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A b s t r a c t .  In this paper we present a denotational semantics for a timed 
process algebra, which is fully abstract with respect to the must testing 
semantics previously developed [Lla96,LdFN96]. The domain of semantic 
processes is made up of consistent sets of barbs, which generalize the 
notion of acceptance sets, in such a way that the actions that are offered 
but not taken in each state are also recorded, the main difficulty when 
defining this denotational semantics has been that the natural ordering 
between semantic processes cannot be proved to be complete. So an 
alternative stronger complete ordering has to be considered, which is 
proved to be consistent with the original one, in the sense that lubs of 
chains with respect to the new ordering are also lubs with respect to the 
original one. 
Keywords :  process algebra, time, must testing semantics, denotational 
semantics. 

1 I n t r o d u c t i o n  

Process algebras have been widely used in recent years as high level languages for 
specifying concurrent systems [Mi189,Hoa85,BK84]. Time is an important  aspect 
of the description of a concurrent sys tem tha t  cannot  be directly represented in 
such process algebras. The  introduction of aspects of t ime has received much 
at tent ion in the  recent past,  and there have been many proposals, including 
[RR86,OM91,Yi91,BB93]. 

In [HR95] we can find a testing semantics for a t imed process algebra, where 
there is a simple notion of time: it is expressed by introducing a a (tic) ac- 
tion. The  execution of this action by a process suggests tha t  it is idling un- 
til next clock cycle. In a previous paper  [LdFN96] we have presented test- 
ing semantics for a process algebra in which t ime is introduced in a more 
abs t rac t  way: we have transit ions labeled with t imed actions similar to tha t  
in [Sch95,Yi91,BB93,QdFA93]. The  operat ional  semantics we have considered 

has transit ions of the form P et ~ p ,  meaning tha t  the process P performs the 
event e at  t ime t and then becomes P ' .  In this operational semantics, internal 
actions (denoted by r )  are considered to be  urgent; so we have 

p ~t> p ,  =~ p ~r f l  t ' > t .  
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The results could be easily adapted to process algebras with timed transitions 
and action transitions as proposed also in [NS91,dFLL+95]. 

In [LdFN96] a characterization of the must testing semantics is presented 
in an explicit way (not depending on tests) similar to that  in [Hen88,dNH84]. 
This characterization is made in terms of barbs. A barb is a generalization of an 
acceptance, i.e., it is a sequence 

Al az tl A2a2t2 " " Ana,~tnA,,+l , 
whose intuitive meaning is tha t  the actions a~ have been executed at t ime ti 
(the t ime is local, relative to the previous action), in a state where the process 
has previously offered to the environment the actions of the set Ai, and finally 
the process reach a state tha t  offers the actions in the set A,,+I. Urgency is the 
reason because we have to take care of the actions that  the process has offered to 
the environment before each action is executed. If the environment could have 
executed any action in the set Ai, both the process and the environment, should 
have synchronized on that  action, and then the action ai at t ime ti would no 
longer be possible. So if finally the action a~ is executed at t ime t~, this means 
that  no action in the set A~ is possible in the environment. 

2 S y n t a x  

In this section we describe the syntax of the language we will consider. In order 
to focus on the main characteristics and problems of timed algebras, we intro- 
duce a simple t imed process algebra which however contains the main operators 
tha t  characterize such an algebra. More exactly, we are talking about  those we 
consider the main operators of a high level t imed process algebra. So, we neither 
consider tic actions measuring t ime in a explicit way, nor delay operators. Nev- 
ertheless is possible to translate our high level operators to a low level language 
containing such kind of operators,  and thus similar results in this paper could 
be obtained for a language such as the one in [HR95]. In our language time is 
introduced via the prefix operator; actions must be executed at the indicated 
time, and we will consider a discrete t ime domain 7-. We consider a finite set 
of actions Act, a, a ' , . . ,  range over Act. and an internal event r r Act; then we 
consider the set of events ~ = Act U {T}, e, e ' , . . ,  range over ~. We also consider 
a set of process variables Var, x, x ' , . . ,  range over Var. Then we consider the set 
of processes Proc as the set of closed terms generated by the following B.N.F. 
expression: 

P ::= STOP I DIV Iet ; PI  P ~  [P IIG Q I P \ n i x  I p,Ecx.P. 
We will denote by FProc the set of finite processes, i.e., those without recursion. 

