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Abst rac t .  We investigate an inherent limitation of top-down decision 
tree induction in which the continuous partitioning of the instance space 
progressively lessens the statistical support of every partial (i.e. disjunc- 
tive) hypothesis, known as the fragmentation problem. We show, both 
theoretically and empirically, how the fragmentation problem adversely 
affects predictive accuracy as variation V (a measure of concept diffi- 
culty) increases. Applying feature-construction techniques at every tree 
node, which we implement on a decision tree inducer DALI, is proved 
to only partially solve the fragmentation problem. Our study illustrates 
how a more robust solution must also assess the value of each partial 
hypothesis by recurring to all available training data, an approach we 
name global data analysis, which decision tree induction alone is unable 
to accomplish. The value of global data analysis is evaluated by compar- 
ing modified versions of C4.5rules with C4.5trees and DALI, on both 
artificial and real-world domains. Empirical results suggest the impor- 
tance of combining both feature construction and global data analysis to 
solve the fragmentation problem. 

1 I n t r o d u c t i o n  

In this study, we investigate the internal mechanism of top-down decision tree 
inducers [14, i]. We focus on the fragmentation problem: a limitation of the 
divide-and-conquer strategy in which the continuous partitioning of the training 
set at every tree node reduces the number of examples (i.e. the statistical sup- 
port) at lower-level nodes. One noticeable effect of this problem is the replication 
of subtrees along the output  tree [12, 9], also known as the replication problem. 
The fragmentation problem has been attacked in different ways: by construct- 
ing compound features at every tree node [12, 18]; by reducing the number of 
possible partitions [5, 16]; and by using alternative concept representations, e.g., 
sets of rules [15], decision graphs [6, 11], SE-Trees [22], decision lists [12, 21]. 
Nonetheless, no clear solution has emerged. 

Our analysis of the causes and effects of the fragmentation problem eluci- 
dates relevant issues: the fragmentation problem is not coined to decision tree 
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induction alone, but might affect other inductive learning models; replication 
and fragmentation are not separate problems, but rather the former is simply an 
effect of the latter. We use concept variation, V (a measure of concept difficulty 
[20, 13]), to Prove that as V increases, the fragmentation problem is further 
aggravated, partly explaining the inadequacy of decision tree induction when 
applied to difficult domains. 

We test a new decision-tree inducer, DALI, to show that constructing new 
features at every tree node mitigates the fragmentation problem, but does not 
completely eliminate it. For a more robust solution, our study reveals the impor- 
tance of analyzing all training data when assessing the value of every induced 
hypothesis, an approach we name global data analysis. Decision tree induction 
does not analyze data in this manner, neither alone nor when augmented with 
feature construction. Our experiments compare C4.5rules, C4.5trees, and DALI, 
empirically evaluating the importance of global data analysis by isolating this 
component in C4.5rules. Our results suggest the importance of combining both 
feature construction and global data analysis to solve the fragmentation problem. 

This paper is organized as follows. Section 2 provides an overview of deci- 
sion tree induction; Sect. 3 defines the fragmentation problem; Sect. 4 explains 
the scenarios in which the fragmentation problem is critical, and details on the 
importance of global data analysis during learning; Sect. 5 shows experimental 
results. Lastly, Sect. 6 gives a summary and conclusions. 

2 P r e l i m i n a r i e s  

For simplicity, we focus on domains where each example X is described by n 
boolean features (i.e., attributes, variables), xl, x2 , . . . ,  x , ,  and where an under- 
lying target concept C : {0, 1) n ~ { - ,  +} classifies the space of all 2 n examples, 
also referred to as the instance space, into 2 classes. A learning mechanism (i.e., 
inducer) attempts to discover C by analyzing the information given by a training 
set S : {(Xi, Ci)}~n=l, where ci is the class assigned by C to Xi, i.e., C(Xi) = ci. 
The result of the analysis is a hypothesis/classifier H approximating C. Our 
main interest is in the ability of H to correctly predict the class of examples out- 
side S. We look for hypotheses not only consistent with S, but that generalize 
beyond that set. 

