
Parallel  and Dis tr ibuted  Search for Structure  
in Mult ivariate  T ime  Series 

Tim Oates, Matthew D. SchmiU and Paul R. Cohen 

Computer Science Department, LGRC 
University of Massachusetts 

Box 34610 
Amherst, MA 01003-4610 

{oates,schmill,cohen}@cs.umass.edu 

Abstract. Efficient data mining algorithms are crucial for effective knowl- 
edge discovery. We present the Multi-Stream Dependency Detection (MSDD) 
data mining algorithm that performs a systematic search for structure in 
multivariate time series of categorical data. The systematicity of MSDD's 
search makes implementation of both parallel and distributed versions 
straightforward. Distributing the search for structure over multiple pro- 
cessors or networked machines makes mining of large numbers of databases 
or very large databases feasible. We present results showing that MSDD 
efficiently finds complex structure in multivariate time series, and that 
the distributed version finds the same structure in approximately 1in of 
the time required by MSDD, where n is the number of machines across 
which the search is distributed. 

1 Introduction 

Knowledge discovery in databases (KDD) is an iterative process in which data  
is repeatedly transformed and analyzed to reveal hidden structure. The analysis 
portion of KDD, the actual search for structure in data, is called data  mining. 
Efficient data  mining algorithms are necessary when the number of databases 
to be mined is large, when the amount  of data  in a given database is large, 
or when many iterations of the transform/analyze cycle are required. The ease 
with which vast quantities of electronically available information can be gener- 
ated and stored gives rise to the former two conditions. Parallel and distributed 
data  mining algorithms can quickly mine large amounts of da ta  by taking full 
advantage of existing hardware, both multiple processors on one machine and 
multiple machines on a network. Multi-Stream Dependency Detection (MSDD) 
is an easily parallelized data  mining algorithm that  performs an efficient sys- 
tematic search for complex structure in multivariate time series of categorical 
data. 

MSDD finds dependencies between patterns of values that  occur in multivari- 
ate time series of categorical data. We call each univariate time series a s~ream 
of data. Dependencies are unexpectedly frequent or infrequent co-occurrences 
of patterns in the streams. MSDD finds the k strongest dependencies in a set of 



192 

streams by performing a systematic search over the space of all possible depen- 
dencies. Systematic search expands the children of search nodes in a manner that  
ensures that  no node can ever be generated more than once [9-12, 14]. Because 
non-redundant expansion is achieved without access to large~ rapidly changing 
data  structures, such as lists of open and closed nodes, the search space can be 
divided between multiple processes on multiple machines. Only a small amount  
of inter-process communication is required to keep the list of the k strongest 
dependencies globally consistent. 

Because MSDD returns a list of the k strongest dependencies, rather  than all 
of the dependencies that  it encounters during the search, it is possible to use 
upper bounds on the values of a node's descendants to prune. The expressiveness 
of MSDD'S rule representation allows the algorithm to find complex structure in 
data, but also leads to an exponentiM search space, making effective pruning 
essential. We use the G statistic as a measure of dependency strength, and 
develop optimistic bounds on the value of G for the descendants of a node to 
prune. 

The remainder of the paper is organized as follows: Section 2 discusses sys- 
tematic search in detail. Section 3 presents the MSDD algorithm, defines the space 
of dependencies that  the algorithm explores, and develops domain independent 
pruning techniques. Section 4 shows how the systematicity of MSDD's search can 
be exploited to develop parallel and distributed versions of the algorithm. Sec- 
tion 5 explores the ability of the core algorithm to find interesting and complex 
structure in multivariate time series, and compares the speed of the centralized 
(MSDD) and distributed (D-MSDD) versions of the algorithm. Section 6 reviews 
related work, and Section 7 concludes. 