3 O p e r a t i o n a l  S e m a n t i c s  

In order to define the operational semantics of the language we need an auxiliary 
function Upd(t, P) ,  which represents the pass of t units of time on the process 
P .  This function is defined in table 1. Looking at the operational semantics, 
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we observe that  the function Upd(P, t) is only used when P r t /> ; so, the way 
Upd(it ;P,  t ')  is defined when t < t '  is not important,  and it is only included for 
completeness. 

P i f  P = ~roP or P = r i l l  
STOP i f P = e t  t ; P 1  and t t < t  

I e(t" - t)  ; 1='1 if P = et' ; / ~  and t' > t 
Upd(t, P)  = { Upd(t, P1 ) op Upd(t, P2) if P = P1 op 1:)2, op E {13,rl, II A } 

/ Upd(t, Pa) \ A  if  P =  P1 \ A  
/ DIV if  P = z 
( Upd(t,P1)[RECz.P1/z] if P=RECz.P1 

PnQ --~ Q 
p - ~  P',  Vt' < t : q . t ' / )  

[DIV] DIV - ~  DIu 
[PRE] et ; P - ~  P 
W, Lq P n Q :~,  P 

P ~  P ' ,  Vt' < t :  Q rtt/> 
[CHll  

p13Q ~ pt 

P ~-~ P', Vt' < t : Q ~'t'/> 
[CH2I 

p f l Q  - -~  P,13Upd(Q,t) 

p~L~ p*, Vtt < t :  Q Td/) 
[INT] 

P IIA Q - ~  P '  IIA Upd(t,Q) 
p ~L~ p,,  Q _ ~  Q, 

[SYN] a E A 
P IIA Q - ~  P '  [IA Q* 

p - ~  p',  Vt~ <t ,  a E A :  P at~/) 
[ H D 1 ]  

[ H D 2 ]  

Q13P - ~  P 
P - ~  P', Vd < t:  Q .t'/> 

Q13 p - ~  Upd(Q,t)r,p, 
P - ~  P*, V s  Q ~'r 

e ~ A  e C A  
Q IIA P ~ Upd(LQ)IIA P' 

P \ A - t~  P \ A 
P ~ - ~  t ~, Vt ~ <t ,  ae_A:  P a'd/> 

eCA 

P \ A  ~ P' \ A  
[REC] IECx.P - ~  P[IECx.P/x] 

a E A  

T a b l e  1. Operational Semantics.  

The operational semantics of Proc is given by the relation ~ C Proc x (E x 
7") x Proc defined by the rules in table 1. Since some rules have negative premises 
we have to provide a way to guarantee that  th  generated transition system is 
consistent. This is achieved by defining a stratification, as detailed in [Gro93]. 
We consider the following function 

f ( p  et) Q) = Number o] operators in P 

that  is indeed a stratification. 

D e f i n i t i o n  1 .  Let  P be  a process, we define the set of timed actions that  P can 
execute as 

TA(P) = {at I 3 P ' :  P at) p,}  
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4 Testing Semantics 

In this section we define the test ing semantics induced by the operat ional  se- 
mantics  above. Tests are just  processes but  defined by an extended g r ammar  
where we add a new process, OK, which expresses tha t  the test  has been passed. 
The  operat ional  semantics of tests  is defined in the same way as for processes, 
but  only adding a rule for the test  0g*: 

[OK]  OK ox) STOP. 

Finally we define the composit ion of a test  and a process in the following way: 

P I T  = (P[[Act T)  \ A c t .  

D e f i n i t i o n  2. Given a computat ion of P I T 

P [ T  = PI [T1 ~1 p 2 l T 2 . . . p k  [Tk ~ P k + l l T k + l " ' "  

we say tha t  it is 

- Complete if it is finite and blocked (no step is allowed), or infinite. 

- Successful if there exists some k such tha t  Tk 0K. 

D e f i n i t i o n  3. 

- We say tha t  P must pass the test  T ( P  must  T) iff any complete computat ion 
of P [  T is successful. 

- We say that  P ~ Q iff whenever P must  T we also have Q must  T.  