A decision tree inducer uses a divide-and-conquer strategy for learning. Pro- 
ceeding top-down, the root of the tree is formed by selecting a function f : 
{0, 1}" ~ {0, 1} that splits the training set into mutually exclusive subsets 
So, S1, such that So = {X E S [ f (X)  = 0}, S1 = {X �9 S [ f (X)  = 1}, 
S = So U $1, and So n $1 = ~. Commonly f is a single feature - selected via 
some impurity measure, e.g., entropy, gini, Laplace, X 2 -, which yields axis- 
parallel partitions over the instance space, but other combinations are possible 
[2, 8]. The same methodology is recursively applied on So and $1 to construct 
the left and right subtrees respectively. A subset S ~ represents a leM if all ex- 
amples in S ~ belong to the same class, or if IS ~] < fl, where fl is user defined; 
the majority class in S ~ is associated with that leaf. An example X is classified, 
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starting from the root of the tree, by following the branch that matches the 
output of every splitting function (i.e., by iteratively following the left branch if 
f (X)  = O, or the right branch if f (X)  = 1). At the end of the path, the class 
attached to that leaf is assigned to X. 

3 T h e  F r a g m e n t a t i o n  P r o b l e m  

Under a DNF representation, a target concept C is expressed as the disjunction 
of several subconcepts, such that C = C1 + C2 + . . .  + Cl. A hypothesis H approx- 
imating C can be expressed as a set of disjunctive hypotheses Hi,H2, . . . ,  Hi, 
where Hi approximates Ci. The set of examples covered by hypothesis H~ on 
training set S, COV(Hi) = {X C S I Hi(X) = +}, is referred to as the source 
of support or evidential credibility for Hi [23]. 

A decision tree inducer adopts a DNF concept representation: each branch 
from the root of the tree to a positive leaf is equivalent to a disjunctive hypothesis 
H~. The final set of disjunctive hypotheses must be mutually exclusive, i.e., 
COV(H1) A COV(H2) A.. .  A COV(HI) = 0. The method to find every Hi carries 
out a continuous partition-refinement over the instance space; every tree branch 
is grown until a terminal node or leaf delineates a single-class region. A limitation 
inherent to this approach is that, while searching for a disjunctive hypothesis 
Hi, each splitting of the training data may separate or pull apart examples in 
support of a different hypothesis Hj - due to the irrelevancy of the splitting 
function to Hi. This situation not only requires that several approximations 
HI,  Hj ' ,H/"  etc., be found on dispersed regions of the instance space, giving 
rise to replicated subtrees along the output tree, but also reduces the support or 
evidential credibility of each individual hypothesis, eventually complicating its 
identification. This problem is known as the fragmentation problem. 

The fragmentation problem stems from two main causes: 

1. The requirement that the coverage of disjunctive hypotheses be mutually ex- 
clusive precludes the representation of any Hi and Hj such that COV(Hi) A 
COV(Hj) ~ 0. The examples in COV(Hi) A COV(Hj) are directed towards 
Hi or Hi, but not both. This is illustrated in the following example. As- 
sume a 3-dimensional boolean space where each point represents an example 
X = (xl, x2, x3), with target function C = xlx~ + xlx3, as shown in Fig. la. 
Concept C can be decomposed into two subconcepts: C1 = xlx2, with exam- 
ples (1, 1, 0) and (1, 1, 1), and C2 = XlX3, with (1, 0, 1) and (1, 1, 1). Let HI 
and//2 be the disjunctive hypotheses approximating C1 and C2 respectively. 
With all examples available, fl = 1, and single features as splitting functions, 
two possible decision trees are depicted in Figs. lb and lc. In the tree for 
Fig. tb, splitting on feature x2 directs two positive examples to the right 
branch in support of H1, but only one positive example (out of two) to the 
left branch in support of H2. As a consequence, H1 = CI but H2 # C2, since 
the irrelevant condition s is incorporated: /-/2 = x1~2x3. This was caused 
because COV(C1) A COV(C2) = {(1, 1, 1)}, which could only be covered 
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X 6 2  "~ XlX3 

3 ~ +  xl Xl 
/ N  

1) _ / / ~ x 2  - x3 

xl x3 + x2 + 
H1 (2/2) ~ , , ~ +  H2 (2/2) 

H2 (1/2) H1 (1/2) 

(a) =2 C1 = zlx  (b) (c) 

Fig. 1. (a) A 3-dimensional boolean space for target concept C = C1 -F C2, where 
C1 -- xlx2 and C2 --- XlX3. (b) and (c) Two decision trees for (a) where the fragmen- 
tation problem reduces the support of either H1 or //2, as shown by the fraction of 
examples that belong to C1 and C2 arriving at each positive leaf. 

by / / 1  or/-/2. The same phenomenon occurs in the tree on Fig. lc, except 
here the loss of support occurs to H1. 

