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A b s t r a c t .  In the subject of machine learning, a "concept" is a descrip- 
tion of a cluster of the concept's instances. In order to invent a new con- 
cept, one has to discover such a cluster. The necessary tool for clustering 
is a metric, or pseudo-metric. Here are presented families of pseudo- 
metrics which seem well suited to such tasks. On terms and literals, 
we construct a new kind of metric from the substitutions which arise 
through subsumption. From these~ it is easy to form metrics on clauses, 
by a technique due to F.Hausdortt. They will be applicable to general- 
ization from sets of ground clauses, to discovery of heuristic guidance for 
theorem proving, and to inductive logic programming. 

We s tar t  by  describing some pseudo-metrics  on terms.  T h e y  are cons t ruc ted  
by means  of P lo tk in ' s  least general generalisation (lgg) of two terms (see [6]). A 
te rm u is subsumed by another,  w, if there is a subst i tu t ion 0 for which wO = u. 
The  Igg of two terms u and v is a te rm w which subsumes them both,  and which 
is itself subsumed by any other  such w / subsuming  u and v. If  wt9 = u and 
w~  = v then the metr ic  is a measure of  the complexit ies of  the subst i tu t ions  
and ~ . 

Example 1. The lgg of the two terms 

is 

play(Mary, Ann, James, skipping) 

play(Mary, Ann, Ann, skipping) 

play(Mary, Ann, x, skipping). 

The  second family  contains pseudo-metr ics  on disjunctive clauses. A clause 
can be regarded as the finite set of  its literal disjuncts.  Syntactically,  a literal 
is like a term,  so the first metrics can be applied to literals. For each metr ic  
on literals, there is an associated Hausdorff metric on finite sets of  literals. We 
present a few kinds of  s i tuat ions where these metrics m a y  help. 

1 Metr ics  on Terms 

Suppose tha t  S is a real-valued function on subst i tu t ions  satisfying the following 
five condit ions:  

1. for any subst i tu t ion 0, SO > 0; 
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2. Ss  = 0 where s is the identi ty subst i tut ion;  
3. for any three terms u, v and w, if 

p : u  >v and o " : v  >w and r : u  >w 

are all mos t  general, then 
S r  <_ Sp + So" 

U 

v S r  

~d) 

4. under the same assumptions  as for 3/ ,  

So" <_ Sr  

5. if ut  and u2 are any two terms which can be unified, and u is formed by 
unifying t h e m  with any subst i tut ions 

91 : u l  >u  and ~ : u 2  >u  

and v is a Igg of ul and u2, and 

pl : v - - - + u l  and p z : v  >us are mos t  general, 

then 
Spl + S#~ < S~1 + S~2. 

v 

Ul ?22 

(Note t h a t  u and 91 and 92 need not  be mos t  general.) 

D e f i n i t l o n l .  In t ha t  case, say S is a size on subst i tut ions.  

We shall examine a family  of  examples of sizes when we have seen why  they  
are interesting. 

If  S is a size on substi tut ions,  and tt  and t2 are any two terms,  and u is their  
lgg, and ~)1 : u ) t l  and ~92 : u > t2 are mos t  general, then say 

ds(tl , t2) = St91 + Sr 



140 

P r o p o s i t i o n 2 .  The function ds is a pseudo-metric on the set of terms. 

Proof. 
ds is non-negative, by 1/. 
ds is symmetric, by the form of its definition. 
ds(t,t) = 0 for any term t, by 2/. 
We show that  ds(tl, t2) <_ ds(tx,t3) + ds(t3,t2). 
Say u is the Igg of tl  and t2 

Vl is the lgg of t l  and t3 
v2 is the lgg of t2 and ta 
w is the lgg of vl and vs. 

W 

/ . \  
V 1 U V 2 

XI 
tl t3 t2 

For convenience, write S(ab) for S~ whenever ad = b and d is most general. 
By the conditions on the size function S, 

S(utl)  < S(Wtl) 
< S(Vltl) -l- S(WVl) 

s(w~l) + s(w~2) < s(~lt3) + s(~2t3) 
SO 

s(~t,)  + s(~t~) < s(~t l )  + S(v~t3) + s(~t~) + s(~t3) 

by 4/ 
by 3/ 
by 5/ 

[] 

2 Examples of Sizes 

It remains to discover a family of size functions. Suppose that  each function sym- 
bol f is assigned a non-negative real number wt] called it weight. (A constant 
is just a function symbol of arity zero). For any subsitution v~, let 

S~ = ~ { w t ]  ] 3x(x is a variable and f occurs in xtg)}. 

Note that  each weight wt] only occurs at most once in the sum, however often 
the symbol f may occur in values of ~. 

Example 2. Suppose that  

= [f(g(a), f(a, b))/x, b/y, z/z] 

wt] = 2; Wtg= 0; wt~ = 4; wtb = 1; wtc = 6. 

Then 
S@=2+0+4+I=7 
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P r o p o s i t i o n 3 .  Any such function S is a size. 

Proof. 

