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Abst rac t .  A new classification algorithm called VFI (for Voting Fea- 
ture Intervals) is proposed. A concept is represented by a set of feature 
intervals on each feature dimension separately. Each feature participates 
in the classification by distributing real-valued votes among classes. The 
class receiving the highest vote is declared to be the predicted class. VFI 
is compared with the Naive Bayesian Classifier, which also considers 
each feature separately. Experiments on real-world datasets show that 
VFI achieves comparably and even better than NBC in terms of classi- 
fication accuracy. Moreover, VFI is faster than NBC on all datasets. 

1 I n t r o d u c t i o n  

Learning to classify objects has been one of the primary problems in machine 
learning. Bayesian classifier originating from work in recognition is a probabilistic 
approach to inductive learning. Bayesian approach to classification estimates 
the posterior probability that an instance belongs to a class, given the observed 
feature values for the instance. The highest estimated probability determines 
the classification. Naive Bayesian Classifier (NBC) is a fast, classical Bayesian 
classifier assuming independence of features. NBC has been found successful in 
terms of classification accuracy in many domains, including medical diagnosis, 
compared with Assistant, which is an ID3-1ike [8] inductive learning system [5]. 
It has also been concluded that induction of decision trees is relatively slow as 
compared to NBC [5]. 

Considering each feature separately is common in both NBC, CFP (for Clas- 
sification by Feature Partitions) [3], and k-NNFP [1] classification algorithms. 
Both CFP and k-NNFP represent the knowledge as sets of projections of the 
training dataset on each feature dimension. K-NNFP stores all instances as their 
projections on each feature dimension, while CFP constructs disjoint segments of 
feature values on each feature dimension. The classification in CFP and k-NNFP 
is based on a majori ty voting done among individual predictions of features. The 
encouraging results and the advantages of the representation and voting schemes 
such as speed and handling missing feature values motivated us to come up with 
a new classification algorithm called the VFI (for Voting Feature Intervals). The 
concept is still represented as projections on each feature dimension separately, 
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but the basic unit of representation is a feature interval in VFI. Unlike segments 
in CFP, a feature interval can represent examples from a set of classes instead of 
a single class. The voting scheme, where a feature votes for one class, used both 
in CFP and k-NNFP, is also modified such that each feature distributes its vote 
among several classes. 

The voting scheme in VFI is analogical with the probability estimation in 
NBC. In NBC, each feature participates in the classification by assigning prob- 
ability values for each class and the final probability of a class is the product 
of individual probabilities measured on each feature. In VFI, each feature dis- 
tributes its vote among classes and the final vote of a class is the sum of all 
individual votes given the features. The results of the experiments show that 
VFI achieve comparably and even better than NBC on some real-world datasets 
and usually better than CFP and k-NNFP in terms of classification accuracy. 
Moreover, VFI has been shown to be faster than all other three classifiers, which 
suffer more on datasets having large number of instances and/or  features. 

The next section will describe the VFI Mgorithm in detail. In Section 3, the 
complexity analysis and the empirical evaluation of VFI and NBC are presented. 
Finally, Section 4 concludes with some remarks and plans for future work. 

2 The  VFI  Algor i thm 

This section describes the VF[ classification algorithm in detail. First, a descrip- 
tion of VFI is given. Then, the algorithm is explained on an example dataset. 

2.1 D e s c r i p t i o n  o f  t h e  A l g o r i t h m  

The VFI algorithm is a non-incremental classification algorithm. Each training 
example is represented as a vector of feature values plus a label that  represents 
the class of the example. From the training examples, VFI constructs feature 
intervals for each feature. The term interval is used for feature intervals through- 
out the paper. An interval represents a set of values of a given feature, where 
the same subset of class values are observed. Two neighboring intervals contain 
different sets of classes. 

The training process in the VFI algorithm is given in Figure 1. The procedure 
find_end_points( Training,get, f, c) finds the lowest and the highest values for linear 
feature f f rom the examples of class c and each observed value for nominal feature 
f f r o m  the examples in TrainingSet. For each linear feature 2k values are found, 
where/r is the number of classes. Then the list of 2k end-points is sorted and each 
consecutive pair of points constitutes a feature interval. For nominal features, 
each observed value found constitutes a poini interval of a single value. 