2. Each partition over the instance space is too coarse, such that many steps 
are required to delimit a single-class region. The search for a disjunctive 
hypothesis Hi inevitably results in the fragmentation of a different dis- 
junctive hypothesis Hi. Consider the tree in Fig. 2a for boolean concept 
C = XlX2 + x3x4, where C] = xlx2 and C2 = x3x4. Assume all possible ex- 
amples available,/3 = 1, H1 the approximation to C1, and//21 and H2" the 
approximations to C2. Splitting on feature xl separates the examples in C2, 
directing two positive examples (out of four) to the left branch in support of 
//2 r, and two examples to the right branch. Splitting on feature x2 reduces 
the support of H2" to only one example. Since C2 is represented by H2' and 
H2", the final tree replicates subtrees. This replication effect originates from 
the fragmentation of/-/2 (into H2' and H2") at the root of the tree. 

One approach to combat the fragmentation problem is to conjoin several fea- 
tures at every tree node, which results in more refined partitions over the instance 
space. As shown in Fig. 2b, using the conjunction of single features as splitting 
functions eliminates the replication of the subtree approximating C2. Neverthe- 
less,//2 continues experiencing loss of support, since COV(HI) N COV(H2) = 
{(1, 1, 1, 1)} ~ 0. Hence, using multiple-feature tests at every tree node can 
reduce the number of partition-steps required to delimit single-class regions 
(cause 2), but cannot avoid pulling apart examples lying in the intersection of 
several partial subconcepts (cause 1). 

The fragmentation problem is not exclusive to decision tree inducers but to 
any learning mechanism that progressively lessens the evidential credibility of its 



316 

Xl 

~ / / / ~  XlX2 
X3 X2 

- x 4  + / / ~  H1 ( 4 / 4 )  

/ / ~ k +  ~ x / 1  (4/4) - + 
- - H 2  ( 3 / 4 )  

2 
(2/4) _ + 

(a) g " 2 ( 1 / 4 ) ( b )  

Fig. 2. (a) A decision tree for C = C1 +C2, where C1 = xlx2 and C2 = x3x4. Examples 
in Ce are separated into two regions after splitting on feature xl. (b) A decision tree 
for (a) with multiple-feature tests. The replication of subtrees is eliminated, but //2 
experiences loss of support when splitting on xlx2. 

induced hypotheses. Consider the separate-and-conquer strategy common to the 
construction of rule-based systems [10, 4, 28]. In this case, an iterative process 
starts by selecting a positive example or seed on the training data; this example 
is generalized to produce the next disjunctive hypothesis Hi. The set of examples 
covered by Hi, COV(Hi), is removed before another seed is selected, potentially 
weakening the support of other disjunctive hypotheses. A similar effect occurs 
in the mechanism for building decision lists [12, 21]. 

4 D e t r i m e n t a l  E f f e c t s  a n d  G l o b a l  D a t a  A n a l y s i s  

One may argue against the significance of the fragmentation problem based 
on the success of decision tree inducers on many real-world applications. As 
explained shortly (and demonstrated in Sect. 5), a detrimental effect is evident 
only among domains with high variation V. 

Decision tree inducers, as well as many other inductive mechanisms, adopt a 
similarity-based bias, which assumes any pair of examples X i , X j  lying close to 
each other in the instance space (i.e., sharing many similar feature-values) gen- 
erally belong to the same class, i.e., C(Xi)  = C(Xj ) .  This bias is adequate when 
a concept is characterized by few disjunctive subconcepts, each subconcept cov- 
ering many examples, because proximity in the instance space correlates to class 
similarity [19]; these domains we denote as simple. By contrast, domains with in- 
stance spaces populated by many dispersed regions, each disjunctive subconcept 
covering few examples, violate this assumption, and thus become inadequate; 
these domains we denote as difficult. 

The degree of difficulty of a concept can be known through concept variation 
[20, 13], which provides an estimate of the probability that any two neighbor 
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cj 

Class = + 

(a) (b) 

cj 
r l  r2 A 

lass = -C la s s  = + 

Fig. 3. (a) A region r of an instance space (IS) where the support for the prediction 
of class + is unstable. (b) After partitioning r into rl and r~, Cj is fragmented. The 
majority of negative examples in rl changes the prediction to class - .  