4.1  O p e r a t i o n a l  C h a r a c t e r i z a t i o n  

S t a t e s ,  b - t r a c e s  a n d  b a r b s  In order to characterize the testing semantics 
we will consider some kind of sets of t imed actions which we call states, tha t  
represent any of the possible local configurations of a process. In a s tate  we 
have the set of t imed actions offered, and the time, if any, at  which the process 
becomes divergent t. So, basically, a s ta te  is a set of t imed actions: if a process P 
is in a s tate  A such tha t  at E A then P can execute action a in t ime t. In order to 
capture  divergence with a simple notation, we introduce a new element ~ r Act 
tha t  represents undefinition: if ~ t  E A then the process will become divergent 
at t ime t. Then we consider the sets Act~  = Act  U {~} ,  TAct = Act  x T and 
Act~  x T = Act;2 x T .  So we have 

D e f i n i t i o n  4. We say tha t  A C_ Ae t~  x T is a s ta te  if: 

To be exact, we should extend the definition of the operational semantics for pro- 
cesses and tests to mixed terms defining their composition, since these mixed terms 
axe neither processes nor tests, but since this extension is immediate we have pre- 
ferred to avoid this formal definition. 

r A process is divergent if it can execute in a row an infinite number of internal actions, 
all of them at time 0. Note that divergent processes only pass trivial tests in the must 
sense. 
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- There  is at  most a single ~ t  E A, i.e., ~2t, ~ t '  E A =~ t = t ~. 
- If  f2t E A then t is the max imum t ime in A, i.e., 12t, at ~ E A =~ t ~ < t. 

We will denote by S T  the set of states. 

Now we give some auxiliary definitions: 

Def in i t ion  5. 

- We define the function nd(-) : 37-  ~-~ 7"U {oo}, which give us the t ime at  
which a s ta te  becomes undefined C_not defined function), by: 

nd( A ) - - ~ t  i f ~ t E A ,  

t oo otherwise. 
- Given a s ta te  A E ,97" and a t ime t E 7", we define: 

A + t = { a ( t + t ' ) ] a t ' E A } ,  A ] t = { a t ' ] a t ' E A a n d t ' < t } .  

- If  A e S T ,  we define its set of t imed actions: TAct(A) = A]nd(A). 
- If A e S T  and t E T ,  we will say tha t  A < t (resp. A < t) iff for all at' E A 

we have t '  < t (resp. t '  _< t). 

A barb  is a generalization of an acceptance set [Hen88], but  additional in- 
formation must  be included to record the actions tha t  the process offers be- 
fore any action has been executed. First we introduce the concept of b-trace, 
which is a generalization of the notion of trace. A b-trace, bs, is a sequence 
Ala l t lA2a2t2  �9 �9 �9 Anantn tha t  represents the execution of the sequence of t imed 
actions al t la2t2 .  " 'antn i n s u c h  a way tha t  after  the execution of each prefix 
al t l  . . .  a~-lt~-i  the t imed actions in Ai were offered before accepting aiti. Then 
a barb  is a b-trace followed by a final state,  tha t  represents the reached config- 
uration of the process after executing the b-trace.  

D e f i n i t i o n  6. 

- b-traces are finite sequences, bs = Ala l t l . . .A ,~ant ,~ ,  where n _ 0, a~ti E 
TAct, Ai  C TAct, and if a't ~ E Ai  then t '  < t~. We take Ion(b) = n; if n = 0 
we have the empty  b-trace denoted by e. 

- A barb b is a sequence b = bs. A where bs is a b-trace and A is a state. We 
will represent the barb  e - A by A, and so we will consider tha t  states are 
also Cinitial) barbs.  

D e f i n i t i o n  7. 

- Given t E T, a b-trace bs = A l a l t l .  bsl and a set of t imed actions A C TAct 
such tha t  A < t, we define 

( A,  t) u bs = ( A U ( A ,  + t))aCt, + t ) .  bs,. 
- If bs is a b- t race we define its durat ion as 

Time(bs) = { 0 i f b s = ~  
t + Time(bs ~) if bs = a t .  bs'. 

- If b = bs.  A is a barb  we define its t ime of undefinition 

nd(b) -- Time(bs) + nd(A). 

We will use barbs and b-traces to characterize the testing semantics; this will 
be done by defining a pre-order between sets of barbs.  In order to define this 
pre-order, we need first the following ordering relations: 
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D e f i n i t i o n  8 .  

- We define the relation << ~ between b-traces as the least relation tha t  satis- 
fies: 1. e << e, 2. If  bs' << bs and A ~ C_ A then A' at . bs ~ << A n t .  bs. 

- We define the  relation << between barbs as the least relation tha t  satisfies: 
1. If bs, bs' are b-traces such tha t  bs' << bs, and A, A' are states such tha t  

nd(A') _< nd(A) and TAct(A')  C_ A, then bs' . A' << bs. A. 
2. If A' is a state, b = A l a l t l  - b' is a barb  such tha t  nd(A') _< tl  and 

TAct(A') C_ A1, and bs ~ << bs then bs'. A'  << bs. (A la l t l  �9 b~). 