Each interval is represented by a vector of < lower, count1,. . . ,  countk > 
where lower is the lower bound of that interval, eounti is the number of training 
instances of class i that  fall into that interval. Thus, an interval may represent 
several classes. Only the lower bounds are kept, because for linear features the 
upper bound of an interval is the lower bound of the next interval and for 
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train(TrainingSet): 
begin 

for each feature f 
for each class c 

EndPoints[f] = EndPoints[f] tO find_end_points(TrainingSet, f, c); 
sort( EndPoints[f]); 
/* each pair of consecutive points in EndPoints[f] form a feature interval */ 
for each interval i / *  on feature f */ 

for each class c 
/* count the number of instances of class e falling into interval i */ 
interval_class_count[f,i, c] = count_instances(f, i, c); 

end. 

Fig. 1. Training phase in the VFI Algorithm. 

nominal features upper and lower bounds of every interval are equal. The counti 
values are computed by the count_instances(i, c) function in Figure 1. When 
a training instance of class i falls on the boundary of two consecutive intervals 
of linear feature f ,  then counti of both intervals are incremented by 0.5. In 
the training phase of the VFI algorithm the feature intervals for each feature 
dimension are constructed. Note that since each feature is processed separately, 
no normalization of feature values is required. The classification phase of the 
VFI algorithm is given in Figure 2. The process starts by initializing the votes 
of each class to zero. For each feature f ,  the interval on feature dimension f 
into which e/ falls is searched, where e/ is the f value of the test example e. 
If e/ is unknown (missing), that feature gives a vote zero for each class. Hence, 
the features containing missing values are simply ignored. Ignoring the feature 
about which nothing is known is a natural and  plausible approach. 

If e] is known, the interval i into which ef falls is found. For each class c, 
feature f gives a vote equal to 

feature_vote[f, c] = interval_class_count[f, i, c] 
class_count[c] 

where interval_class_count[f, i, c] is the number of examples of class c which fa l l  
into interval i of feature dimension f .  If e / fa l l s  on the boundary of two intervals 
i and i + 1 of a linear feature, then a vote equal to the average of the votes 
suggested by the intervals i and i + 1 is given. For nominal features, only point 
intervals are constructed and each value must fall in an interval. The individual 
vote of feature f for class c, feature_vote[f, c], is then normalized to have the 
sum of votes of feature f equal to 1. Hence, the vote of feature f is a real-valued 
vote less than or equal to 1. Each feature f collects its votes in an individual vote 
vector < vote/ ,1, . . . ,  votef,k >, where vote],c is the individual vote of feature f 
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classify(e): /* e: example to be classified */ 
begin 

for each class c 
vote[c] = o 

for each feature f 
for each class c 

feature_vote[ f ,  c] = 0 /*vote of feature f for class c*/ 
if e 4, value is known 

i = find_interval(f, el) 
f eature_vote[f  , c] = i,~t . . . .  l_c~ . . . . . . . . .  tU, i, ~] 

class-count[c] 
normMize_feature_votes(f); /* such that ~ c  fea ture_vote[ f ,  c] = 1 */ 
for each class c 

vote[c] = vote[c] + feature_vote[f ,e];  
return class c with highest vote[c]; 

end. 

Fig. 2. Classification in the VFI Algorithm. 

for class c and k is the number  of classes. Then the individual vote vectors are 
summed up to get a total  vote vector < v o t e 1 , . . . ,  votek >. Finally, the class 
with the highest total  vote is predicted to be the class of the test instance. 

A class is predicted for the test instance in order to be able to measure the 
performance by percentage of correct classifications on unseen instances in the 
experiments. With this implementat ion,  VFI is a categorical classifier, since it 

~otqq returns a unique class for a test instance [6]. Instead, ~ k  ~otqk] can be used as 

the probabil i ty of class c which makes VFI a more general classifier. In that  case, 
VFI returns a probabili ty distribution over all classes. 

2.2 A n  E x a m p l e  

In order to describe the VFI algorithm, consider the sample training dataset 
on the left of Figure 3. In this dataset, we have two linear features f0 and f l ,  
and there are 3 examples of class A and 4 examples of class B. The constructed 
concept description after the training phase is shown in Figure 3. There are 5 
intervals for each feature. The lower bound of the leftmost intervals is - I N F I N I T E  
and the upper bound of the r ightmost intervals is INFINITE.  The second interval 
on feature dimension of f0 can be represented as < 1, 1.5, 0 >, where 1 is the 
lower bound of the interval, 1.5 is count of training instances of class A, and 0 
is the count of training instances of class B that  falls into that  interval. 