examples differ in class value, roughly measuring the amount of irregularity in 
the distribution of examples along the instance space. ~7 is defined as follows. Let 
X1, X2,.. �9 Xn be the n closest neighbors - at Hamming distance one - of an 
example X in an n-dimensional boolean space. The degree of class dissimilarity 
of the neighborhood around X can be estimated simply as 

a(X) = ~ .  diff(C(X), C(Xj)) , (1) 
j = l  

where diff(C(X, Xi)) = 1 if C(X) ~ C(Xi) and 0 otherwise. A normalization 

factor K(X) = r x) gives a value in [0, 1]. Concept variation is defined as the 
average of this factor when applied to every example in the instance space: 

2 n 
1 

V =  ~-~ x ~ ( X i )  e[0,1]  . (2) 
i=1 

The effect of the fragmentation problem relates to V (i.e. to concept varia- 
tion) in the following way. The terminal node or leaf of a tree branch, correspond- 
ing to a disjunctive hypothesis Hi, classifies a region r of examples according 
to a majority-class vote on the training examples in r. Let 0 be defined as the 
difference between the number of training positive and negative examples in r; 
then for any X C r, 

C(Z) = { + i f0_>0  
- otherwise (3) 

The fragmentation problem is irrelevant over domains with low V (i.e. over 
simple domains), because, in the presence of disjunctive subconcepts covering 
many examples of similar class value, each hypothesis (i.e. tree branch) delimits 
a region of examples r for which 8 > >  0 (i.e. for which 0 is stable). But when 
dissimilarity in the vicinity of any example is high, as is characteristic in domains 
with high V (i.e., in difficult domains), then separating the few examples covered 
by each disjunctive subconcept reduces the support of its hypothesis(es). If 0 ~ 0 
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A l g o r i t h m  1: Learning with Global Data Analysis 
Input:  Given unknown target concept C = C1 + C2 + ... + Ct, 
Training Set S, Metric M 
Output :  Final Hypothesis H f 
GDA-MECHANISM(S) 
(1) Let H f = 0 
(2) foreach i = 1 . . . l  
(3) Generate hypotheses approximating subconcept Ci 
(4) Evaluate each hypothesis by using all examples in S 
(5) Select best approximation Hi acording to M 
(6) Let Hy = Hf + H~ 
(7) end for 
(8) Refine/Prune H I by using all examples in S 
(9) re tu rn  Hf 

Fig. 4. General learning mechanism with global data analysis. 

(i.e. 0 is unstable), then removing examples from r may cause 0 shift sign, thereby 
causing the misclassification of all X E r. In addition, observe that  if V > 0.5, a 
similarity-based bias becomes totally inadequate, even without the presence of 
the fragmentation problem, because, on average, more than 50% of the vicinity 
of any example X would differ in class value with X. 

To illustrate these ideas, Fig. 3a shows a region r of an instance space where 
0 _> 0, such that  for any X E r, class + is predicted. If the set of training positive 
examples in r belong to a subconcept Cj (and possibly other subconcepts as 
well), then finding an approximation to a subconcept Ci before Cj may lead to 
a partitioning of r into rl and r2, as shown in Fig. 3b. The positive training 
example representing Cj in rl may be mistakenly perceived as a noise signal. 
The instability of 0 in r causes 0 < 0 in r t ,  forcing a change of classification to 
every example X E rl; this is unlikely to occur if V is low because all examples 
in a small region are expected to belong to the same class. 

We claim an important step to solve the fragmentation problem consists of 
building/refining each partial hypothesis independently, by assessing its value 
against all training examples together, in this way avoiding misclassification of 
regions of examples for which little support is found. Figure 4 depicts a general 
learning mechanism that  incorporates a global data analysis. The main idea is 
to better estimate the value of each partial hypothesis by avoiding the effects 
of previously induced hypotheses. Under this learning framework, an approxi- 
mation Hi to a subconcept Ci is built under the support of all available data  
(lines 4-5, Fig. 4). The final hypothesis H I may also be refined (e.g., pruned) in 
this way (line 8, Fig. 4). 

In contrast, the search for disjunctive hypotheses in decision tree induction 
is not global but local: often a hypothesis is supported by only a fraction of 
the examples of the subconcept being approximated. This holds irrespective of 
the modifications exerted on the learning mechanism (e.g., splitting function, 
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pruning mechanism, stopping criteria, etc.), because such search is limited by 
the learning strategy. Henceforth, we identify two major operations during the 
development of learning systems: 1) the search for partial hypotheses, and 2) 
the refinement of the final hypothesis comprising all best partial hypotheses. 
Both steps can be attained through a global data  analysis, but the inherent 
mechanism of decision tree induction omits this operation. In the next section 
we evaluate the importance of a global data  analysis over the refinement of the 
final hypothesis (step 2); better results are expected if the same methodology is 
carried on over the construction of all partial hypotheses (step 1). 