Intuitively, a b- t race bs is worse than another  one bs', if the actions tha t  appear  
in both  b-traces are the same, and the intermediate sets Ai tha t  appear  in bs are 
smaller than  those A~ appear ing in bs ~. For barbs,  we must  notice tha t  whenever 
a process is in an undefined state,  which means t = nd(A) < oo, it can pass 
no test  after tha t  t ime in the must  sense. Barbs  and b-traces are introduced to 
characterize the testing semantics. As shown in [LdFN96], to characterize the 
must  test ing semantics it is enough to extend the preorder to sets of barbs: 

D e f i n i t i o n  9. Let B1 and B2 be sets of barbs,  we define: 

B1 << B2 r  Vb2 E B2 3bl E B1 : bl << b2. 

S t a t e s ,  b - t r a c e s ,  b a r b s  a n d  p r o c e s s e s  The  states of a process P are com- 
puted from its complete computat ions  of internal actions. For any computat ion 
we record the information about  the actions offered before the execution of any 
internal action. For divergent computat ions  we also record the time of divergence. 

D e f i n i t i o n  10. For a process P ,  the set .A(P) is the set of states A E S T  
tha t  are generated from the complete computat ions  of internal actions of P as 
described below. 

- Given an infinite computat ion,  
r t l  r t2  l"t k 

P = P1 ~ P= ) " '"  P~ ) P k + l  " ' "  

generates the s ta te  A E A ( P )  given by 

{a~t} if t = Y]~i=l ti < oo, 
A = U (TA(Pi)l t i  + t ' )  to o otherwise. 

- Each finite blocked computat ion,  

P = P1 rt, rf= rt.-1 ) P= ) " ' P n - 1  ) Pn 

generates the s ta te  (TA(Pn) + t n) U U (TA(Pi)l t i  + t i) e A (P) .  
/=1  

where, in bo th  cases, we take ti = Ej=li--1 t j .  

* Note that the symbol << is overloaded, it is used for both b-traces and barbs. 
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D e f i n i t i o n  11. Let P, P'  be processes and bs a b-trace. We define the relation 

p b~  p~ as follows: 
- p  ~: .p .  

If  P Tt) P1, and P1 bs' p ,  with bs' ~ e then P (XA(P)lt,t)ub,' p, .  - ~. 

If P at) P1, and P1 bs': p ,  then P (TA(P)]t)at.bs' p,.  

Finally we define the set of b-traces of a process by 

Btraz(P) = {bsl 3Q: P b, Q}. 

States and b-traces are closely related as the following proposition shows 

P r o p o s i t i o n  12. 

- I f P  Aat Q there exists a state A' E .A(P) such that A']t =A] t .  
- I f  A E .A(P) and at E A then there exists a process Q such that 

(A]t)at 
P :.Q. 

D e f i n i t i o n  13. Let b = bs. A be a barb  and P a process; we say tha t  b is a 

barb  of P (b E Barb(P))  iff there exists a process P' such tha t  P b s  p ,  and 
A E A(P') .  

The preorder defined between sets of barbs  can be used to characterize the 
preorder induced by the test ing semantics. This equivalence has been proved in 
detail in [LdFN96]. 

T h e o r e m  14. Let P, Q be processes then, P E Q .: :. Barb(P) << Barb(Q). 

5 D e n o t a t i o n a l  S e m a n t i c s  

In this section we will give a denotational  semantics to our language tha t  will 
be proved fully abst ract  with respect to the test ing semantics in section 6. Next 
we define the domain we will use to define the operators;  first we need some 
auxiliary definitions: 

D e f i n i t i o n  15. 

- A set of s tates .4 is t-compact iff 

'CA 6 S T  (Vt 6 T 3 A t  6 . 4  : At = A l t )  ~ A 6 A. 
This proper ty  can be seen as a kind of temporal continuity on sets of states: 
whenever every tempora l  restriction of a s tate  is in a set of states we also 
have tha t  the s tate  itself is in the set. 

- Let B be a set of barbs,  we define the b-traces of B as 

Btraz(B) = {bs I BA : bs. A e B}.  

If bs E Btraz(B) we define the barbs of B after bs and the states reached 
after bs, respectively by 

Barb(B, bs) = {b I bs. b e B},  fit(B, bs) = {A] bs. A e B}.  
As a part icular  case, we write .A(B, bs) = .A(B) when bs = e. 

