
Classification by Voting Feature Intervals*

Giil~en DemirSz and H. Altay Gfivenir

Department of Computer Engineering and Information Science
Bilkent University, 06533 Ankara, Turkey

email: {demiroz, guvenir}@cs.bilkent.edu.tr

Abst rac t . A new classification algorithm called VFI (for Voting Fea-
ture Intervals) is proposed. A concept is represented by a set of feature
intervals on each feature dimension separately. Each feature participates
in the classification by distributing real-valued votes among classes. The
class receiving the highest vote is declared to be the predicted class. VFI
is compared with the Naive Bayesian Classifier, which also considers
each feature separately. Experiments on real-world datasets show that
VFI achieves comparably and even better than NBC in terms of classi-
fication accuracy. Moreover, VFI is faster than NBC on all datasets.

1 I n t r o d u c t i o n

Learning to classify objects has been one of the primary problems in machine
learning. Bayesian classifier originating from work in recognition is a probabilistic
approach to inductive learning. Bayesian approach to classification estimates
the posterior probability that an instance belongs to a class, given the observed
feature values for the instance. The highest estimated probability determines
the classification. Naive Bayesian Classifier (NBC) is a fast, classical Bayesian
classifier assuming independence of features. NBC has been found successful in
terms of classification accuracy in many domains, including medical diagnosis,
compared with Assistant, which is an ID3-1ike [8] inductive learning system [5].
It has also been concluded that induction of decision trees is relatively slow as
compared to NBC [5].

Considering each feature separately is common in both NBC, CFP (for Clas-
sification by Feature Partitions) [3], and k-NNFP [1] classification algorithms.
Both CFP and k-NNFP represent the knowledge as sets of projections of the
training dataset on each feature dimension. K-NNFP stores all instances as their
projections on each feature dimension, while CFP constructs disjoint segments of
feature values on each feature dimension. The classification in CFP and k-NNFP
is based on a majori ty voting done among individual predictions of features. The
encouraging results and the advantages of the representation and voting schemes
such as speed and handling missing feature values motivated us to come up with
a new classification algorithm called the VFI (for Voting Feature Intervals). The
concept is still represented as projections on each feature dimension separately,

* This project is supported by TUBITAK (Scientific and Technical Research Council
of Turkey) under Grant EEEAG-153.

86

but the basic unit of representation is a feature interval in VFI. Unlike segments
in CFP, a feature interval can represent examples from a set of classes instead of
a single class. The voting scheme, where a feature votes for one class, used both
in CFP and k-NNFP, is also modified such that each feature distributes its vote
among several classes.

The voting scheme in VFI is analogical with the probability estimation in
NBC. In NBC, each feature participates in the classification by assigning prob-
ability values for each class and the final probability of a class is the product
of individual probabilities measured on each feature. In VFI, each feature dis-
tributes its vote among classes and the final vote of a class is the sum of all
individual votes given the features. The results of the experiments show that
VFI achieve comparably and even better than NBC on some real-world datasets
and usually better than CFP and k-NNFP in terms of classification accuracy.
Moreover, VFI has been shown to be faster than all other three classifiers, which
suffer more on datasets having large number of instances and/or features.

The next section will describe the VFI Mgorithm in detail. In Section 3, the
complexity analysis and the empirical evaluation of VFI and NBC are presented.
Finally, Section 4 concludes with some remarks and plans for future work.

2 The VFI Algor i thm

This section describes the VF[classification algorithm in detail. First, a descrip-
tion of VFI is given. Then, the algorithm is explained on an example dataset.

2.1 D e s c r i p t i o n o f t h e A l g o r i t h m

The VFI algorithm is a non-incremental classification algorithm. Each training
example is represented as a vector of feature values plus a label that represents
the class of the example. From the training examples, VFI constructs feature
intervals for each feature. The term interval is used for feature intervals through-
out the paper. An interval represents a set of values of a given feature, where
the same subset of class values are observed. Two neighboring intervals contain
different sets of classes.

