasks. In many cases minimizing the number of trials may be equally
or more important as minimizing the number of steps. It is therefore important
to note that, with respect to the number of trials necessary to converge, the
proposed algorithms appear to scale better with the size of the state space than
TTD without planning, particularly for)~ > 0.

It must be stressed that the reported results have been obtained by using
the most generic versions of the algorithms. It seems likely that much greater
performance gain can be obtained by using better model representation methods
for TTDyna and better TTD sweeping heuristics. This is what should be verified
by future work.

A c k n o w l e d g e m e n t s

The author gratefully acknowledges the financial support from the Polish Com-
mittee for Scientific Research under Grant 8 T l l C 04611 and from the Founda-
tion for Polish Science.

72

R e f e r e n c e s

1. A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, 13:835-846~ 1983.

2. P. Cichosz. Truncating temporal differences: On the efficient implementation
of TD(A) for reinforcement learning. Journal of Artificial Intelligence Research,
2:287-318, 1995.

3. P. Cichosz. Truncated temporal differences with function approximation: Success-
ful examples using CMAC. In Proceedings of the Thirteenth European Symposium
on Cybernetics and Systems Research (EMCSR-96), 1996.

4. P. Cichosz and J. J. Mulawka. Fast and efficient reinforcement learning with trun-
cated temporal differences. In Proceedings of the Twelfth International Conference
on Machine Learning (ML-95). Morgan Kanfmann, 1995.

5. P. Cichosz and J. J. Mulawka. Integrated architectures for learning, planning, and
reacting based on approximating TD(A). In Proceedings of the First International
Workshop on Intelligent Adaptive Systems (IAS-95)~ 1995.

6. Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, School of Computer Science, Carnegie-Mellon University, January 1993.

7. S. Mahadevan and J. Connell. Automatic programming of behavior-based robots
using reinforcement learning. Artificial Intelligence, 55:311-365, 1992.

8. A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning
with less memory and less time. Machine Learning, 13:103-130, 1993.

9. J. Peng and R. J. Williams. Efficient learning and planning within the Dyna
framework. In Proceedings of the Second International Conference on Simulation
of Adaptive Behavior. The MIT Press, 1993.

10. R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
Department of Computer and Information Science, University of Massachusetts,
1984.

11. R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9-44, 1988.

12. R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning (ML-90). Morgan Kaufmann, 1990.

13. R. S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In Advances in Neural Information Processing Systems 8.
Morgan Kauffnann, 1996.

14. C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College,
Cambridge, 1989.