Now we can define the semantic domain: the consistent sets of barbs Br 
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D e f i n i t i o n  16. A set of barbs B is consistent, and then we write B E Bcon, iff 

- B # o .  
- Prefix closed: if bs �9 Aat E Btraz(B) there exists some state A' such that  

bs. A' E B and A'] t = A]t. 
- Continuation closed: if bs. A �9 B and at �9 A then bs. (A]t)at �9 Btraz(B). 
- t-compact: for each bs �9 Btraz(B) the set of states A(B,  bs) is t-compact.  

All the above conditions are quite natural: first we require that  a consistent 
set of barbs not to be empty; the prefix closed condition indicates that  if a 
computat ion has been executed then all intermediate states are reachable; next 
in the continuation closed condition we establish that  i f a  action is in a state there 
is a computat ion from that  action; finally we require the temporal continuity 
property for the states after each computation. 

Before going on we have to  notice tha t  the relation << is not a partial order 
over consistent sets of barbs; is just a pre-order, since it does not verify the anti- 
symmetric property. So we have to deal instead with the equivalence induced by 
the pre-order: 

B l a B 2  z. > B l < < B 2  and B2 << B1 

Then for every operator  op we have to check that  it is well defined, tha t  is 

- If B 1 , . . . ,  B i , . . .  B~ are consistent sets of barbs, then op(B1, . . . ,  B i , . . .  B,~) 
is too. 

- It is congruent with respect the relation ~ or, equivalently, we have to check 
ol) ( B 1 , . . . ,  Bi , . . .  Bn) << op(B1, . . . ,  B~, . . .  B~) whenever Bi << B~. 

congruent In the following we give the semantic meaning of each operator of the 
language. Due to lack of space, it is not possible to include the proofs of the well 
definition of the operators, they can be found in [Lla96]. 

D i v e r g e n c e  a n d  S t o p  
None of these operators can execute any visible action, the difference between 
them is tha t  while STOP will allow the execution of any action of another process 
in the context of the external choice or parallel operators, DIV will not. This is 
reflected in the denotational semantics in the following way: 

Bcon[STOV]---- {0}, Bcon[DIY] = ({nO}}. 

while STOP has a unique empty state, DII/has a unique undefined state undefined 
at time O. 

P r e f i x  

Although we have a unique prefix operator,  we have two cases depending on 
the prefixing event. First we consider the case where the prefixing event is not 
visible, the effect of this operator  is just to delay the execution of the process 
the indicated units of time; so we have 

13con[rt;](B) --- {b+  t I b E B}. 
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When the prefixing action is visible, the computations of the resulting process 
are the same of the ones of the old process but beginning with the prefixing 
action, so we have 

Beon[at;](B) = { O a t .  bl b e B) u { 
In t e rna l  Choice 
A process built with this operator behaves in a non-deterministic way, choosing 
between its two components. Thus we take: 

Beon[r'l](B1,B2) =/31 UB2 

Ex te rna l  Choice 
The definition of this operator is quite more complex. Now it is the environment 
who solve the choice by selecting the first action to be executed; then the process 
behaves like one of the processes. So the computations of the composition are 
again the computations of the processes in the choice operator. But now, the 
initial states are obtained by the union of states of the processes, although one 
has to take care of the time of undefinition. As a similar concept will be needed 
in the parallel operator, we give next a more general definition. 

Defini t ion 17. If AI y A2 are states and G C Act we define 

A1 Ua A2 = (A1 n A2 I"1 G)lt 
U((A1 \ C)10 U ((A2 \ V)IO 
u { {at} co, 

otherwise. 
where t = min{nd(A1), nd(A2)}. 

The set G stands for a synchronization alphabet: the actions in G will have to 
be executed by the two arguments in the parallel composition. At the moment we 
only have to consider the case when G = ~. Then, taking t = min{nd(A1), nd(A2) }, 
we have 

{s?t} if t < oo, 
A1 t-Jz A2 = (A11t) U (A21t) U O otherwise. 

Now the semantic meaning of the external choice operator is as follows: 

]3con[n](B1,B2) ={A1klz A2 [ A1E B1 and A2 E B2} 

U{(A1UA21t)at.b I Alat.bEB1 A2 EB2 and nd(A2)> t} 

u{(A  uA lt) t.b I Azat.bE B2 A1 E B1 and nd(Al) > t}. 