2 S y s t e m a t i c  S e a r c h  

MSDD'S search for the k strongest dependencies in a set of streams is system- 
atic, leading to search efficiency and parallelizability. Systematic search non- 
redundantly enumerates the elements of search spaces for which the value or 
semantics of any given node are independent of the path from the root to that  
node. Webb calls such search spaces unordered [14]. Consider the space of dis- 
junctive concepts over the set of literals {A, B, C}. Given a root node containing 
the empty disjunct, false,  and a set of search operators that  add a single literal 
to a node's concept, a non-systematic elaboration of the search space contains 
(among other redundancies) six variants of a single concept - A V B V C ,  A V C V B ,  
B V A V C, B V C V A, C V A V B and C V B V A. Each variant is semantically 
the same as the other five, yet syntactically distinct. In the space of disjunctive 
concepts, the semantics of any node's concept is unaffected by the path taken 
from the root to that  node. For example, the two paths below yield semantically 
identical leaf nodes: 

false --+ A --+ A V B -+ A V B V C 

false ~ C--+ C V  B ~ C V  B V  A 



193 

Clearly, naive expansion of nodes in unordered search spaces leads to redundant 
generation and wasted computation. 

Systematic search of unordered spaces generates no more than one syntactic 
form of each semantically distinct concept. That is accomplished by imposing 
an order on the search operators used to generate the children of a node, and 
applying only those operators at a node that are higher in the ordering .than 
all other operators already applied along the path to the node. Let opa, OpB 
and opc be the operators that add the literals A, B and C respectively to a 
node's concept. If we order those operators so that opA < ops <opc ,  then the 
corresponding space of disjunctive concepts can be enumerated systematically 
so that each semantically distinct concept appears exactly once. For example, 
the concept A is obtained by applying operator oio.4 to the root node. Because 
opB > opA and o p c >  opa, both opB and opc can be applied to the concept 
A, generating the child concepts A V B and A V C. In contrast, the concept C, 
which is obtained by applying opc to the root node, has no children. Because 
all other operators (opA and OpB) are lower in the ordering than opt ,  none will 
be applied and no children will be generated. 

The fact that unordered search spaces can be explored without redundant 
node generation through systematic search is the key to parallelizing MSDD. 

Given any search node in the tree, the only information required to simultane- 
ously generate that node's children and avoid redundant node generation is the 
operator ordering (e.g. opA < opB <Opc).  For example, each of the subtrees 
rooted at the three children of the root node, A, B and C, could be expanded 
by systematic search algorithms running on different machines. The machine 
expanding node B would generate its children by applying all operators higher 
in the ordering than ops, yielding the single child B V C through the application 
of operator opt. Because no operators are higher in the ordering than opc, the 
node B V C has no children, and the subtree rooted at B has been completely 
explored. Not only was no communication with the search algorithms running 
on the other machines required to expand that subtree, there was no need to 
know that they even existed or that other portions of the search space were 
being explored. 

3 The MSDD Algorithm 

MSDD accepts as input a set of streams that are used to define the space of depen- 
dencies the Mgorithm will search and to evaluate the strength of dependencies. 
The set of m input streams is denoted S = {Sl , . . . ,  sin}, and the i th stream is 
composed of categorical values, called tokens, taken from the set ~i. All of the 
streams in S must have the same length, and we assume that all of the tokens 
occurring at a given position in the streams were recorded synchronously. 

MSDD searches for dependencies expressed as rules of the following form: "If 
an instance of pattern x begins in the streams at time ~, then an instance of 
pattern y will begin at time ~ + 6 with probability p." Such rules are denoted 

z ~ y. We call z the precursor and y the successor, p is computed by counting the 



194 

number of t ime steps on which an occurrence of the precursor is followed & time 
steps later by an occurrence of the successor, and dividing by the total  number  
of occurrences of the precursor. To keep the space of pat terns  and the space 
of dependencies finite, we consider pat terns  that  span no more than a constant 
number  of adjacent time steps. Precursors can span at most w v t ime steps, and 
successors can span at most w, t ime steps. Both wp and ws are parameters  of 
the MSDD algorithm. 

Pat terns  of tokens (precursors and successors) are represented as sets of 3- 
tuples of the form ~- = (v ,s ,d) .  Each 3-tuple specifies a stream, s, a token 
value for that  stream, v, and a temporal  offset, d, relative to an arbi t rary t ime 4. 
Because such pat terns can specify token values for multiple s treams over multiple 
t ime steps, they axe called multitokens. 1 Tuples that  appear  in precursors are 
drawn from the set Tp = .[(v,s,d)]l  < s < m , v  E Y,,0 < d < w~}. Likewise, 
tuples that  appear  in successors are drawn from the set T0 = {(v, s, d)[1 < s < 
m, v E l ) s , 0 _ < d < w , } .  