In order to describe the classification phase of the VFI algorithm, consider 
a test example test  = <  5, 3, ? >. On feature f0 dimension , the testo = 5 falls 
into the fourth interval as shown with an arrow in Figure 3. Tha t  interval has 
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Fig. 3. A sample training dataset and the concept description learned by VFI. 

a count c A = 0 for class A and a count C B : 2.5 for class B, so the vote vector 
of f0 is voteo =< 0/3, 2.5/4 >. The normalized vote vector is voteo =< O, 1 >. 
This means that  feature f0 votes 0 for class A and 1 for class B. On the other 
feature dimension, test example falls into the second interval. Tha t  interval has 
a count CA = 1 for class A and a count cB = 1 for class B, so the vote vector of 
f l  is vote1 = <  1/3, 1/4 >. The normalized vote vector is vote1 = <  0.57, 0.43 >. 
Finally, the votes of the two features are summed up correspondingly and total 
vote vector is vote = <  0.57, 1.43 >. VFI votes 0.57 for class A and 1.43 for class 
B, so class B with the highest vote is predicted as the class of the test example. 

3 E v a l u a t i o n  o f  t h e  V F I  A l g o r i t h m  

This section presents the space and time complexity analyses and the empirical 
evaluation of VFI. The VFI algorithm is compared with CFP, k-NNFP, and 
NBC in terms of classification accuracy, and training and testing times. 

3.1 C o m p l e x i t y  Ana lys i s  

The VFI algorithm represents a concept description by feature intervals on each 
feature dimension. Each feature dimension has at most 2k + 1 intervals where k 
is the number of classes. Each interval requires k + 1 memory units, one for the 
lower bound of the interval and k for the count of each class. So each feature 
dimension requires (2k + 1)(k + 1) space and since there are d features, the total 
space requirement of the VFI algorithm is d(2k + 1)@ + 1) which is O(dk2). On 
the other hand, the space requirement of NBC is O(m) at worst case, where m 
is the number of training instances. 

In the training phase of the VFI algorithm, for each training instance the 
corresponding intervals on each feature dimension is searched and the counts of 
corresponding classes are incremented. Since there are m training instances, d 
feature dimensions, and at most 2k + 1 intervals on each feature dimension, this 
makes up md(2k + 1) total, which is O(mdk). Hence, the training time of VFI 
increases with the number of features and classes, and the size of the dataset. 
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Table 1. Properties of the real-world datasets used in the comparisons. 

Data Set: 
No. of Instances 
No. of Features 
No. of Nomin. Feat. 
No. of Classes 
Missing Values (%) 

bcancerw cleveland glass horse hungarian iris musk page segment 
699 303 214 368 294 150 476 5473 2310 
9 13 9 22 13 4 166 10 19 

0 8 0 15 8 0 0 0 0 
2 2 6 3 2 3 2 5 7 

0.25 0.15 0 30 20 0 0 0 0 

On the other hand, the training time complexity of NBC is O(vdm), where v is 
the average number of distinct values per feature. Hence, the training time of 
NBC increases with the number of features and distinct values per feature, and 
the size of the dataset. Since in real-world datasets k < <  v especially for linear 
features, the training time for VFI is less than that  of NBC. 

In the classification phase of the VFI algorithm, for each feature, the interval 
that the corresponding feature value of the test example falls into, is searched 
and the individual votes of each feature is summed up to get the total votes. 
Since there are at most 2k + 1 intervals on each feature dimension and there are 
d features, the classification phase takes at worst case d(2k + 1) which is O(dk). 
Hence, the testing time of VFI increases with the number of features and classes. 
The test time complexity of NBC is O(dkv), which means that  the testing time 
of NBC increases with the number of features, distinct values per feature, and 
classes. Since an extra factor of v does not exist in the complexity of VFI and 
in real-world datasets k < <  v especially for linear features, the testing time for 
VFI is less than that  of NBC. 

3.2 E m p i r i c a l  E v a l u a t i o n  on  R e a l - W o r l d  D a t a s e t s  

In this section we present an empirical evaluation of the VFI algorithm on real- 
world datasets provided by the machine learning group at the University of 
California at Irvine [7]. An overview of the datasets is shown in Table 1. The 
features V3, V25, V26, V27, and V28 are deleted from the original Horse-colic 
(called horse in the tables) dataset and feature V24 is used as the class. The 
dataset Page-blocks is also called as page in short. The classification accuracy of 
the algorithms is used as one measure of performance. The most commonly used 
classification accuracy metric is the percentage of correctly classified instances 
over all test instances. 5-fold cross-validation technique, which ensures that  the 
training and test sets are disjoint, is used to measure the classification accuracy 
in the experiments. In addition to the accuracy comparisons, the average running 
time of the algorithms are also compared. 