5 Experiments 

5.1 The Learning Systems Used for Testing 

We use C4.5trees [16] to represent a decision tree inducer where each splitting 
function tests on a single feature. The importance of global data  analysis is 
underlined in modified versions of C4.5rules [15, 16], as explained in Sect. 5.3. For 
a decision tree inducer with multiple-feature tests, we developed a new version 
of the LFC system [18]; the new version is called DALI [26] (Dynamic Adaptive 
Lookahead Induction). In both DALI and LFC, a splitting function is defined 
as the conjunction of several boolean features (see Fig. 2b), which allows for 
more refined partitions over the instance space. Unlike LFC, DALI obviates 
user-defined parameters (e.g., lookahead depth and beam width), with a faster 
response time, and similar performance in terms of predictive accuracy. We now 
briefly compare DALI and LFC, but the reader can safely skip to the next 
subsection if uninterested in such differences. 

Figure 5 outlines DALI's search mechanism. At each tree node, both DALI 
and LFC conduct a beam search over the space of all boolean-feature conjuncts, 
or monomials. In LFC, the search space is limited by user-defined width and 
depth; the search continues until the maximum depth d is attained: at which 
point the best monomial - of any size in [1 - a~ - is returned as the next splitting 
function. By contrast, DALI extends the search depth until no more monomials 
can be generated, and selects the beam width dynamically. DALI mainly differs 
from LFC on two steps: 

1. A systematic search to avoid redundant combinations [22, 27], Lines 3-4, 
Fig. 5. Each monomial Fi conjoins several boolean features (or their comple- 
ments), e.g., Fi = xlf3x5. Because conjunction is commutative, the search 
space is defined by avoiding any state Fj that  is identical to a state Fi except 
for the order in which features appear, e.g., Fj = ~3xsx1. 

2. A global-pruning technique [27, 17], Line 5, Fig. 5. Define Fbest as the best 
explored monomial according to some impurity measure H (e.g., entropy), 
such that,  for all currently explored monomials Fi, H(Fbest) < H(Fi). As 
long as H is monotonic, a monomial Fi can be eliminated if the best value 
Fi can ever attain along its search path - according to H - is worse than 
rbest. 
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A l g o r i t h m  2: Search Mechanism in DALI 
Input :  A list of literals (i.e., boolean features and 
their complements) Lbool /--- {Xl~ Xl, x2, X2, "'" Xn, X.n} 
Output :  Best monomial Fbest 
DALI-SEARCH( Lbool) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(s) 

(9) 

Lbeam /'- best literals in Lbool according to entropy 
while ( t r u e )  

Lnew +- Systematically form the conjunction 
of every Fi E Lbeam with every Fj E Lbool 
Apply global-pruning into Lnew 
if Lnew = O 

r e tu rn  best monomial Fbest 
Lbeam +- best combinations in Lnew according 
to entropy 

end while 

Fig. 5. DALI's search mechanism at every tree node. The best constructed feature 
(i.e., best monomial), is used as the next splitting function. 

The combination of systematic search and global pruning makes the search 
space sufficiently manageable so that  a limitation on depth or breadth of search 
is no longer necessary. The ease of use of D A L I  favors this system over LFC for 
our experimental purposes. 

5.2 M e t h o d o l o g y  

Since variation V can be computed only when the target  concept is known, 
our experiments mainly focus on artificial boolean concepts (defined on both 9 
and 12-features; see Appendix A). The concepts include DNF formulae, CNF 
formulae, Multiplexor (MUX), Majority (MAJ), and Pari ty (PAR), covering a 
range of varying V. 

Learning curves 1, not presented here for space considerations, show that  
greater differences in accuracy occur when small samples are used for training. 
Our results reflect the largest effects found at 20% training-set size for 9-feature 
concepts and 10% training-set size for 12-feature concepts. Each reported value 
is the average over 50 runs; predictive accuracy is computed as the percentage of 
correct classifications for all examples outside the training set. Experiments on 
real-world domains estimate predictive accuracy by using stratified 10-fold cross- 
validation [7], averaged over five repetitions. Since D A L I  is limited to boolean 
domains, we performed an initial discretization step on all numeric (following [3]) 
and nominal features (constructing a boolean feature for each nominal value). 
All systems were set to default parameters.  Significant differences are computed 
using a two-sided t-test. Runs were performed on a SPARCstation 10/31. 