MSDD performs a general-to-specific search over the space of possible depen- 
dencies, starting with a root node that  specifies no token values for either the 
precursor or the successor ({} ~ {}). Search operators either add a te rm from Tp 
to a node's precursor or add a term from T, to a node's  successor. To perform a 
systematic search over the space of possible dependencies between multitokens, 
we impose the following order on the terms in Tp and To: All of the terms in Tp 
are lower than all of the terms in T,. For any Ti, Tj E Tp, ~'i is lower than  1-j ff 
d~ < dj or if d~ = dj and si < sj. Tha t  is, terms in Tp are ordered first by their 
temporal  offset, and then by their s t ream index. Likewise for terms in To. 

Because MSDD returns a list of the k strongest dependencies, ff we can derive 
an upper  bound on the value of the evaluation function f for all of the descen- 
dants of a given node, then we can use that  bound to prune the search. Suppose 
the function f m a z ( N )  returns a value such that  no descendant of N can have an 
f value greater than f m a z ( N ) .  If  at some point during the search we remove a 
node N from the open list for expansion, and f m a z ( N )  is less than the f value 
of all k nodes in the current list of best nodes, then we can prune N .  There is 
no need to generate N ' s  children because none of the descendants of N can have 
an f value higher than any of the current best nodes; none of N ' s  descendants 
can be one of the k best nodes that  will be returned by the search. The use of an 
optimistic bounding function is similar to the idea behind the h function in A* 
search. Tha t  is, if a goal node is found whose cost is less than underestimates of 
the cost-to-goal of all other nodes currently under consideration, then tha t  goal 
node must be optimal. Pruning based on optimistic estimates of the value of the 
descendants of a node has been used infrequently in rule induction algorithms, 
with ITRULP. [13], OPUS [14] and PROr [7] being notable exceptions. 

In practice, we use the G statistic computed for 2x2 contingency tables to 
measure dependency strength, and we have derived bounds on the value of G 
for the descendants of a node, making it an ideal candidate for f .  The interested 
reader is referred to [8] for more details. 

1 The definition of a multitoken given here is an extension of the one given in previous 
descriptions os the algorithm [9]. 



195 

4 P a r a l l e l  a n d  D i s t r i b u t e d  M S D D  

In the same way MSDD guarantees non-redundant generation of search nodes, 
MSDD guarantees that  distinct nodes at the same depth in the search tree are par- 
ent to completely disjoint sets of children. The result is a search space that  can be 
trivially partitioned into computationally independent subsets, and consequently 
MSDD is an algorithm well suited for parallel and distributed implemetation. We 
begin by discussing a parallel implementation of MSDD 

The easy partitioning of MSDD's search space allows us to treat any interme- 
diate search node as a root of a new search tree. Consider the goal of "basic" 
MSDD; search for elaborations on the completely general rule {} -+ {} that  maxi- 
mize the evaluation function f .  A more general, parallelized approach is to search 
for elaborations on an arbitrary rule that  maximize f .  In this way, we treat  each 
node as an "island", independent of anything else MSDD has learned, spawning 
a new thread to perform the search as if the node were the root. 

An efficient parallel implementation of MSDD is possible because the search 
at any given node does not require access to previously elaborated search tree. 
The threads of P-MSDD need only non-exclusive read access to the time series 
and exclusive write access for insertions into the queue of k best nodes. Using 
a semaphore to provide exclusive writes to the k best list, the computation of 
MSDD can be effectively balanced over many processing elements. 

4.1 D i s t r i b u t e d  M S D D  

The implementation of parallel MSDD can be translated easily to an efficient 
distributed algorithm. This algorithm, D-MSDD, makes use of a client-server T C P  
tools to perform D-MSDD's  search over a network of cooperating systems. 

The D-MSDD algorithm begins with the server. The server is responsible for 
initiating the search, mediating communication, and declaring the search fin- 
ished. Any number of client machines may contact the server to declare them- 
selves as eligible for aiding in the search. This declaration process is called reg- 
istration, where the server takes note of each client machine, issuing it a unique 
identifier for future communication. Once a desirable number of cheats have 
registered, the server is ready to initiate the search process. 

