Skip to main content

Reliable computation and related games

  • Contours and Deformable Models
  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1223))

  • 151 Accesses

Abstract

We describe a theory of line and edge detection in layers 2/3 of primary visual cortex. Our analysis shows that, although pyramidal cells can be individually unreliable as processing units, they can nevertheless be extremely reliable as moderate-sized groups. We base our analysis on a dynamic analog model of computation in which the primary visual cortex stores visual contour information in the form of a very large number of small tightly interconnected groups or cliques of (excitatory S-type pyramidal) cells.

Douglas A. Miller, formerly of the Center for Intelligent Machines, McGill University, Montreal, Canada, passed away in 1994. This article is excerpted from “A Model of Hyperacuity-scale Computation in Visual Cortex by Self-excitatory Cliques of Pyramidal Cells”, TR-CIM-93-12, August 1993. Portions were also presented at the Workshop on Computational Neuroscience, Marine Biological Laboratories, Woods Hole, MA, in August, 1993.

Research supported by AFOSR, NSERC, and Yale University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M. 1982. Studies of Brain Function: Vol. 6. Local Cortical Circuits. Springer-Verlag, New York.

    Google Scholar 

  2. Agmon, A. and B. W. Connors. 1989. Repetitive burst-firing neurons in the deep layers of mouse somatosensory cortex. Neuroscience Letters, 99, 137–141.

    PubMed  Google Scholar 

  3. Amari, S. 1989. Characteristics of sparsely encoded associative memory. Neural Networks, 2, 45–457.

    Google Scholar 

  4. Amit, D. J., H. Gutfreund, and H. Sompolinsky. 1987. Information storage in neural networks with low levels of activity. Physical Review A, 35, 2293–2303.

    PubMed  Google Scholar 

  5. Amit, D. J. 1989. Modeling Brain Function: the World of Attractor Neural Networks, Cambridge University Press, Cambridge, England.

    Google Scholar 

  6. Barlow, H. B. 1979. Reconstructing the visual image in space and time. Nature, 279, 189–190.

    PubMed  Google Scholar 

  7. Berkley, M. A. and J. M. Sprague. 1979. Striate cortex and visual acuity functions in the cat. J. Comp. Neur., 187, 679–702.

    PubMed  Google Scholar 

  8. Bishop, P. O., J. S. Coombs, and H. Henry. 1971. Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. J. Physiol., 219, 625–657.

    PubMed  Google Scholar 

  9. Bishop, P. O., J. S. Coombs, and H. Henry. 1973. Receptive fields of simple cells in the cat striate cortex. J. Physiol., 231, 31–60.

    PubMed  Google Scholar 

  10. Bishop, P. O., B. Dreher, and H. Henry. 1972. Simple striate cells: comparison of responses to stationary and moving stimuli. J. Physiol., 227, 15–17P.

    Google Scholar 

  11. Bullier, J., M. J. Mustari, and G. H. Henry. 1982. Receptive-field transformations between LGN neurons and S-cells of cat striate cortex. J. Neurophysiology, 47, 417–438.

    Google Scholar 

  12. Callaway, E. M. and L. C. Katz. 1990. Emergence and refinement of clustered horizontal connections in cat striate cortex. J. Neurosci., 10, 1134–1153.

    PubMed  Google Scholar 

  13. Calvin, W. H. 1978. Setting the pace and pattern of discharge: do CNS neurons vary their sensitivity to external inputs via their repetitive firing processes? Federation Proceedings, 37, 2165–2170.

    PubMed  Google Scholar 

  14. Cohen, M. A. and S. Grossberg. 1983. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Sys. Man Cyber., 13, 815–826.

    Google Scholar 

  15. Cowan, J. D. 1970. A statistical mechanics of nervous activity. In: Lectures on Mathematics in the Life Sciences, Vol. 2 (ed. M. Gerstenhaber), 1–58. American Mathematical Society, providence, RI.

    Google Scholar 

  16. Douglas, R. J., K. A. C. Martin, and D. Whitteridge. 1988. Selective responses of visual cortical cells do not depend on shunting inhibition. Nature (London), 332, 642–644.