1 Graphs for all learning curves are accessible upon request to the authors. 
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5.3 The  Value of  Global  Data  Analys i s  

To measure the gains obtained when global data analysis is used to tackle the 
fragmentation problem, we first compared modified versions of C4.5rules with 
C4.5trees as explained next. The mechanism for C4.5rules (see [16] for details) 
can be summarized in three steps: 

1. Given a decision tree T, form a rule R from every branch in T that starts 
at the root node and ends on a leaf node; R is an implication: if condl 
and cond2 and . . .  and condd_l --+ c, where condi is the feature-value (i.e. 
splitting-function value) encountered on every node along a branch of length 
d, and c the class assigned to the leaf node. 

2. Eliminate all irrelevant conditions from every rule R in step 1. Let R ~ equals 
R except for condition condi being removed. Based on the information given 
by all training data, R and R' are both globally evaluated - and only one 
retained - according to a pessimistic estimation of their corresponding error 
rates. 

3. Apply the minimum description principle, according to a particular bit- 
encoding scheme, to remove rules from the rule set in step 2. 

While each individual rule is originally obtained from a previously con- 
structed decision tree, Step 2 refines the final set of rules through a global 
data analysis: each rule is analyzed independently and modified according to 
its credibility on all training data. This differs from step 3 where rules are as- 
sessed in terms of description lengths. To isolate each learning component, we 
defined three system versions: C4.5rules-Std, comprising steps 1, 2, and 3 (i.e., 
Standard); C4.5rules-GDA, comprising steps 1 and 2 (i.e., isolating the Global 
Data Analysis component); and C4.Srules-MDL, comprising steps 1 and 3 (i.e. 
isolating the Minimum Description Length component). We also compared the 
effects of tree pruning as a form of refinement operation; it mainly differs from 
a global data analysis in that each disjunctive hypothesis - or tree branch - is 
not analyzed independently, but remains intertwined to the tree structure. 

Table 1 illustrates results for predictive accuracy on all artificial and real- 
world domains. Each group of 9- and 12-feature concepts is ordered by increas- 
ing variation V. Columns for the different versions of C4.Srules and C4.Strees- 
pruned show the increase/decrease of accuracy against C4.Strees-unpruned. On 
the set of artificial concepts, both C4.Srules-Std and C4.5rules-GDA increas- 
ingly outperform C4.Strees-unpruned as V grows higher (the effect being more 
evident for 12-feature than for 9-feature concepts), except when V > 50% (ex- 
plained in Sect. 4) This trend is not observed on C4.Srules-MDL. The use of 
pruning exhibits a significant gain only until V is high. The same results are de- 
picted in Figs. 6a and 6b for 9- and 12- feature concepts respectively, where we 
computed a regression line for each version of C4.5rules and C4.5trees-pruned 
against V. An overall comparison for C4.Srules reveals C4.Srules-Std attains the 
highest advantage, proving the benefit of combining both C4.Srules-GDA and 
C4.Srules-MDL, and that C4.Srules-GDA is the component providing the most 
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T a b l e  1. Tests on predictive accuracy for both artificial and real-world domains. 
Columns for the different versions of C4.Srules and C4.5trees-pruned show the in- 
crease/decrease of accuracy against C4.5trees-unpruned. The column for DALIrules is 
relative to DALItrees. Significant differences (at the p = 0.05 level) are marked with 
an asterisk. 

Concept V C4.5trees- C4.5rules- DALI- 
(%) unpruned pruned Std GDA MDL trees rules 