The training process in the VFI algorithm is given in Figure 1. The procedure
find_end_points(Training,get, f, c) finds the lowest and the highest values for linear
feature f f rom the examples of class c and each observed value for nominal feature
f f r o m the examples in TrainingSet. For each linear feature 2k values are found,
where/r is the number of classes. Then the list of 2k end-points is sorted and each
consecutive pair of points constitutes a feature interval. For nominal features,
each observed value found constitutes a poini interval of a single value.

Each interval is represented by a vector of < lower, count1,. . . , countk >
where lower is the lower bound of that interval, eounti is the number of training
instances of class i that fall into that interval. Thus, an interval may represent
several classes. Only the lower bounds are kept, because for linear features the
upper bound of an interval is the lower bound of the next interval and for

87

train(TrainingSet):
begin

for each feature f
for each class c

EndPoints[f] = EndPoints[f] tO find_end_points(TrainingSet, f, c);
sort(EndPoints[f]);
/* each pair of consecutive points in EndPoints[f] form a feature interval */
for each interval i / * on feature f */

for each class c
/* count the number of instances of class e falling into interval i */
interval_class_count[f,i, c] = count_instances(f, i, c);

end.

Fig. 1. Training phase in the VFI Algorithm.

nominal features upper and lower bounds of every interval are equal. The counti
values are computed by the count_instances(i, c) function in Figure 1. When
a training instance of class i falls on the boundary of two consecutive intervals
of linear feature f , then counti of both intervals are incremented by 0.5. In
the training phase of the VFI algorithm the feature intervals for each feature
dimension are constructed. Note that since each feature is processed separately,
no normalization of feature values is required. The classification phase of the
VFI algorithm is given in Figure 2. The process starts by initializing the votes
of each class to zero. For each feature f , the interval on feature dimension f
into which e/ falls is searched, where e/ is the f value of the test example e.
If e/ is unknown (missing), that feature gives a vote zero for each class. Hence,
the features containing missing values are simply ignored. Ignoring the feature
about which nothing is known is a natural and plausible approach.

If e] is known, the interval i into which ef falls is found. For each class c,
feature f gives a vote equal to

feature_vote[f, c] = interval_class_count[f, i, c]
class_count[c]

where interval_class_count[f, i, c] is the number of examples of class c which fa l l
into interval i of feature dimension f . If e / fa l l s on the boundary of two intervals
i and i + 1 of a linear feature, then a vote equal to the average of the votes
suggested by the intervals i and i + 1 is given. For nominal features, only point
intervals are constructed and each value must fall in an interval. The individual
vote of feature f for class c, feature_vote[f, c], is then normalized to have the
sum of votes of feature f equal to 1. Hence, the vote of feature f is a real-valued
vote less than or equal to 1. Each feature f collects its votes in an individual vote
vector < vote/ ,1, . . . , votef,k >, where vote],c is the individual vote of feature f

88

classify(e): /* e: example to be classified */
begin

for each class c
vote[c] = o

for each feature f
for each class c

feature_vote[f , c] = 0 /*vote of feature f for class c*/
if e 4, value is known

i = find_interval(f, el)
f eature_vote[f , c] = i,~t l_c~ tU, i, ~]

class-count[c]
normMize_feature_votes(f); /* such that ~ c fea ture_vote[f , c] = 1 */
for each class c

vote[c] = vote[c] + feature_vote[f ,e];
return class c with highest vote[c];

end.

Fig. 2. Classification in the VFI Algorithm.

for class c and k is the number of classes. Then the individual vote vectors are
summed up to get a total vote vector < v o t e 1 , . . . , votek >. Finally, the class
with the highest total vote is predicted to be the class of the test instance.

A class is predicted for the test instance in order to be able to measure the
performance by percentage of correct classifications on unseen instances in the
experiments. With this implementat ion, VFI is a categorical classifier, since it

~otqq returns a unique class for a test instance [6]. Instead, ~ k ~otqk] can be used as

the probabil i ty of class c which makes VFI a more general classifier. In that case,
VFI returns a probabili ty distribution over all classes.