The distributed search proceeds on each participant machine according to a 
local agenda. Each machine's agenda is an independent partition of the unex- 
plored MSDD search space. As with P-MSDD, the only shared strucutres are the 
list of k best dependencies and the dataset itself. Each machine participating in 
a D-MSDD search maintains local copies of these structures, keeping them syn- 
chronized through network message passing. We simulate the accessing of shared 
data  by sending best messages to describe a candidate node for the k best list. 
We emulate the load balancing that  goes on on a parallel machine by passing 
node messages that  transfer nodes from an overloaded machine's agenda to a 
machine with a lighter agenda. 



196 

5 Empirical Results  

In this section we compare the performance of MSDD and D-MSDD. For each of 
three datasets, the two algorithms found the k = 20 strongest dependencies. We 
r a n  D - M S D D  on both two and three machines connected via a local area network. 
The datasets, which were all taken from the UC Irvine repository, included 
chess end-games, solar flares, and congressional voting records. The results are 
summarized below in Table 1. The table shows the number of nodes expanded, 
CPU cycles consumed, and the number of messages sent to keep the list of the k 
best dependencies consistent. When D - M S D D  ran on two and three machines (the 
D - M S D D  - 2 and D-MSDD - 3 cases respectively), the table contains the sum of 
the value over all machines participating in the search. Note that  relatively few 
search nodes were required to find the 20 strongest dependencies in exponential 
spaces; pruning based on optimistic estimates of G is effective. Because the 
distributed search may be at different depths on different machines, the total 
number of nodes expanded may vary depending on when strong dependencies 
are found and used for subsequent pruning. However, in each case the total  
number of CPU cycles required to complete the search remains fairly constant, 
independent of the number of participating machines. Because load-balancing 
between the machines is fine grained, n machines can complete the search for 
structure roughly n times faster than one machine. 

Dataset Algorithm 
v o t e  MSDD 

D - M S D D  - 2 

D - M S D D  - 3 

chess MSDD 
D - M S D D  - -  2 

D - M S D D  -- 3 

solar MSDD 
D - M S D D  - 2 

D - M S D D  - 3 

Search Nodes 
107,858 
124,234 
115,375 
22,346 
27,073 
31,955 
12,199 
13,544 
17,941 

C P U  Cycles iMessages 
6,911,826 0 
7,915,858 
7,963,435 

7024 
6697 

1,507,160 0 
1,573,309 
1,793,743 

1321 
2964 

805,920 0 
906,188 
1,095,695 

457 
1,706 

Table 1. Comparison of MSDD and D-MSDD on three dataset. 

6 Related Work 

Several systematic search algorithms have appeared in the literature [9-12, 14], 
all of them variations on the basic idea of imposing an order on search operators, 
and applying only those operators at a node that  are higher in the order than all 
other operators that have been applied on the path from the root to the node. 



197 

Our use of optimistic bounds on the value of the node evaluation function for 
pruning systematic search spaces is similar to the opus algorithm [14], which in 
turn is a generalization of the same idea as applied to non-systematic search in 
the ITRULP, induction algorithm [13]. MSDD and ITRULE return the k best rules, 
whereas opus returns a single goal node or the single node with the highest 
value. 

Both parallel algorithms and consideration of data with a temporal compo- 
nent are rare in the KDD and data mining literature. Holsheimer and Kersten 
describe a system for inducing rules from large relational databases tha t  per- 
forms a parallelized beam search over the space of possible rules and accesses 
the data through a parallel DBMS [5]. However, their system is limited to clas- 
sification rules (a conjunct of literals predicting a single literal), and it can miss 
high quality rules due to the use of beam search. Aronis and Provost developed 
a parallel algorithm that builds new features from existing features in relational 
databases [2]. The newly constructed features are then passed to a standard (se- 
rial) inductive learning algorithm. While parallelism speeds the search for new 
features, it does not affect the speed with which rules using those features can 
be learned. Agrawal and Sharer [1] explore several parallel algorithms for min- 
ing association rules from very large databases, and Dehaspe and De Raedt [4] 
present a parallel implementation of the CLAUDmN clausal discovery system. 
Berndt and Clifford describe a dynamic programming algorithm for finding re- 
curring patterns in univariate time series [3], and Mannila et al. [6] developed an 
algorithm that finds frequently occurring episodes in event-based data (e.g. event 
logs generated by telecommunications networks). 