DNF9a 14 99.2 -0 .7  .1 .0 .5  -t-0.3 .1.0.0 100.0 .1.0.0 
CNF9a 17 99.5 -0 .6  .1.0.5" .1.0.5" .1.0.0 100.0 .1.0.0 
MAJ9a 17 100.0 .1 .0 .0  +0.0 -0 .8  .1.0.0 100.0 .1.0.0 
MAJ9b 21 82.1 -0 .1  .1.2.1" .+1.4"~ -0 .2  85.3 .1.0.0 
CNFgb 22 94.0 +2.3* .1.6.0" .1.3.8" +0.0 100.0 -0 .2  
MUX9 22 86.8 0.9 .1.8.5" .1.7.0" -0 .8  99.0 -0 .2  
DNF9b 24 83.0 .1.0.6 ,1,10.7" ,1,5.0" -0 .7  99.4 +0.0 
PAR9a 33 62.5 .1.13.5" ,1,27.7" .1.21.7" -2 .2  98.4 .1.1.3" 
PAR9b 67 43.1 .1.1.9" .1.2.6" ,1,0.6" ,1,3.6" 43.6 +0.1 
MAJ12a 13 100.0 +0.0 +0.0 +0.0 +0.0 100.0 +0.0 
DNF12a 15 99.7 +0.0 .1.0.3" .1.0.3" +0.0 99.9 +0.0 
CNF12a 15 99.6 -0 .1  .1.0.4" .1.0.2" +0.0 100.0 +0.0 
MAJ12b 18 84.5 -0 .1  .1.3.0" .1.2.7" -0.6* 87.9 .1.0.7" 
CNF12b 19 89.8 .1 .0 .7  .1.9.8" .1.5.1" -1 .3  99.7 -0 .1  
DNF12b 20 89.5 .1.3.2" .1.9.6" .1.6.6" -0 .6  99.2 +0.0 
MUX12 21 84.9 +0.1 +12.9" ,1,8.7" -2.9* 99.4 -0 .2  
PAR12a 33 58.6 +11.9" ,1,33.7" .1.24.0" -3.8* 92.9 .1.6.4" 
PAR12b 67 46.5 ,1,0.7" +1.6"! .1.0.2" .1.2.5" 46.0 .1.0.5" 

I 

TicTacToe 85.8 -0.3* +13.3"i .1.10.4" .1.0.5. 98.4 -0 .4  
Lympho[2] 80.2 ,1,3.3" ,1,3.0" .1.2.1" -0.5* 87.9 -0 .2  
Lympho[3] 74.4 .1.3.1" .1.6.1" ,1,5.4" ,1,1.7" 84.6 -0 .4  
Promoters 81.9 -0 .6  ,1,5.0" ,1,3.5" -0 .9  83.4 +0.0 
Cancer 95.1 -0.6* .1.0.8" -t-0.5" -0.3* 95.7 .1.0.3 
Hepatitis 82.3 -1 .2"  -0 .4  -0 .6  -0 .5  80.2 -0 .6  

ABS 
AVRG 83.46 85.0 90.0 86.5 83.2 90.9 91.2 

significant contr ibut ion.  For real-world domains ,  the  i m p r o v e m e n t  of C4.Srules- 
Std and C4.5rules-GDA over C4.5trees-unpruned is observed on the  Tic-Tac-  
Toe, L y m p h o g r a p h y ,  and  P r o m o t e r s  domains ,  where  V m a y  be rela t ively high 
due to  in terac t ion  a m o n g  features  bear ing  a low represen ta t ion  to  the  t a rge t  
concept  (e.g., board-conf igura t ions  used to  de te rmine  win or loose), bu t  not  so 
evident  on the  Hepat i t i s  domain ,  which m a y  be charac ter ized  by compr is ing  
highly represen ta t ive  features  (i.e. denot ing  low V).  

To tes t  the  effect of using a global d a t a  analysis  over a decision t ree  wi th  
mul t ip le - fea ture  tes ts  on every node,  we compared  the  difference in predic t ive  
accuracy  be tween DALI (Sect. 5.1) and  a modif ied version of C4.5rules t h a t  
accepts  as input  a decision t ree  f rom DALI. The  new version, n a m e d  DALIrules, 
opera tes  as follows: 
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Fig. 6. Regression lines for the columns of C4.5 (all different versions) on Table 1 vs. 
Variation V on (a) 9- and (b) 12-attribute concepts. Numbers enclosed in parentheses 
show the mean of the residuals between the linear model and the actual values (the 
same applies to Fig. 5.3). 

. 

. 

Given a tree, T,~, with multiple feature tests on each node, define a new 
training sample Sin, such that  every feature xm~ in Sm corresponds to a tree 
node in Tm (i.e., every new feature is a combination of the original-feature 
set, used as a splitting function on Tm). 

Apply C4.5rules-Std to the tree Tm output by DALI, and to the correspond- 
ing new training sample Sin, which is now described in terms of feature set 
(X~T~I , X/~2 " " ' , X?T~ ). 

Table 1 shows the results of comparing DALIrules with DALI in terms of 
predictive accuracy. The trend of accuracy increase as V grows is apparently 
delayed until V gets close to 50%. We note the use of more refined partitions over 
the instance space alleviates the effects of the fragmentation problem but does 
not eliminate it (Sect. 4), as evidenced by the results on parity concepts PAR9a 
and PAR12a (see [25]), where the advantage for DALIrules is significant. None of 
the real-world domains may achieve this high V, where no significant difference 
is observed between these two systems. Figures 7a and 7b depict regression lines 
for the differences on predictive accuracy between DALIrules and DALI. An 
increase of predictive accuracy is evident for DALIrules on 12-feature concepts. 