1. Since wry is non-negat ive for each f ,  so is Sr  
2. S~ is the empty  sum, which is 0. 
3. r is the restriction of per to the free variables of  u. Hence every funct ion 

symbol  occurr ing in values of  ~- also occurs in values of  p or c L so 

Sr <_ Sp + Sr 

4. Suppose that ,  for some variable x, a funct ion symbol  f occurs in xe .  Since 
is mos t  general, two cases m a y  arise: either x occurs in u and xp is x, or 

for some variable y occurr ing in u, x occurs in yp. I f  x occurs in u and xp is 
x then x r  mus t  be x~r. If  x occurs in yp where y occurs in u then y r  mus t  
be ypc~. In either event, f occurs in some value of  r .  Hence 

S~ __% Sv. 

5. Suppose tha t  f occurs in xpl; then, since pl is mos t  general, x mus t  occur at  
some place p in v, and since v is least general, the terms xpl and xp2 do not  
begin with the same symbol .  If  xp2 were not  a variable then Ul and u2 could 
not  be unified; so xp2 is some variable, say y. Since vplT2 = vp2~l -- u, 

x p l ~ 2  = x p 2 ~ l  = YT1 

and f occurs in xpl~2 so f occurs in Y~I, so Spl < S~I. Similarly, Sp2 < S~2 
a n d  8o 

Spl + Sp2 <_ S~1 + S~2. 

[] 

3 M e t r i c s  o n  C l a u s e s  

As in reference [6], a clause can be regarded as the finite set of  its disjuncts,  
which are a tomic  formulas and negated a tomic  formulas.  

Example 3. The clause 

likes(Mary, John) A likes(John, Ann) A-~proud(John) 
play(Mary, Ann, John, skipping) 

is equivalent to  

~likes(Mary, John) V ~likes(John, Ann) V proud(John) V 
play(Mary, Ann, John, skipping) 

so it can be depicted as the set of  literals 

(-~likes(Mary, John), -~likes(John, Ann), proud(John), 
play(Mary, Ann, John, skipping)}. 
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We use the 

L e m m a  (see [5] page 131, p rob lem D). If (X, d) is any metric .space, then 
the function 

{ max~eA minyeB d(x, y) 
d'(A, B) -= max maxyeB min~eA d(x, y) 

is a metric on the set of nonempty finite subsets of X.  If d is a pseudo-metric 
then so is d ~. 

This metric d / is often called the Hausdorff metric for d. 

Proof. For any nonempty finite subsets A and B of X, d~(A, B) is clearly well 
defined; non-negative; symmetric; zero if A = B; and, if d is a metric, nonzero 
i f A ~  B. IfYC_ X a n d r > 0 t h e n s a y  V r Y =  { x E X  ] g y E Y d ( x , y )  <_r}. 
Observe that 

d'(A, B) = min{r ] A C_ V~B A B C_ V,.A}. 

If C is any other nonempty subset of X, and if 

Cc_V,A  A A C V ~ C  A 

then Vx E A 3z E C (d(x,z) < r i 
Similarly, B C V~+~A. Hence if d~(A, C) 
r + s. Hence d'(A, B) 5 d'(A, C) + d'(B, 

CC_V~B i BC_�89 

3y E B d(z,y) < s) so A _ V~+~B. 
< r and d'(B, C) <_ s then d'(d, B) < 
c). o 

Example3. Suppose that (X, d) is the set of integers with the usual distance 
function, and 

A={2 ,4 ,5}  and B = { 1 , 2 , 5 , 8 }  

then 

d(x, y) y E B : 
x E A "  2 

4 
5 

min~eA d(x, y) 

1 2 5 8  
1 0 3 6  
3 2 1 4  
4 3 0 3  
1 0 0 3  

minveB d(x, y) 
0 
1 
0 

SO 

max rain d(x, y) = 1 
xEA yEB 

max min d(x, y) = 3 
yEB ~EA 

SO 

d'(A, B) = 3. 

Hausdorff's construction has become popular in the study of fractals. 
Syntactically, the only difference between terms and literals is that a term 

may begin with a function symbol whereas a literal starts with a predicate 
symbol or a negated predicate symbol. If we treat predicate symbols and negated 
predicate symbols like function symbols, as in [6], then the metrics ds on terms 
can be extended to literals. A clause is a finite set of literals, so the metrics we 
want on clauses are the Hausdorff metrics of the metrics ds. 
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4 T e r m s  a n d  C l a u s e s  C o n t a i n i n g  V a r i a b l e s  

These pseudometrics were originally devised for clustering of ground terms and 
clauses. A referee pointed out that  they behave oddly when applied to terms 
containing variables; for instance, if x and y are variables then 

ds(p(x, y)) = 0 

for every size function S. It appears that  they may have limited value if one 
attempts to cluster non-ground clauses. However, there is a solution: one can 
assign weights to variables, just as one does to constants. Formally, this can 
be justified, without rewriting all the propositions and proofs, by the following 
trick. 