P a r a l l e l  
The definition of this operator is more complex. First the parallel composition 
of two barbs yield to a set of barbs by interleaving, what is formally defined as 
follows: 

Defini t ion 18. Given bl and b2 barbs and G C Act, we define the set of barbs 
bl Ha b2 as the least set satisfying: 
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b l = A 1  and b 2 = A 2  =~ 
b/ = A l a t "  b~, b2 = A2, a r G, 
n a ( A 2 ) > t  and b ' � 9  ) 
bl = A1, b2 = A2at  . b~, a (t G, 1. 
nd(A1) > t  and b 'E ( A I - t )  I[Gb~ I 
bl = A l a l t l  "b~, b~ = A2a2t2.b~, 

t l_<t2 ,  a lOnG and 

b' �9 IIG (A2 - t l )ae(t2 - t l ) .  b'~ 

bt = A l a l t l  �9 b~, b2 = A2a2t2 �9 b~, 

t l  >_ t2, a2 r G and 

b ~ A t ' �9 ( - t2)a ( - t2)-b  lla b2 

bl IIG bz = {A1 UG A2}, 

=~ (A1 Ua A2]t)at  . b' 6- bl IIV b2, 

=~ (At  UG A2] t )a t .  b' �9 bl lIG b2, 

=~ (A111GA21tl)altl  "b I �9 bl IIGb2, 

:=~ (A1]t2LlGA2)a2t2"b I �9 bl IIGb2, 

bl : A l a t .  b~, b2 = A2a t .b~ ,  

a E G and b' E b~ HG b~ ) ==~ (A1 IIG A2)a t .  b' �9 bl JIG b2. 

Now we can define the semantic meaning of the parallel operator by consider- 
ing the set of all the possible combinations by interleaving of barbs of the two 
processes. 

D e f i n i t i o n  19. Let Bt  and B2 be set of barbs and G C_ Act ,  we define 

Bco.[IIG](B1,B2) = ~bl =~ bl �9 B1, b2 �9 B2 : b e  bl IIG b2~. 
k ) 

H i d i n g  

When applying this operator the hidden action becomes the not visible one (r), 
and then becomes urgent. To compute the b-traces of the obtained process we 
need the following 

D e f i n i t i o n  20. We say that  an action a can be hidden in a b-trace bs, and we 
will write ocul(bs, a), taking 

- ocul(e, a), and then we will take e \ a = e. 
- If ocul(bsl, a) and a r A1 then o c u l ( A l a l t l ,  bsl) holds if one of the following 

conditions is fulfilled: 
�9 a ~ at.  In this case we will take (Atal  �9 bsl) \ a = A l a t t t .  (bsl \ a). 
�9 a = al y bSl "7/= e. In this case we will take (A ta l  . bsl) \ a = (A1, tt) It 

(bsl  \ a) .  

To make the reading easier, whenever we write bs \ a, we understand that  we 
also have ocul(bs, a). 

Then the b-traces of P \ a  are those bs\a  where bs is a b-trace of P and ocul(bs, a). 
The urgent condition is reflected by the second condition since in the definition 
we require a r A1. Now the states of P \ a are obtained from the barbs of P 
where the executed action is the hidden one. These states are computed step 
by step, and so the final set of states is obtained as the limit of the (possible 
infinite) sequence of steps. 
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D e f i n i t i o n  21. Let B be a consistent set of barbs and a E Act ,  for each k E 1~ 
we define the set of s tates Focul(B,a,  k), as follows: 

- Foco (B, a ,  o )  = 

- F o r k > 0 w e h a v e  
�9 If A E B and a r A then A E Focul(B, a, k). 
�9 If  A a t  E Btraz(B), a r A and A1 E Focul(Barb(B, Aat ) , a ,  k -  1), then 

A U (A1 + t) E Focul(B,a,  k). 

D e f i n i t i o n  22. If B is a consistent set of barbs and a E Ac t ,  we have bs .  A E 
Bcon [ \ a ] (B)  iff one of the following conditions holds: 

- nd(A) < c~ and for each k E ~N there exists some I _> k and a b-trace bs' 
verifying A E Focul(Barb(B, bs'), a, l) and bs' \ a = bs. 

- nd (A) = oo and for each t E T there exist 1 E lXl, a s tate  At and a b-trace 
bs' verifying At1 t = A l t ,  A t  E Focul(Barb(B, bs ' ) ,a ,1)  and bs' \ a = bs. 

R e c u r s i o n  

Once we have given the semantic definition of each operator,  we have to deal 
with recursion. We want to use the classical theory of fixed points to give a 
meaning to recursive terms. Unfortunately we have a problem since we have not 
been able to prove tha t  the pre-orderw << is complete. So we have decided to find 
an al ternative pre-order -~, tha t  we have called definit ion pre-order: 

D e f i n i t i o n  23. 