We finally compared absolute predictive accuracy averaged over all artificial 
and real-world domains, as shown on the last row of Table 1. The performance 
of DALIrules supports the claims of the importance of combining 1) feature- 
construction techniques (see DALItrees' performance), and 2 ) a  global evalu- 
ation of each disjunctive hypothesis (see C4.5rules-Std' and C4.5rules-GDA' 
performance), to solve the fragmentation problem. 
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Fig. 7. Regression lines for the column of DALI-rules on Table 1 vs. Variation V on 
(a) 9- and (b) 12-attribute concepts. 

6 S u m m a r y  a n d  C o n c l u s i o n s  

The divide-and-conquer implementation of decision tree induction is responsi- 
ble for a progressive loss of statistical support at every new partition, as the 
number of examples giving credibility to every disjunctive hypothesis progres- 
sively diminishes. This fragmentation problem has little effect on domains with 
low variation V (i.e., on simple domains), because every disjunctive hypothesis is 
supported by large regions of positive examples; but the same problem is severely 
aggravated by the instability imposed by high variation over the instance space. 

We experimented with a new decision tree inducer, DALI, to prove the benefit 
of using refined partitions over the instance space in combating the fragmenta- 
tion problem. We identified an additional important step to solve this problem 
consisting of independently assessing the value of each disjunctive hypothesis 
against all training data. This "global data analysis", embedded in C4.Srules, 
proved effective in improving the classifications made by C4.5trees (single-feature 
tests), and DALI (multiple-feature tests), with a positive correlation to V (i.e. 
predictive accuracy increased as V grew higher), except when V > 50% because 
of the similarity-based assumption. We suggest combining feature construction 
with global data analysis as a robust solution against the fragmentation problem. 

One important conclusion can be drawn from this study: that a better un- 
derstanding of what causes a learning algorithm to succeed or fail can be at- 
tained if the algorithm is viewed as the combination of multiple components, 
each component exerting a particular effect during learning. The development of 
learning algorithms could be guided by the combination of those - well under- 
stood - learning components known to provide the correct generalizations under 
the class of domains of study (e.g., all structured real-world domains, since no 
universal learner is attainable [24]). 
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A .  D e f i n i t i o n s  fo r  A r t i f i c i a l  C o n c e p t s  

Let: X : (x l ,x2 , . . . , x~) ,  
address(x1, x2, . . .  ,Xm) = 20Xl + 21X2 + . . .  + 2m-lX,~ 

Def in i t ions :  
DNF9a : x2x3 -'[- X2X3X7 3c" X2X-3X8 "~ X2XTX-8 "4- X-3XTXS 
DNF9b : XlX2X3 + :~1s + xTxsx9 + :~7~9 
DNF12a : xlx2xgx12 + xlx2~Yox11 + :fflx2xsx9 + xlx2xs:~v 
DNF12b : xlx23YTs + XlX2XllXl: + xls 

XlX2XllX-12 + :~lX-2XllX'12 + XTXSXllX12 
(~  + ~ ) ( ~  + ~ + ~ )  CNF9a : 

CNF9b : 
CNF12a : 
CNF12b : 

MAJ9a : 
MAJ9b : 
MAJ12a : 
MAJ12b : 
PAR9a : 
PAR9b : 
PAR12a : 
PAR12b : 
MUX9 : 
MUX12 : 

(xl + x-2 + x3)(gl  
(xs + xg)(x~ + x~ 
(xl + x2 + z~) (g l  
(~6 + x-7 + xs)(z9 
(x (~ :1 z,) > 

(x (~ 
(x (~ 
(x ((~ 
(x ((~ 
(x ((~ 
{x ((~ 
(x 
(x 

+ z2 + xs)(Zl + x2 + g3) 
+ z~)(58 + x-~ + x2) 
+ g2 + zT)(x9 + xlo + x12) 
+ x]o + x~2)(~8 + ~9 + x-7) 
3} 
6} 

:1 xi) >_ 4} 

:1 zi) > 8} 
=1 $i)  mod 2) > 0} 
=1 Xi) mod 2) > 0} 
=1 xi) rood 2) > 0} 
=1 Xi) mod 2) > 0} 

X(address(~l,~2)+3) ~--- 1} 
X(address(x 1,~2,x3)..~4 ) = 1} 
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