    Article  Google Scholar 

  17. Douglas, R. J., K. A. C. Martin, and D. Whitteridge. 1989. A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.

    Google Scholar 

  18. Douglas, R. J. and K. A. C. Martin. 1990. Neocortex. In: The Synaptic Organization of the Brain, Third Edition (ed. G. M. Shepherd), 389–438. Oxford University Press, New York.

    Google Scholar 

  19. Douglas, R. J. and K. A. C. Martin. 1991. Opening the grey box. Trends in Neuroscience, 14, 286–293.

    Article  Google Scholar 

  20. Douglas, R. J. and K. A. C. Martin. 1992. Exploring cortical microcircuits: a combined physiological and computational approach. In: Single Neuron Computation, Neural Nets: Foundations to Applications (Ser.), (T. McKenna, J. Davis, and S. F. Zornetzer, eds.), 381–412, Academic Press, New York.

    Google Scholar 

  21. Douglas, R. J. 1993. Talk given at the 9th Annual Woods Hole Workshop on Computational Neuroscience, Marine Biological Laboratory, Woods Hole, Mass.

    Google Scholar 

  22. Eckhorn, R., R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J. Reitboeck. 1988. Coherent Oscillations: A mechanism of feature finking in the visual cortex? Biol. Cybern., 60, 121–130.

    Article  PubMed  Google Scholar 

  23. Ferster, D. and S. Linström. 1983. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J. Physiol, 342, 181–215.

    PubMed  Google Scholar 

  24. Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability. W. H. Freeman, San Francisco.

    Google Scholar 

  25. Gilbert, C. D. and Wiesel, T. N. 1979. Morphology and intracortical projections of functionally characterized neurones in cat visual cortex. Nature. 280, 120–125.

    PubMed  Google Scholar 

  26. Gilbert, C. D. and Wiesel, T. N. 1983. Clustered intrinsic connections in cat visual cortex. J. Neurosci., 3, 1116–1133.

    PubMed  Google Scholar 

  27. Gilbert, C. D. and Wiesel, T. N. 1990. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res., 30, 1689–1701.

    Article  PubMed  Google Scholar 

  28. Gray, C. M. and W. Singer. 1989. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86, 1698–1702.

    PubMed  Google Scholar 

  29. Gray, C. M., P. König, A. K. Engel, and W. Singer. 1989 Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.

    Article  PubMed  Google Scholar 

  30. Hirsch, M. W. and S. Smale. 1974. Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York.

    Google Scholar 

  31. Hopfield, J. J. 1984. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA, 81, 3088–3092.

    PubMed  Google Scholar 

  32. Hopfield, J. J. and D. W. Tank. 1985. “Neural” computation of decisions in optimization problems. Biol. Cybern., 52, 141–152.

    PubMed  Google Scholar 

  33. Horton, J. C., L. R. Dagi, E. P. McCrane, and F. M. de Monasterio. 1990. Arrangement of ocular dominance columns in human visual cortex. Arch Ophthalmol, 108, 1025–1031.

    PubMed  Google Scholar 

  34. Hubel, D. H. and T. N. Wiesel. 1977. Ferrier Lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B., 198, 1–59.

    PubMed  Google Scholar 

  35. Krüger, J. and J. D. Becker. 1991. Recognizing the visual stimulus from neuronal discharges. Trends in Neuroscience, 14, 282–286.

    Article  Google Scholar 

  36. Martin, K. A. C. 1984. Neuronal circuits in cat striate cortex. In: Cerebral Cortex, Vol. 2: Functional Properties of Cortical Cells, (E. G. Jones and A. Peters, eds.), 241–284, Plenum Press, New York.

    Google Scholar 

  37. McCormick, D. A., B. W. Connors, J. W. Lighthall, and D. A. Prince. 1985. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol., 54, 782–806.

    PubMed  Google Scholar 

  38. McCormick, D. A. 1990. Membrane properties and neurotransmitter actions. In: The Synaptic Organization of the Brain, (G. M. Shepherd, ed.), 32–66. Oxford University Press, New York.

    Google Scholar 

  39. McGuire, B. A., C. D. Gilbert, P. K. Rivlin, and T. N. Wiesel. 1991. Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol., 305, 370–392.

    Article  PubMed  Google Scholar 

  40. Miller, D. A. and S. W. Zucker. 1991. Copositive-plus Lemke algorithm solves polymatrix games. Operations Research Letters, 10, 285–290.