- Let b and b ~ be barbs,  we define b -~ b ~ iff one of the following conditions 
holds: 

�9 b = A A b' = A'  A nd(A) < nd(A') A A]nd(A) = A']nd(A),  
�9 b = A A b' = A i a l t l .  b i A nd(A) _ ti  A Alnd(A) -=- Ai lnd(A ), 
�9 b = A a l t l . b l A b  ~ = A a t t l . b ~ A b l - ~ b ~ .  

- Let B and B * be consistent sets of barbs,  we write B -~ B ~ whenever the 
following propert ies  are fulfilled 

�9 for all b ~ E B ~ there exists b E B such tha t  b -~ b ~. 
�9 for all bs �9 A E B there exists some state  A'  such tha t  bs .  A ~ E B ~ and 

A -~A' .  

First we prove tha t  -~ is complete, so tha t  we can compute  least upper  bound 
of chains B1 -~ B2 -~ - "  Bk -~ Bk+l -~ --" 

D e f i n i t i o n  24. L e t / ~  = {Bil  i E IN} be a chain, we define lub(B) by taking 
b E lub(B) iff the following conditions hold: 

- I f n d ( b ) < o o t h e n V k E ~ 3 l > k :  b E B I .  
- If nd(b) = oo then Vt E T 3 1 E  l~l, bl e Bl : btl t = bk]t. 

w We axe using pre-orders instead of partial orders, so we have to take account that 
the identity is modulo the equivalence relation induced by the pre-order. 
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Now we have that  lub(B) is, in fact, the least upper bound of the chain B. 

P r o p o s i t i o n  25. / f  B = {Bil i e ~ }  is a chain then 

- V i E ~ :  B i -~ lub(B) .  

- (ViEIN: Bi -~B' )  ~ lub(B)-~B'. 

The proof of the previous proposition is quite easy having account tha t  we are 
using a finite alphabet and a discrete t ime domain. We also can prove that  -~ 
has good properties with respect to <<: 

P r o p o s i t i o n  26. 

- f f  B1 -~ B2 then B1 << B2. 

W,l eiN} is a chainq then (WeiN: . , < < . ' )  I-bW)<<B'. If  B =  l 

The first property establishes tha t  -~ is stronger than <<, so any chain with 
respect to -~ is also a chain with respect <<; the second one establishes that  least 
upper  bounds with respect to -~ are also least upper bounds with respect to <<. 

The new pre-order -~ also has good properties with respect to the defined 
operators. First we have that  all the operators are monotonic with respect to -~. 

P r o p o s i t i o n  27. Let B1 , . . .  Bn, B~ , . . . ,  Bin be consistent sets of barbs such that 
B~ -~ B~, then we have: 

t3con[Op](B1,...,B,) -~ Bco,[op](B'~,...,B'~) for each op e {et;,u,n, lla,\a }. 

To be able to define a denotational semantics by means of fixed points we also 
need to check that  all the semantic operators are continuous: 

P r o p o s i t i o n  28. Let B = { Bi I i E IN} be a chain of consistent set of barbs and 
B a consistent set of barbs, then we have: 

o19 e {et ; , \a}  we have Bcon[Op](B) ~ lub({Bcon[Op](B,) l i e IN}). For 

op e {o,n,  Ila} we have t3r S) -~ lub({Br Bi) l i e IN}). For 1 

and Bco,[Op](g, B) -< lub( {Beon[Op]( Si ,  B) l i e N } ) .  

Then we can define the denotational semantics in the classical way: 

D e f i n i t i o n  29. Let E N V =  {p : Vat ~ Beon} the set of environments, we define 
the semantic meaning of open terms Beon['] : Term x ENV~-~ Beon as follows 

f B~onlovl(t3~oo[Pd,,...,t3~o, IP,],)if P =  o p ( P 1 , . . - , P n )  , 

Bco,[P]p ~ p(x) if P z E Yar, 
fix(AB.B~o~[P]p[B/=]) if P l~Cx.P.  

�82 B is a chain with respect the pre-order 4, i.e., B1 ~ B2 -~ .. .  Bk ~ Bk+l " .  
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The fixed point of a function f can be reached by iterating the application of 
the function to the bottom element of the semantic domain: 

_I_ = f~ fl(_l.),...,.fn(.l.), ... 