2.2 A n E x a m p l e

In order to describe the VFI algorithm, consider the sample training dataset
on the left of Figure 3. In this dataset, we have two linear features f0 and f l ,
and there are 3 examples of class A and 4 examples of class B. The constructed
concept description after the training phase is shown in Figure 3. There are 5
intervals for each feature. The lower bound of the leftmost intervals is - I N F I N I T E
and the upper bound of the r ightmost intervals is INFINITE. The second interval
on feature dimension of f0 can be represented as < 1, 1.5, 0 >, where 1 is the
lower bound of the interval, 1.5 is count of training instances of class A, and 0
is the count of training instances of class B that falls into that interval.

In order to describe the classification phase of the VFI algorithm, consider
a test example test = < 5, 3, ? >. On feature f0 dimension , the testo = 5 falls
into the fourth interval as shown with an arrow in Figure 3. Tha t interval has

89

f~ B

Q

6 - - - - - - - O ,

A B B

4 - O - + - ~ - ~ - - - O

' t~St '

A
O

.f
2 4 6 ~

oi -t
CA=0.5 CA=I.5 CA=l CA=0 CA=0
c B=0 c B=0 c B=0, 5 c B=2. 5 c B=I

I iiiiiii!i!i!i!iii!!!i I liiiii[iiii!i!iiiii[iiiii!iii!i[iii!i!i!iiiiiiiiiiiii!i[iiiiiiiiiiiiiii] f 0

1 2 3 6

t i s t

c A=0 5 c A=I c A=I c A=0. 5 c A=0
cB=0 CB=l CB=2 CB= 0.5 c B=O-5

l!i!i!!iii!i!i!i!i!ii!!!! iiiil l!i!!ii!iiiiiiiiiii!iiiiiiiiiii!J f
l 4 7 8

Fig. 3. A sample training dataset and the concept description learned by VFI.

a count c A = 0 for class A and a count C B : 2.5 for class B, so the vote vector
of f0 is voteo =< 0/3, 2.5/4 >. The normalized vote vector is voteo =< O, 1 >.
This means that feature f0 votes 0 for class A and 1 for class B. On the other
feature dimension, test example falls into the second interval. Tha t interval has
a count CA = 1 for class A and a count cB = 1 for class B, so the vote vector of
f l is vote1 = < 1/3, 1/4 >. The normalized vote vector is vote1 = < 0.57, 0.43 >.
Finally, the votes of the two features are summed up correspondingly and total
vote vector is vote = < 0.57, 1.43 >. VFI votes 0.57 for class A and 1.43 for class
B, so class B with the highest vote is predicted as the class of the test example.

3 E v a l u a t i o n o f t h e V F I A l g o r i t h m

This section presents the space and time complexity analyses and the empirical
evaluation of VFI. The VFI algorithm is compared with CFP, k-NNFP, and
NBC in terms of classification accuracy, and training and testing times.

3.1 C o m p l e x i t y Ana lys i s

The VFI algorithm represents a concept description by feature intervals on each
feature dimension. Each feature dimension has at most 2k + 1 intervals where k
is the number of classes. Each interval requires k + 1 memory units, one for the
lower bound of the interval and k for the count of each class. So each feature
dimension requires (2k + 1)(k + 1) space and since there are d features, the total
space requirement of the VFI algorithm is d(2k + 1)@ + 1) which is O(dk2). On
the other hand, the space requirement of NBC is O(m) at worst case, where m
is the number of training instances.

In the training phase of the VFI algorithm, for each training instance the
corresponding intervals on each feature dimension is searched and the counts of
corresponding classes are incremented. Since there are m training instances, d
feature dimensions, and at most 2k + 1 intervals on each feature dimension, this
makes up md(2k + 1) total, which is O(mdk). Hence, the training time of VFI
increases with the number of features and classes, and the size of the dataset.

90

Table 1. Properties of the real-world datasets used in the comparisons.