7 Conclusion 

In this paper we presented the MSDD data mining algorithm which performs a 
systematic search for structure in multivariate time series. MSDD discovers the k 
strongest dependencies between pairs of multitokens, arbitrary patterns of values 
that can span multiple streams and multiple time steps. MSDD prunes the search 
space with an upper bound on the value of the descendant of a given node, and 
we derived such a bound on the value of G. Wc recognized that systematic search 
over unordered spaces is easily parallelized, and developed D-MSDD, a distributed 
version of MSDD. MSDD is a powerful tool for discovering complex structure in 
very large databases due to the efficiency and expressiveness of the core algorithm 
and the ease with which the search for structure can be distributed over multiple 
machines on a network via D-MSDD. 

Acknowledgements 

This research was supported by ARPA/Rome Laboratory under contract num- 
bers F30602-91-C-0076 and F30602-93-0100, and by a National Defense Science 
and Engineering Graduate Fellowship. The U.S. Government is authorized to 



198 

reproduce and distribute reprints for governmental purposes not withstanding 
any copyright notation hereon. The views and conclusions contained herein are 
those of the authors and should not be interpreted as necessarily representing 
the official policies or endorsements either expressed or implied, of the Advanced 
Research Projects Agency, Rome Laboratory or the U.S. Government. We thank 
the anonymous reviews for helpful suggestions. 

References  

1. R. Agrawal and J. C. Sharer. Parallel mining of association rules: Design, imple- 
mentation and experience. Technical Report tLJ 10004, IBM, 1996. 

2. John M. Aronis emd Foster J. Provost. Efficiently constructing relational features 
from background knowledge for inductive machine learning. In Working Notes of 
the Knowledge Discovery in Databases Workshop, pages 347-358, 1994. 

3. Donald J. Berndt and James Clifford. Using dynamic time warping to fmd pat- 
terns in time series. In Working Notes of the Knowledge Discovery in Databases 
Workshop, pages 359-370, 1994. 

4. Luc Dehaspe and Luc De Raedt. Parallel inductive logic programming. In Pro- 
ceedings of the MLnet Familiarization Workshop on Statistics, Machine Learning 
and Knowledge Discovery in Databases, 1995. 

5. Marcel ttolsheimer and Martin L. Kersten. Architectural support for data mining. 
In Working Notes of the Knowledge Discovery in Databases Workshop, pages 217- 
228, 1994. 

6. Heikki Man_nSla, Harmu Toivonen, and A. Inkeri Verkamo. Discovering frequent 
episodes in sequences. In Proceedings of the First International Conference on 
Knowledge Discovery and Data Mining, pages 210-215, 1995. 

7. S. Muggleton. Inverse entailment and progol. New Generation Computing, 13:245- 
286, 1995. 

8. Tim Oates and Paul R. Cohen. Searching for structure in multiple streams of data. 
In Proceedings of the Thirteenth International Conference on Machine Learning, 
pages 346 - 354, 1996. 

9. Tim Oates, Dawn E. Gregory, and Paul R. Cohen. Detecting complex dependen- 
cies in categorical data. In Preliminary Papers of the Fifth International Workshop 
on Artificial Intelligence and Statistics, pages 417-423, 1994. 

10. Patricia Riddle, Richard Segal, and Oren Etzioni. Representation design and brute- 
force induction in a boeing manufacturing domain. Applied Artificial Intelligence, 
8:125-147, 1994. 

11. Ron Rymon. Search through systematic set enumeration. In Proceedings of the 
Third International Conference on Principles of Knowledge Representation and 
Reasoning, 1992, 

12. Jeffrey C. SchIimmer. Efficiently inducing determinations: A complete and sys- 
tematic search algorithm that uses optimal pruning. In Proceedings of the Tenth 
International Conference on Machine Learning, pages 284-290, 1993. 

13. Pad_hraic Smyth and Rodney M. Goodman. An information theoretic approach 
to rule induction from databases. IEEE Transactions on Knowledge and Data 
Engineering, 4(4):301-316~ 1992. 

14. Geoffrey I. Webb. OPUS: An efficient admissible algorithm for unordered search. 
Journal of Artificial Intelligence Research, 3:45-83, 1996. 