The classification accuracies of CFP, k-NNFP (k = 1), VFI, and NBC ob- 
tained by 5-fold cross-validation on nine real-world datasets are given in Table 2. 
VFI usually outperforms k-NNFP but sometimes CFP outperforms VFI where 
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Table 2. Classification accuracy (%) of VFI, NBC, CFP, and k-NNFP (k = 1) obtained 
by 5-fold cross-validation on nine real-world datasets. 

Data Set: bcancerw cleveland glass horse hungarian iris musk page segment 
X/FI 95.14 82.49 57.48 79.35 8 2 . 6 2  95.33 77.73 87.39 77.02 
NBC 97.28 80.84 52.34 80.96 82.94 92.0 71.68 8 9 . 8  80.74 
CFP 95.85 83.82 54.17 81.53 8 1 . 5 9  94.67 60.49 89.77 66.75 
k-NNFP 94.0 67.62 57.0 66.84 70.04 90.0 69.54 90.52 75.1 

Table 3. Average running times (msec.) of VFI, NBC, CFP, and k-NNFP (k = 1) on 
a SUN/Sparc 20/61 workstation. Training is done with 4/5 and Testing with 1/5 of 
the dataset. 0 means time is less than 1 msec. 

Data Set: 
VFI (Train) 
NBC (Train) 
c s p  (Train) 
k-NNFP (Train) 
VFI (Test) 
NBC (Test) 
CFP (Test) 
k-NNFP (Test) 

bcancerw cleveland musk page segment 
21.2 15 11.6 25.4 14.8 4 306.2 205.2 131.2 
89 66 48.8 102.4 54 12 2071 4004 1586 

149.4 102 71.4 151.4 79.4 17 3973 4400 10253 
121.6 67.4 17 277.6  157.6 5.4 738.8 978 713.8 

5 2 2.2 4 2 0 67.6 72 79 
9 11.2 17 12 8.6 1.8 896 2308  2541 

8.4 5.6 6.2 6.8 4.6 2 439.6 550.4 1533 
3.6 3 3.6 4.8 2 0 197 170 145 

glass horse hungarian iris 

CPP is given some parameters. In four of the datasets VFI outperforms NBC, 
in other four NBC performs better, and in Hungarian dataset they perform 
equally. The largest differences in accuracy are observed on the Glass and the 
Musk datasets on which VFI outperforms NBC. 

The superiority of VFI over NBC is indeed in its speed. The average training 
and testing run times of all classifiers are given in Table 3. It is observed that VFI 
is always faster than NBC both in training and testing as expected due to the 
reasons discussed in Section 3.1. VFI is in fact the fastest classifier among four 
classifiers in terms of both training time and testing time on all datasets with 
the only exception of the Bcancerw dataset where k-NNFP is slightly faster only 
in testing. Table 3 also shows that both train and test time of all the classifiers 
on large datasets like Page-blocks and Segment are larger than that of smaller 
datasets. The larger run times of all classifiers on the Musk dataset than that of 
smaller ones shows the effect of the number of features on the run times. 

4 C o n c l u s i o n s  

The VFI classifier has similarities with the Naive Bayesian Classifier, in that they 
both consider each feature separately. Since each feature is processed separately, 
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the missing feature values that  may appear both in the training and test instances 
are simply ignored both in NBC and VFI. In other classification algorithms, such 
as decision tree inductive learning algorithms, the missing values cause problems 
[9]. This problem has been overcome by simply omitting the feature with the 
missing value in both NBC and VFI. Another advantage of both classifiers is 
that  they can make a general classification returning a probability distribution 
over all classes instead of a categorical classification [6]. Also note that  the VFI 
algorithm, in particular, is applicable to concepts where each feature can be 
used in the classification of the concept independently. One might think that  
this requirement may limit the applicability of the VFI, since in some domains 
the features might be dependent on each other. Holte has pointed out that  the 
most datasets in the UCI repository are such that,  for classification, their features 
can be considered independently of each other [4]. Also Kononenko claimed that 
in the data used by human experts there are no strong dependencies between 
features because features are properly defined [5]. 

The e• results show that VFI performs comparably and even bet- 
ter than NBC and usually better than CFP and k-NNFP on real-world datasets. 
Moreover, VFI has a speed advantage over CFP, k-NNFP, as well as NBC, which 
is known to be a fast classifier. 

For future work, we plan to integrate a feature weight learning algorithm to 
VFI, since both relevant and irrelevant features have equal voting power in this 
Version of VFI. Genetic algorithms can be used to learn weights for VFI [2] as 
well as several other weight learning methods [101. 
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