Data Set:
No. of Instances
No. of Features
No. of Nomin. Feat.
No. of Classes
Missing Values (%)

bcancerw cleveland glass horse hungarian iris musk page segment
699 303 214 368 294 150 476 5473 2310
9 13 9 22 13 4 166 10 19

0 8 0 15 8 0 0 0 0
2 2 6 3 2 3 2 5 7

0.25 0.15 0 30 20 0 0 0 0

On the other hand, the training time complexity of NBC is O(vdm), where v is
the average number of distinct values per feature. Hence, the training time of
NBC increases with the number of features and distinct values per feature, and
the size of the dataset. Since in real-world datasets k < < v especially for linear
features, the training time for VFI is less than that of NBC.

In the classification phase of the VFI algorithm, for each feature, the interval
that the corresponding feature value of the test example falls into, is searched
and the individual votes of each feature is summed up to get the total votes.
Since there are at most 2k + 1 intervals on each feature dimension and there are
d features, the classification phase takes at worst case d(2k + 1) which is O(dk).
Hence, the testing time of VFI increases with the number of features and classes.
The test time complexity of NBC is O(dkv), which means that the testing time
of NBC increases with the number of features, distinct values per feature, and
classes. Since an extra factor of v does not exist in the complexity of VFI and
in real-world datasets k < < v especially for linear features, the testing time for
VFI is less than that of NBC.

3.2 E m p i r i c a l E v a l u a t i o n on R e a l - W o r l d D a t a s e t s

In this section we present an empirical evaluation of the VFI algorithm on real-
world datasets provided by the machine learning group at the University of
California at Irvine [7]. An overview of the datasets is shown in Table 1. The
features V3, V25, V26, V27, and V28 are deleted from the original Horse-colic
(called horse in the tables) dataset and feature V24 is used as the class. The
dataset Page-blocks is also called as page in short. The classification accuracy of
the algorithms is used as one measure of performance. The most commonly used
classification accuracy metric is the percentage of correctly classified instances
over all test instances. 5-fold cross-validation technique, which ensures that the
training and test sets are disjoint, is used to measure the classification accuracy
in the experiments. In addition to the accuracy comparisons, the average running
time of the algorithms are also compared.

The classification accuracies of CFP, k-NNFP (k = 1), VFI, and NBC ob-
tained by 5-fold cross-validation on nine real-world datasets are given in Table 2.
VFI usually outperforms k-NNFP but sometimes CFP outperforms VFI where

91

Table 2. Classification accuracy (%) of VFI, NBC, CFP, and k-NNFP (k = 1) obtained
by 5-fold cross-validation on nine real-world datasets.

Data Set: bcancerw cleveland glass horse hungarian iris musk page segment
X/FI 95.14 82.49 57.48 79.35 8 2 . 6 2 95.33 77.73 87.39 77.02
NBC 97.28 80.84 52.34 80.96 82.94 92.0 71.68 8 9 . 8 80.74
CFP 95.85 83.82 54.17 81.53 8 1 . 5 9 94.67 60.49 89.77 66.75
k-NNFP 94.0 67.62 57.0 66.84 70.04 90.0 69.54 90.52 75.1

Table 3. Average running times (msec.) of VFI, NBC, CFP, and k-NNFP (k = 1) on
a SUN/Sparc 20/61 workstation. Training is done with 4/5 and Testing with 1/5 of
the dataset. 0 means time is less than 1 msec.

Data Set:
VFI (Train)
NBC (Train)
c s p (Train)
k-NNFP (Train)
VFI (Test)
NBC (Test)
CFP (Test)
k-NNFP (Test)

bcancerw cleveland musk page segment
21.2 15 11.6 25.4 14.8 4 306.2 205.2 131.2
89 66 48.8 102.4 54 12 2071 4004 1586

149.4 102 71.4 151.4 79.4 17 3973 4400 10253
121.6 67.4 17 277.6 157.6 5.4 738.8 978 713.8

5 2 2.2 4 2 0 67.6 72 79
9 11.2 17 12 8.6 1.8 896 2308 2541

8.4 5.6 6.2 6.8 4.6 2 439.6 550.4 1533
3.6 3 3.6 4.8 2 0 197 170 145

glass horse hungarian iris

CPP is given some parameters. In four of the datasets VFI outperforms NBC,
in other four NBC performs better, and in Hungarian dataset they perform
equally. The largest differences in accuracy are observed on the Glass and the
Musk datasets on which VFI outperforms NBC.