As the bottom element of our domain is ~ {~0} } while is also the meaning of 
the process DIV, fixed points can be obtained as the limit of the semantics of the 
corresponding finite approximations: 

Defini t ion 30. We define the finite approximations of a process P by 

DIV if k = 0, 
a p ( P , k ) =  z i f P = z E V a r ,  

op(ap(P1, k ) , . . . , a p ( P , , k ) )  if P = op(P1,. . . ,  P,)  and k > O, 
a p ( P l , k -  1)[ap(P,k - 1)/x] i f P  = RECx.P1 and k > O. 

Now we have 

P r o p o s i t i o n  31. For each process P we have 

- Bcon[[ap(P, k)] -< Bcon[ap(P, k + 1)1. 
- /~con[P] = lub{Bcon[ap(P, k)] I k e ~}. 

6 Full  A b s t r a c t i o n  o f  our  D e n o t a t i o n a l  S e m a n t i c s  

Now we relate of denotational semantics developed in the previous section with 
the testing semantics presented in section 4. We will show that the denotational 
semantics is fully abstract with respect to the testing semantics: 

8con IF |  << 8~on [Q] ~ P ~ Q. 
For, we will use the operational characterization in section 4.1: 

8co.IF] << Br < .', Barb(P) << Barb(Q). 
First we prove 

P r o p o s i t i o n  32. Let Bz and 132 be consistent sets of barbs and P and Q be 
processes. We have 

- for each 0/9 E {STOP, DIV, e t ; , r ~  [[G, \a}, i fB i  << Barb(P/) then 

BconlOP](B1,..., Bn) << Barb(op(P1,..., pn)). 
- for each op S {STOP, DIY, et;,r~o, Ila,\a}, ifBarb(Pi) << Bi then 

Barb(op (P1, . . . .  Pn)) << Beo, IOp](B1,..., Bn). 

The main difficulty in the proof of the previous proposition has been that the 
operational states of a process can be obtained by an infinite computation, so 
reasoning by induction on the length on that computation cannot be applied. 

Then we have the fully abstraction theorem for finite processes 

T h e o r e m  33. I f P  is a finite process we have Barb(P) << Boon [P] and Bcon [P] << 
Barb(P). 
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Now we have to proof the abstraction theorem for general processes (also those 
including recursion). First we have the following 

L e m m a  34. For each process P we have: 

- I f  b E Barb(P) and t < nd(b) there exist k E ~ and a barb b' such that 
bk E Barb(ap(P, k)) and bk]t = bit. 

- I f  b E Barb(P), nd(b) < c~ there exists k E IN such that Yk' > k : b E 
Barb(ap(P, k')). 

- If b E Barb(ap(P, k)) and nd(b) > t there exists b' e Barb(P) such that 

b i t  = b ' ] t .  
- I f  b is a barb verifying nd(b) < oo and Vk e ~ 31 > k : b e Barb(ap(P, k')) 

then b E Barb(P). 

Proof. It is enough to notice that any finite computation of a process can be 
simulated by an approximation ap(P, k) for a large enough k; and, on the other 
hand, any computation of any finite approximation ap(P, k) can be simulated by 
the process P itself. [] 

P r o p o s i t i o n  35. For each process P then Boon[P] << Barb(P) and Barb(P) << 
 coniP]. 
Proof. It is quite easy since Bcon[P] = lub{ap(P, k) I k E ]N} and the the set of 
states of a process is t-compact. [] 

Finally, by consequence of the previous proposition we have the theorem that 
shows the abstraction of the denotational semantics. 

T h e o r e m  36. Given P and Q processes, then P ~ Q -'~ ~ Boon[P] << 

B~on[Q]. 

7 Conc lus ions  
In this paper we have presented a denotational semantics for a timed process 
algebra. This denotational semantics is fully abstract with respect to a must 
testing semantics defined and characterized in a previous paper [LdFN96] by the 
same authors. Here we have a first consequence: since any denotational semantics 
is (by definition) compositional, the must testing semantics is a congruence. 

The results in this paper are part of the Ph.D. thesis of the first author, where 
the must testing semantics for timed process algebras have been deeply studied. 
In that work one can also find an axiomatic semantics that will be presented 
in a companion paper. This semantics is proved to be sound and complete with 
respect to the denotational semantics presented in this paper, therefore it is 
sound and complete with respect to the must testing semantics. 

A c k n o w l e d g m e n t s  

I would like to mention in this section all the people that are working around the 
world to make it better, specially those that have recently been kined in Zaire 
and Rwanda. I would like to remark that almost all first world countries have not 
carried out their pledges in Rio de Janeiro to refnnd the 0.7% of their respective 
gross national product for the real development of third world countries. 
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