Say L is the language in which the clauses are expressed. There is an asso- 
ciated meta-language ~r in which x and y, variables of L, are constants. 
(The construction of AJL is too elaborate to describe here, although it is 
straightforward: see [4].) A/tL is another first order language, so all the 
above constructions can be performed in it. 

Thus, if one assigns weights to variables of L, then the functions ds are still 
metrics, and they detect the difference between p(x, x) and p(x, y). 

Inductive logic programming (ILP) constructs non-ground clauses in which 
the names of variables are chosen arbitrarily, as long as they are distinct within 
any one clause. Unless one takes care, this could disrupt the clustering process. 

Example 5. The two clauses 

y, z) y) 

p(x, z, y) ~ q(x, z) 
are logically equivalent, but there could be a strictly positive distance between 
them (in the Hausdorff metric of a suitable meta-level ds); and they might have 
different distances from a third clause, such as 

y, z) y). 

There is a simple solution to this phenomenon. If C and D are any two terms 
(or clauses), say 

Ac = {C~ I ~ is an invertable substitution} 

so, for instance, when C is p(x, y, z) ~ q(x, y) then Ar contains 

p(x,y,z)::~q(x,y) and p(x , z , y )~q (x , z )  and p(z,x,y)=~q(z,x).  

Define An similarly; and then let the distance d(C, D) be 

max ~ max~eAc miIlyeAD ds(x, y) 
[ maxyeA D min~eA c ds(x, y) 

If all variables have the same weight then, although the sets Ac and AD are 
infinite, this is well defined and calculable, and it is a pseudometric, and it is 
invariant under renaming of variables, and it assigns a strictly positive distance 
between p(x, x) and p(x, y). 
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5 Applications and Discussion 

The metric most commonly used in machine learning is the Hamming distance. 
This serves well when data  are described by attributes with disjoint discrete sets 
of possible values. It fails to reveal all detail when two different attributes can 
have the same value. It is also not so useful when each datum is described by an 
elaborate term in which a subterm can occur twice in different positions. 

Example 6. Vere [7] showed how one may construe ground clauses from an in- 
stance of apparent causes and their effect. Plotkin [6] showed how one can gen- 
eralise from a set of similar ground clauses. (See [3] for details.) It is essential to 
Vere's method that  subterms are repeated. 

One problem with this process in real situations is that  often there is a 
plethora of possible ground clauses which could be construed and generalised 
from. In any one case, Vere's method is likely to form ground clauses with ir- 
relevant features. Each example situation will contribute one clause including 
precisely the relevant features, and several more with irrelevant ones too. If a 
learner forms clusters in the set of all such ground clauses, using the metrics 
described here, then those clauses with only attributes common to all situations 
will form a largest cluster. (There may be several clusters with the maximal num- 
ber of members, but among them, just one cluster will contain longest clauses.) 
This is the cluster from which one should generalise. 

Example 7. Suppose that  a learner should discover heuristic rules to guide the- 
orem proving by natural deduction. A proof is usually found by working back 
from the target theorem. The hard step is application of the =~ E rule: 

S : p ~ q  S : p  
S:q  

When this is used, the root sequent S : q is given and one must choose a suitable 
p. The key is to choose p so that  both p and p =V g are provable. This involves 
finding a p which matches two or more suitable sub-formulas in S. 

For a task like this, a Hamming distance would not find suitable clusters 
of examples from which one could generalise and form useful heuristic rules. A 
metric based on subsumption, like the ones described above, might serve better. 

When extended with weights for variables, the metrics ds also have potential 
application to ILP. In the present state of the art, as represented for instance 
by RIBL [1], an ILP system must overcome noise and redundant features by 
forming clusters of training instances. Each training instance is a set of literals. 
The particular similarity measure used for clustering in RIBL depends on a data  
base in which it finds sets of literals with common terms, rather like those which 
Vere assembles into clauses. 

The similarity measures currently used show scope for improvement.  Ide- 
ally, similarity (or difference) should be measured by some function which has 
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a simple general definition and convenient properties, such as a metric. The  
particular measure encoded into RIBL depends not just  on the two examples 
being compared but also on the da ta  base, which adds complication. If  it were 
replaced with a metric such as some ds then the resulting program might  be 
more amenable to theoretical analysis and comparisons. It  could also incorpo- 
rate a clustering algorithm such as one of those discussed by Allan Gordon in [2]. 
RIBL extrapolates by a weighted voting system, based on k nearest neighbours. 
If  instead it extrapolated from a cluster, found by standard methods,  then there 
would be no need for a choice of k. Clustering is still to some extent a black art,  
because nobody has yet come up with an acceptable formal definition of what  is 
a cluster, but some good work has been done and we may  as well take advantage 
of it. 

The metrics ds are not suitable for all the requirements of RIBL because they 
are not designed to handle continuous attr ibutes.  If  two constants a and b are 
real numbers, then we would prefer ds(a, b) to be dependent on the difference 
between a and b, rather than wt~ + Wtb. More generally, if terms and clauses are 
constructed from constants a and b in some metric space (X, (f), then one would 
like the ds-distance to depend on 8(a, b). I hope tha t  the metrics ds can be so 
extended. 
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