The superiority of VFI over NBC is indeed in its speed. The average training
and testing run times of all classifiers are given in Table 3. It is observed that VFI
is always faster than NBC both in training and testing as expected due to the
reasons discussed in Section 3.1. VFI is in fact the fastest classifier among four
classifiers in terms of both training time and testing time on all datasets with
the only exception of the Bcancerw dataset where k-NNFP is slightly faster only
in testing. Table 3 also shows that both train and test time of all the classifiers
on large datasets like Page-blocks and Segment are larger than that of smaller
datasets. The larger run times of all classifiers on the Musk dataset than that of
smaller ones shows the effect of the number of features on the run times.

4 C o n c l u s i o n s

The VFI classifier has similarities with the Naive Bayesian Classifier, in that they
both consider each feature separately. Since each feature is processed separately,

92

the missing feature values that may appear both in the training and test instances
are simply ignored both in NBC and VFI. In other classification algorithms, such
as decision tree inductive learning algorithms, the missing values cause problems
[9]. This problem has been overcome by simply omitting the feature with the
missing value in both NBC and VFI. Another advantage of both classifiers is
that they can make a general classification returning a probability distribution
over all classes instead of a categorical classification [6]. Also note that the VFI
algorithm, in particular, is applicable to concepts where each feature can be
used in the classification of the concept independently. One might think that
this requirement may limit the applicability of the VFI, since in some domains
the features might be dependent on each other. Holte has pointed out that the
most datasets in the UCI repository are such that, for classification, their features
can be considered independently of each other [4]. Also Kononenko claimed that
in the data used by human experts there are no strong dependencies between
features because features are properly defined [5].

The e• results show that VFI performs comparably and even bet-
ter than NBC and usually better than CFP and k-NNFP on real-world datasets.
Moreover, VFI has a speed advantage over CFP, k-NNFP, as well as NBC, which
is known to be a fast classifier.

For future work, we plan to integrate a feature weight learning algorithm to
VFI, since both relevant and irrelevant features have equal voting power in this
Version of VFI. Genetic algorithms can be used to learn weights for VFI [2] as
well as several other weight learning methods [101.

References

1. Akku~, A., & Gfivenir, H. A. (1995). K Nearest Neighbor Classification on Feature
Projections. Proceedings of ICML '96, 12-19.

2. DemirSz, G., &: Giivenir, H. A. (1996). Genetic Algorithms to Learn Feature Weights
for the Nearest Neighbor Algorithm. Proceedings of BENELEARN-96, 117-126.

3. Giivenir, H. A., & ~irin, I. (1996). Classification by Feature Partitioning. Machine
Learning, Vol. 23, 47-67.

4. Holte, R. C. (1993). Very simple classification rules perform well on most commonly
used datasets. Machine Learning, Vol. 11, 63-91.

5. Kononenko, I. (1993). Inductive and Bayesian Learning in Medical Diagnosis. Ap-
plied Artificial Intelligence, Vol. 77 317-337.

6. Kononenko, I. & Bratko, I. (1991). Information-Based Evaluation Criterion for Clas-
sifier's Performance. Machine Learning, Vol. 6, 67-80.

7. Murphy, P. (1995). UCI Repository of machine learning databases, [Anonymous
FTP from ics.uci.ed~ in the directory pub/macMae-learning data.base@ Department
of Information and Computer Science, University of California, Irvine.

8. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, Vol.1, 81-106.
9. Quinlan, J. R. (1989). Unknown attribute values in induction. Proceedings of 6th

International Workshop on Machine Learning, 164-168.
10. Wettschereck,D. & Aha, D. W. (1995). Weighting Features. Proceedings of the

First International Conference on Case-Based Reasoning (ICCBR-95).