    Article  Google Scholar 

  41. Miller, D. A. and S. W. Zucker. 1992. Efficient simplex-like methods for equilibria of nonsymmetric analog networks. Neural Computation, 4, 167–190.

    Google Scholar 

  42. Miller, D. A. and S. W. Zucker. 1993. In preparation.

    Google Scholar 

  43. Moore, E. F. and C. E. Shannon. 1956. Reliable circuits using less reliable relays. J. Franklin Inst., 262, 191–208, 281–297.

    Article  Google Scholar 

  44. Palm, G. 1981. On the storage capacity of associative memory with randomly distributed storage elements. Biol. Cybern., 39, 125–127.

    Article  Google Scholar 

  45. Peters, A. 1987. Number of neurons and synapses in the primary visual cortex. In: Cerebral Cortex, Vol. 6: Further Aspects of Cortical Functions Including Hippocampus, (E. G. Jones and A. Peters, eds.), 267–294, Plenum Press, New York.

    Google Scholar 

  46. Peters, A. and C. Sethares. 1991. Organization of pyramidal neurons in area 17 of monkey visual cortex. J. Comp. Neurol., 306, 1–23.

    Article  PubMed  Google Scholar 

  47. Rockland, K. S. and J. S. Lund. 1983. Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol., 216, 303–318.

    Article  PubMed  Google Scholar 

  48. Schiller, P. H., B. L. Finlay, and S. F. Volman. 1976a. Quantitative studies of single-cell properties of monkey striate cortex. I. Spatio-temporal organization of receptive fields. J. Neurophysiology, 6, 1288–1319; 1320–1333; 1334–1351.

    Google Scholar 

  49. Segev, I., J. W. Fleshman, and R. E. Burke. 1989. Compartmental models of complex neurons. In: Methods in Neuronal Modeling: From Synapses to Networks, C. Koch and I. Segev, eds. MIT Press, Cambridge, Mass.

    Google Scholar 

  50. Sejnowski, T. J. 1981. Skeleton filters in the brain. In: Parallel Models of Associative Memory (G. E. Hinton and J. A. Anderson, eds.), Lawrence Erlbaum Assoc., Hillsdale, N. J.

    Google Scholar 

  51. Singer, W. 1990. The formation of cooperative cell assemblies in the visual cortex. J. exp. Biol., 153, 177–197.

    PubMed  Google Scholar 

  52. Westheimer, G. 1990. The grain of visual space. Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, 759–763.

    Google Scholar 

  53. Westheimer, G. and S. P. McKee. 1975. Visual acuity in the presence of retinal-image motion. J. Opt. Soc. Am., 65, 847–850.

    PubMed  Google Scholar 

  54. Willshaw, D. J., O. P. Buneman, and H. C. Longuet-Higgins. 1969. Nonholographic associative memory. Nature, 222, 960–962.

    PubMed  Google Scholar 

  55. Willshaw, D. J. and H. C. Longuet-Higgins. 1970. Associative memory models. In Machine Intelligence, Vol. 5 (B. Meltzer and D. Michie, eds.), 351–359, Edinburgh U. Press, Edinburgh, U.K.

    Google Scholar 

  56. Wilson, H. R. and J. D. Cowan. 1972. Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical J., 12, 1–24.

    Google Scholar 

  57. Wilson, H. R. and J. D. Cowan. 1973. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.

    Article  PubMed  Google Scholar 

  58. Winograd, S. and J. D. Cowan. 1963. Reliable Computation in the Presence of Noise, MIT Press, Cambridge, Mass.

    Google Scholar 

  59. Zucker, S. W., A. Dobbins, and L. Iverson. 1989. Two stages of curve detection suggest two styles of visual computation. Neural Comp., 1, 68–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcello Pelillo Edwin R. Hancock

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miller, D.A., Zucker, S.W. (1997). Reliable computation and related games. In: Pelillo, M., Hancock, E.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 1997. Lecture Notes in Computer Science, vol 1223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62909-2_69

Download citation

  • DOI: https://doi.org/10.1007/3-540-62909-2_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62909-2

  • Online ISBN: 978-3-540-69042-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics