
Denotational Semantics for Timed Testing

Luis Fernando Liana Diaz and David de Frutos Escrig

Dpto. Inform~tica y AutomAtica
Universidad Complutense de Madrid

Ciudad Universitaria. 28040 Madrid. Spain.
~maih { l iana , d e f r u t os}@eucmax, s ire.acre, e s

A b s t r a c t . In this paper we present a denotational semantics for a timed
process algebra, which is fully abstract with respect to the must testing
semantics previously developed [Lla96,LdFN96]. The domain of semantic
processes is made up of consistent sets of barbs, which generalize the
notion of acceptance sets, in such a way that the actions that are offered
but not taken in each state are also recorded, the main difficulty when
defining this denotational semantics has been that the natural ordering
between semantic processes cannot be proved to be complete. So an
alternative stronger complete ordering has to be considered, which is
proved to be consistent with the original one, in the sense that lubs of
chains with respect to the new ordering are also lubs with respect to the
original one.
Keywords : process algebra, time, must testing semantics, denotational
semantics.

1 I n t r o d u c t i o n

Process algebras have been widely used in recent years as high level languages for
specifying concurrent systems [Mi189,Hoa85,BK84]. Time is an important aspect
of the description of a concurrent sys tem tha t cannot be directly represented in
such process algebras. The introduction of aspects of t ime has received much
at tent ion in the recent past, and there have been many proposals, including
[RR86,OM91,Yi91,BB93].

In [HR95] we can find a testing semantics for a t imed process algebra, where
there is a simple notion of time: it is expressed by introducing a a (tic) ac-
tion. The execution of this action by a process suggests tha t it is idling un-
til next clock cycle. In a previous paper [LdFN96] we have presented test-
ing semantics for a process algebra in which t ime is introduced in a more
abs t rac t way: we have transit ions labeled with t imed actions similar to tha t
in [Sch95,Yi91,BB93,QdFA93]. The operat ional semantics we have considered

has transit ions of the form P et ~ p , meaning tha t the process P performs the
event e at t ime t and then becomes P ' . In this operational semantics, internal
actions (denoted by r) are considered to be urgent; so we have

p ~t> p , =~ p ~r f l t ' > t .

369

The results could be easily adapted to process algebras with timed transitions
and action transitions as proposed also in [NS91,dFLL+95].

In [LdFN96] a characterization of the must testing semantics is presented
in an explicit way (not depending on tests) similar to that in [Hen88,dNH84].
This characterization is made in terms of barbs. A barb is a generalization of an
acceptance, i.e., it is a sequence

Al az tl A2a2t2 " " Ana,~tnA,,+l ,
whose intuitive meaning is tha t the actions a~ have been executed at t ime ti
(the t ime is local, relative to the previous action), in a state where the process
has previously offered to the environment the actions of the set Ai, and finally
the process reach a state tha t offers the actions in the set A,,+I. Urgency is the
reason because we have to take care of the actions that the process has offered to
the environment before each action is executed. If the environment could have
executed any action in the set Ai, both the process and the environment, should
have synchronized on that action, and then the action ai at t ime ti would no
longer be possible. So if finally the action a~ is executed at t ime t~, this means
that no action in the set A~ is possible in the environment.

2 S y n t a x

In this section we describe the syntax of the language we will consider. In order
to focus on the main characteristics and problems of timed algebras, we intro-
duce a simple t imed process algebra which however contains the main operators
tha t characterize such an algebra. More exactly, we are talking about those we
consider the main operators of a high level t imed process algebra. So, we neither
consider tic actions measuring t ime in a explicit way, nor delay operators. Nev-
ertheless is possible to translate our high level operators to a low level language
containing such kind of operators, and thus similar results in this paper could
be obtained for a language such as the one in [HR95]. In our language time is
introduced via the prefix operator; actions must be executed at the indicated
time, and we will consider a discrete t ime domain 7-. We consider a finite set
of actions Act, a, a ' , . . , range over Act. and an internal event r r Act; then we
consider the set of events ~ = Act U {T}, e, e ' , . . , range over ~. We also consider
a set of process variables Var, x, x ' , . . , range over Var. Then we consider the set
of processes Proc as the set of closed terms generated by the following B.N.F.
expression:

P ::= STOP I DIV Iet ; PI P ~ [P IIG Q I P \ n i x I p,Ecx.P.
We will denote by FProc the set of finite processes, i.e., those without recursion.

3 O p e r a t i o n a l S e m a n t i c s

In order to define the operational semantics of the language we need an auxiliary
function Upd(t, P) , which represents the pass of t units of time on the process
P . This function is defined in table 1. Looking at the operational semantics,

370

we observe that the function Upd(P, t) is only used when P r t /> ; so, the way
Upd(it ;P, t ') is defined when t < t ' is not important, and it is only included for
completeness.

P i f P = ~roP or P = r i l l
STOP i f P = e t t ; P 1 and t t < t

I e(t" - t) ; 1='1 if P = et' ; / ~ and t' > t
Upd(t, P) = { Upd(t, P1) op Upd(t, P2) if P = P1 op 1:)2, op E {13,rl, II A }

/ Upd(t, Pa) \ A if P = P1 \ A
/ DIV if P = z
(Upd(t,P1)[RECz.P1/z] if P=RECz.P1

PnQ --~ Q
p - ~ P', Vt' < t : q . t ' /)

[DIV] DIV - ~ DIu
[PRE] et ; P - ~ P
W, Lq P n Q :~, P

P ~ P ' , Vt' < t : Q rtt/>
[CHll

p13Q ~ pt

P ~-~ P', Vt' < t : Q ~'t'/>
[CH2I

p f l Q - -~ P,13Upd(Q,t)

p~L~ p*, Vtt < t : Q Td/)
[INT]

P IIA Q - ~ P ' IIA Upd(t,Q)
p ~L~ p,, Q _ ~ Q,

[SYN] a E A
P IIA Q - ~ P ' [IA Q*

p - ~ p', Vt~ <t , a E A : P at~/)
[H D 1]

[H D 2]

Q13P - ~ P
P - ~ P', Vd < t: Q .t'/>

Q13 p - ~ Upd(Q,t)r,p,
P - ~ P*, V s Q ~'r

e ~ A e C A
Q IIA P ~ Upd(LQ)IIA P'

P \ A - t~ P \ A
P ~ - ~ t ~, Vt ~ <t , ae_A: P a'd/>

eCA

P \ A ~ P' \ A
[REC] IECx.P - ~ P[IECx.P/x]

a E A

T a b l e 1. Operational Semantics.

The operational semantics of Proc is given by the relation ~ C Proc x (E x
7") x Proc defined by the rules in table 1. Since some rules have negative premises
we have to provide a way to guarantee that th generated transition system is
consistent. This is achieved by defining a stratification, as detailed in [Gro93].
We consider the following function

f (p et) Q) = Number o] operators in P

that is indeed a stratification.

D e f i n i t i o n 1 . Let P be a process, we define the set of timed actions that P can
execute as

TA(P) = {at I 3 P ' : P at) p,}

371

4 Testing Semantics

In this section we define the test ing semantics induced by the operat ional se-
mantics above. Tests are just processes but defined by an extended g r ammar
where we add a new process, OK, which expresses tha t the test has been passed.
The operat ional semantics of tests is defined in the same way as for processes,
but only adding a rule for the test 0g*:

[OK] OK ox) STOP.

Finally we define the composit ion of a test and a process in the following way:

P I T = (P[[Act T) \ A c t .

D e f i n i t i o n 2. Given a computat ion of P I T

P [T = PI [T1 ~1 p 2 l T 2 . . . p k [Tk ~ P k + l l T k + l " ' "

we say tha t it is

- Complete if it is finite and blocked (no step is allowed), or infinite.

- Successful if there exists some k such tha t Tk 0K.

D e f i n i t i o n 3.

- We say tha t P must pass the test T (P must T) iff any complete computat ion
of P [T is successful.

- We say that P ~ Q iff whenever P must T we also have Q must T.

4.1 O p e r a t i o n a l C h a r a c t e r i z a t i o n

S t a t e s , b - t r a c e s a n d b a r b s In order to characterize the testing semantics
we will consider some kind of sets of t imed actions which we call states, tha t
represent any of the possible local configurations of a process. In a s tate we
have the set of t imed actions offered, and the time, if any, at which the process
becomes divergent t. So, basically, a s ta te is a set of t imed actions: if a process P
is in a s tate A such tha t at E A then P can execute action a in t ime t. In order to
capture divergence with a simple notation, we introduce a new element ~ r Act
tha t represents undefinition: if ~ t E A then the process will become divergent
at t ime t. Then we consider the sets Act~ = Act U {~} , TAct = Act x T and
Act~ x T = Act;2 x T . So we have

D e f i n i t i o n 4. We say tha t A C_ Ae t~ x T is a s ta te if:

To be exact, we should extend the definition of the operational semantics for pro-
cesses and tests to mixed terms defining their composition, since these mixed terms
axe neither processes nor tests, but since this extension is immediate we have pre-
ferred to avoid this formal definition.

r A process is divergent if it can execute in a row an infinite number of internal actions,
all of them at time 0. Note that divergent processes only pass trivial tests in the must
sense.

372

- There is at most a single ~ t E A, i.e., ~2t, ~ t ' E A =~ t = t ~.
- If f2t E A then t is the max imum t ime in A, i.e., 12t, at ~ E A =~ t ~ < t.

We will denote by S T the set of states.

Now we give some auxiliary definitions:

Def in i t ion 5.

- We define the function nd(-) : 37- ~-~ 7"U {oo}, which give us the t ime at
which a s ta te becomes undefined C_not defined function), by:

nd(A) - - ~ t i f ~ t E A ,

t oo otherwise.
- Given a s ta te A E ,97" and a t ime t E 7", we define:

A + t = { a (t + t ')] a t ' E A } , A] t = { a t '] a t ' E A a n d t ' < t } .

- If A e S T , we define its set of t imed actions: TAct(A) = A]nd(A).
- If A e S T and t E T , we will say tha t A < t (resp. A < t) iff for all at' E A

we have t ' < t (resp. t ' _< t).

A barb is a generalization of an acceptance set [Hen88], but additional in-
formation must be included to record the actions tha t the process offers be-
fore any action has been executed. First we introduce the concept of b-trace,
which is a generalization of the notion of trace. A b-trace, bs, is a sequence
Ala l t lA2a2t2 �9 �9 �9 Anantn tha t represents the execution of the sequence of t imed
actions al t la2t2 . " 'antn i n s u c h a way tha t after the execution of each prefix
al t l . . . a~-lt~-i the t imed actions in Ai were offered before accepting aiti. Then
a barb is a b-trace followed by a final state, tha t represents the reached config-
uration of the process after executing the b-trace.

D e f i n i t i o n 6.

- b-traces are finite sequences, bs = Ala l t l . . .A ,~ant ,~ , where n _ 0, a~ti E
TAct, Ai C TAct, and if a't ~ E Ai then t ' < t~. We take Ion(b) = n; if n = 0
we have the empty b-trace denoted by e.

- A barb b is a sequence b = bs. A where bs is a b-trace and A is a state. We
will represent the barb e - A by A, and so we will consider tha t states are
also Cinitial) barbs.

D e f i n i t i o n 7.

- Given t E T, a b-trace bs = A l a l t l . bsl and a set of t imed actions A C TAct
such tha t A < t, we define

(A, t) u bs = (A U (A , + t))aCt, + t) . bs,.
- If bs is a b- t race we define its durat ion as

Time(bs) = { 0 i f b s = ~
t + Time(bs ~) if bs = a t . bs'.

- If b = bs. A is a barb we define its t ime of undefinition

nd(b) -- Time(bs) + nd(A).

We will use barbs and b-traces to characterize the testing semantics; this will
be done by defining a pre-order between sets of barbs. In order to define this
pre-order, we need first the following ordering relations:

373

D e f i n i t i o n 8 .

- We define the relation << ~ between b-traces as the least relation tha t satis-
fies: 1. e << e, 2. If bs' << bs and A ~ C_ A then A' at . bs ~ << A n t . bs.

- We define the relation << between barbs as the least relation tha t satisfies:
1. If bs, bs' are b-traces such tha t bs' << bs, and A, A' are states such tha t

nd(A') _< nd(A) and TAct(A') C_ A, then bs' . A' << bs. A.
2. If A' is a state, b = A l a l t l - b' is a barb such tha t nd(A') _< tl and

TAct(A') C_ A1, and bs ~ << bs then bs'. A' << bs. (A la l t l �9 b~).

Intuitively, a b- t race bs is worse than another one bs', if the actions tha t appear
in both b-traces are the same, and the intermediate sets Ai tha t appear in bs are
smaller than those A~ appear ing in bs ~. For barbs, we must notice tha t whenever
a process is in an undefined state, which means t = nd(A) < oo, it can pass
no test after tha t t ime in the must sense. Barbs and b-traces are introduced to
characterize the testing semantics. As shown in [LdFN96], to characterize the
must test ing semantics it is enough to extend the preorder to sets of barbs:

D e f i n i t i o n 9. Let B1 and B2 be sets of barbs, we define:

B1 << B2 r Vb2 E B2 3bl E B1 : bl << b2.

S t a t e s , b - t r a c e s , b a r b s a n d p r o c e s s e s The states of a process P are com-
puted from its complete computat ions of internal actions. For any computat ion
we record the information about the actions offered before the execution of any
internal action. For divergent computat ions we also record the time of divergence.

D e f i n i t i o n 10. For a process P , the set .A(P) is the set of states A E S T
tha t are generated from the complete computat ions of internal actions of P as
described below.

- Given an infinite computat ion,
r t l r t2 l"t k

P = P1 ~ P=) " '" P~) P k + l " ' "

generates the s ta te A E A (P) given by

{a~t} if t = Y]~i=l ti < oo,
A = U (TA(Pi)l t i + t ') to o otherwise.

- Each finite blocked computat ion,

P = P1 rt, rf= rt.-1) P=) " ' P n - 1) Pn

generates the s ta te (TA(Pn) + t n) U U (TA(Pi)l t i + t i) e A (P) .
/=1

where, in bo th cases, we take ti = Ej=li--1 t j .

* Note that the symbol << is overloaded, it is used for both b-traces and barbs.

374

D e f i n i t i o n 11. Let P, P' be processes and bs a b-trace. We define the relation

p b~ p~ as follows:
- p ~: .p .

If P Tt) P1, and P1 bs' p , with bs' ~ e then P (XA(P)lt,t)ub,' p, . - ~.

If P at) P1, and P1 bs': p , then P (TA(P)]t)at.bs' p,.

Finally we define the set of b-traces of a process by

Btraz(P) = {bsl 3Q: P b, Q}.

States and b-traces are closely related as the following proposition shows

P r o p o s i t i o n 12.

- I f P Aat Q there exists a state A' E .A(P) such that A']t =A] t .
- I f A E .A(P) and at E A then there exists a process Q such that

(A]t)at
P :.Q.

D e f i n i t i o n 13. Let b = bs. A be a barb and P a process; we say tha t b is a

barb of P (b E Barb(P)) iff there exists a process P' such tha t P b s p , and
A E A(P') .

The preorder defined between sets of barbs can be used to characterize the
preorder induced by the test ing semantics. This equivalence has been proved in
detail in [LdFN96].

T h e o r e m 14. Let P, Q be processes then, P E Q .: :. Barb(P) << Barb(Q).

5 D e n o t a t i o n a l S e m a n t i c s

In this section we will give a denotational semantics to our language tha t will
be proved fully abst ract with respect to the test ing semantics in section 6. Next
we define the domain we will use to define the operators; first we need some
auxiliary definitions:

D e f i n i t i o n 15.

- A set of s tates .4 is t-compact iff

'CA 6 S T (Vt 6 T 3 A t 6 . 4 : At = A l t) ~ A 6 A.
This proper ty can be seen as a kind of temporal continuity on sets of states:
whenever every tempora l restriction of a s tate is in a set of states we also
have tha t the s tate itself is in the set.

- Let B be a set of barbs, we define the b-traces of B as

Btraz(B) = {bs I BA : bs. A e B}.

If bs E Btraz(B) we define the barbs of B after bs and the states reached
after bs, respectively by

Barb(B, bs) = {b I bs. b e B}, fit(B, bs) = {A] bs. A e B}.
As a part icular case, we write .A(B, bs) = .A(B) when bs = e.

Now we can define the semantic domain: the consistent sets of barbs Br

375

D e f i n i t i o n 16. A set of barbs B is consistent, and then we write B E Bcon, iff

- B # o .
- Prefix closed: if bs �9 Aat E Btraz(B) there exists some state A' such that

bs. A' E B and A'] t = A]t.
- Continuation closed: if bs. A �9 B and at �9 A then bs. (A]t)at �9 Btraz(B).
- t-compact: for each bs �9 Btraz(B) the set of states A(B, bs) is t-compact.

All the above conditions are quite natural: first we require that a consistent
set of barbs not to be empty; the prefix closed condition indicates that if a
computat ion has been executed then all intermediate states are reachable; next
in the continuation closed condition we establish that i f a action is in a state there
is a computat ion from that action; finally we require the temporal continuity
property for the states after each computation.

Before going on we have to notice tha t the relation << is not a partial order
over consistent sets of barbs; is just a pre-order, since it does not verify the anti-
symmetric property. So we have to deal instead with the equivalence induced by
the pre-order:

B l a B 2 z. > B l < < B 2 and B2 << B1

Then for every operator op we have to check that it is well defined, tha t is

- If B 1 , . . . , B i , . . . B~ are consistent sets of barbs, then op(B1, . . . , B i , . . . B,~)
is too.

- It is congruent with respect the relation ~ or, equivalently, we have to check
ol) (B 1 , . . . , Bi , . . . Bn) << op(B1, . . . , B~, . . . B~) whenever Bi << B~.

congruent In the following we give the semantic meaning of each operator of the
language. Due to lack of space, it is not possible to include the proofs of the well
definition of the operators, they can be found in [Lla96].

D i v e r g e n c e a n d S t o p
None of these operators can execute any visible action, the difference between
them is tha t while STOP will allow the execution of any action of another process
in the context of the external choice or parallel operators, DIV will not. This is
reflected in the denotational semantics in the following way:

Bcon[STOV]---- {0}, Bcon[DIY] = ({nO}}.

while STOP has a unique empty state, DII/has a unique undefined state undefined
at time O.

P r e f i x

Although we have a unique prefix operator, we have two cases depending on
the prefixing event. First we consider the case where the prefixing event is not
visible, the effect of this operator is just to delay the execution of the process
the indicated units of time; so we have

13con[rt;](B) --- {b+ t I b E B}.

376

When the prefixing action is visible, the computations of the resulting process
are the same of the ones of the old process but beginning with the prefixing
action, so we have

Beon[at;](B) = { O a t . bl b e B) u {
In t e rna l Choice
A process built with this operator behaves in a non-deterministic way, choosing
between its two components. Thus we take:

Beon[r'l](B1,B2) =/31 UB2

Ex te rna l Choice
The definition of this operator is quite more complex. Now it is the environment
who solve the choice by selecting the first action to be executed; then the process
behaves like one of the processes. So the computations of the composition are
again the computations of the processes in the choice operator. But now, the
initial states are obtained by the union of states of the processes, although one
has to take care of the time of undefinition. As a similar concept will be needed
in the parallel operator, we give next a more general definition.

Defini t ion 17. If AI y A2 are states and G C Act we define

A1 Ua A2 = (A1 n A2 I"1 G)lt
U((A1 \ C)10 U ((A2 \ V)IO
u { {at} co,

otherwise.
where t = min{nd(A1), nd(A2)}.

The set G stands for a synchronization alphabet: the actions in G will have to
be executed by the two arguments in the parallel composition. At the moment we
only have to consider the case when G = ~. Then, taking t = min{nd(A1), nd(A2) },
we have

{s?t} if t < oo,
A1 t-Jz A2 = (A11t) U (A21t) U O otherwise.

Now the semantic meaning of the external choice operator is as follows:

]3con[n](B1,B2) ={A1klz A2 [A1E B1 and A2 E B2}

U{(A1UA21t)at.b I Alat.bEB1 A2 EB2 and nd(A2)> t}

u{(A uA lt) t.b I Azat.bE B2 A1 E B1 and nd(Al) > t}.

P a r a l l e l
The definition of this operator is more complex. First the parallel composition
of two barbs yield to a set of barbs by interleaving, what is formally defined as
follows:

Defini t ion 18. Given bl and b2 barbs and G C Act, we define the set of barbs
bl Ha b2 as the least set satisfying:

377

b l = A 1 and b 2 = A 2 =~
b/ = A l a t " b~, b2 = A2, a r G,
n a (A 2) > t and b ' � 9)
bl = A1, b2 = A2at . b~, a (t G, 1.
nd(A1) > t and b 'E (A I - t) I[Gb~ I
bl = A l a l t l "b~, b~ = A2a2t2.b~,

t l_<t2 , a lOnG and

b' �9 IIG (A2 - t l)ae(t2 - t l) . b'~

bt = A l a l t l �9 b~, b2 = A2a2t2 �9 b~,

t l >_ t2, a2 r G and

b ~ A t ' �9 (- t2)a (- t2)-b lla b2

bl IIG bz = {A1 UG A2},

=~ (A1 Ua A2]t)at . b' 6- bl IIV b2,

=~ (At UG A2] t)a t . b' �9 bl lIG b2,

=~ (A111GA21tl)altl "b I �9 bl IIGb2,

:=~ (A1]t2LlGA2)a2t2"b I �9 bl IIGb2,

bl : A l a t . b~, b2 = A2a t .b~ ,

a E G and b' E b~ HG b~) ==~ (A1 IIG A2)a t . b' �9 bl JIG b2.

Now we can define the semantic meaning of the parallel operator by consider-
ing the set of all the possible combinations by interleaving of barbs of the two
processes.

D e f i n i t i o n 19. Let Bt and B2 be set of barbs and G C_ Act , we define

Bco.[IIG](B1,B2) = ~bl =~ bl �9 B1, b2 �9 B2 : b e bl IIG b2~.
k)

H i d i n g

When applying this operator the hidden action becomes the not visible one (r),
and then becomes urgent. To compute the b-traces of the obtained process we
need the following

D e f i n i t i o n 20. We say that an action a can be hidden in a b-trace bs, and we
will write ocul(bs, a), taking

- ocul(e, a), and then we will take e \ a = e.
- If ocul(bsl, a) and a r A1 then o c u l (A l a l t l , bsl) holds if one of the following

conditions is fulfilled:
�9 a ~ at. In this case we will take (Atal �9 bsl) \ a = A l a t t t . (bsl \ a).
�9 a = al y bSl "7/= e. In this case we will take (A ta l . bsl) \ a = (A1, tt) It

(bsl \ a) .

To make the reading easier, whenever we write bs \ a, we understand that we
also have ocul(bs, a).

Then the b-traces of P \ a are those bs\a where bs is a b-trace of P and ocul(bs, a).
The urgent condition is reflected by the second condition since in the definition
we require a r A1. Now the states of P \ a are obtained from the barbs of P
where the executed action is the hidden one. These states are computed step
by step, and so the final set of states is obtained as the limit of the (possible
infinite) sequence of steps.

378

D e f i n i t i o n 21. Let B be a consistent set of barbs and a E Act , for each k E 1~
we define the set of s tates Focul(B,a, k), as follows:

- Foco (B, a , o) =

- F o r k > 0 w e h a v e
�9 If A E B and a r A then A E Focul(B, a, k).
�9 If A a t E Btraz(B), a r A and A1 E Focul(Barb(B, Aat) , a , k - 1), then

A U (A1 + t) E Focul(B,a, k).

D e f i n i t i o n 22. If B is a consistent set of barbs and a E Ac t , we have bs . A E
Bcon [\ a] (B) iff one of the following conditions holds:

- nd(A) < c~ and for each k E ~N there exists some I _> k and a b-trace bs'
verifying A E Focul(Barb(B, bs'), a, l) and bs' \ a = bs.

- nd (A) = oo and for each t E T there exist 1 E lXl, a s tate At and a b-trace
bs' verifying At1 t = A l t , A t E Focul(Barb(B, bs ') ,a ,1) and bs' \ a = bs.

R e c u r s i o n

Once we have given the semantic definition of each operator, we have to deal
with recursion. We want to use the classical theory of fixed points to give a
meaning to recursive terms. Unfortunately we have a problem since we have not
been able to prove tha t the pre-orderw << is complete. So we have decided to find
an al ternative pre-order -~, tha t we have called definit ion pre-order:

D e f i n i t i o n 23.

- Let b and b ~ be barbs, we define b -~ b ~ iff one of the following conditions
holds:

�9 b = A A b' = A' A nd(A) < nd(A') A A]nd(A) = A']nd(A),
�9 b = A A b' = A i a l t l . b i A nd(A) _ ti A Alnd(A) -=- Ai lnd(A),
�9 b = A a l t l . b l A b ~ = A a t t l . b ~ A b l - ~ b ~ .

- Let B and B * be consistent sets of barbs, we write B -~ B ~ whenever the
following propert ies are fulfilled

�9 for all b ~ E B ~ there exists b E B such tha t b -~ b ~.
�9 for all bs �9 A E B there exists some state A' such tha t bs . A ~ E B ~ and

A -~A' .

First we prove tha t -~ is complete, so tha t we can compute least upper bound
of chains B1 -~ B2 -~ - " Bk -~ Bk+l -~ --"

D e f i n i t i o n 24. L e t / ~ = {Bil i E IN} be a chain, we define lub(B) by taking
b E lub(B) iff the following conditions hold:

- I f n d (b) < o o t h e n V k E ~ 3 l > k : b E B I .
- If nd(b) = oo then Vt E T 3 1 E l~l, bl e Bl : btl t = bk]t.

w We axe using pre-orders instead of partial orders, so we have to take account that
the identity is modulo the equivalence relation induced by the pre-order.

379

Now we have that lub(B) is, in fact, the least upper bound of the chain B.

P r o p o s i t i o n 25. / f B = {Bil i e ~ } is a chain then

- V i E ~ : B i -~ lub(B) .

- (ViEIN: Bi -~B') ~ lub(B)-~B'.

The proof of the previous proposition is quite easy having account tha t we are
using a finite alphabet and a discrete t ime domain. We also can prove that -~
has good properties with respect to <<:

P r o p o s i t i o n 26.

- f f B1 -~ B2 then B1 << B2.

W,l eiN} is a chainq then (WeiN: . , < < . ') I-bW)<<B'. If B = l

The first property establishes tha t -~ is stronger than <<, so any chain with
respect to -~ is also a chain with respect <<; the second one establishes that least
upper bounds with respect to -~ are also least upper bounds with respect to <<.

The new pre-order -~ also has good properties with respect to the defined
operators. First we have that all the operators are monotonic with respect to -~.

P r o p o s i t i o n 27. Let B1 , . . . Bn, B~ , . . . , Bin be consistent sets of barbs such that
B~ -~ B~, then we have:

t3con[Op](B1,...,B,) -~ Bco,[op](B'~,...,B'~) for each op e {et;,u,n, lla,\a }.

To be able to define a denotational semantics by means of fixed points we also
need to check that all the semantic operators are continuous:

P r o p o s i t i o n 28. Let B = { Bi I i E IN} be a chain of consistent set of barbs and
B a consistent set of barbs, then we have:

o19 e {et ; , \a} we have Bcon[Op](B) ~ lub({Bcon[Op](B,) l i e IN}). For

op e {o,n, Ila} we have t3r S) -~ lub({Br Bi) l i e IN}). For 1

and Bco,[Op](g, B) -< lub({Beon[Op](Si , B) l i e N }) .

Then we can define the denotational semantics in the classical way:

D e f i n i t i o n 29. Let E N V = {p : Vat ~ Beon} the set of environments, we define
the semantic meaning of open terms Beon['] : Term x ENV~-~ Beon as follows

f B~onlovl(t3~oo[Pd,,...,t3~o, IP,],)if P = o p (P 1 , . . - , P n) ,

Bco,[P]p ~ p(x) if P z E Yar,
fix(AB.B~o~[P]p[B/=]) if P l~Cx.P.

�82 B is a chain with respect the pre-order 4, i.e., B1 ~ B2 -~ .. . Bk ~ Bk+l " .

380

The fixed point of a function f can be reached by iterating the application of
the function to the bottom element of the semantic domain:

I = f~ fl(_l.),...,.fn(.l.), ...

As the bottom element of our domain is ~ {~0} } while is also the meaning of
the process DIV, fixed points can be obtained as the limit of the semantics of the
corresponding finite approximations:

Defini t ion 30. We define the finite approximations of a process P by

DIV if k = 0,
a p (P , k) = z i f P = z E V a r ,

op(ap(P1, k) , . . . , a p (P , , k)) if P = op(P1,. . . , P,) and k > O,
a p (P l , k - 1)[ap(P,k - 1)/x] i f P = RECx.P1 and k > O.

Now we have

P r o p o s i t i o n 31. For each process P we have

- Bcon[[ap(P, k)] -< Bcon[ap(P, k + 1)1.
- /~con[P] = lub{Bcon[ap(P, k)] I k e ~}.

6 Full A b s t r a c t i o n o f our D e n o t a t i o n a l S e m a n t i c s

Now we relate of denotational semantics developed in the previous section with
the testing semantics presented in section 4. We will show that the denotational
semantics is fully abstract with respect to the testing semantics:

8con IF | << 8~on [Q] ~ P ~ Q.
For, we will use the operational characterization in section 4.1:

8co.IF] << Br < .', Barb(P) << Barb(Q).
First we prove

P r o p o s i t i o n 32. Let Bz and 132 be consistent sets of barbs and P and Q be
processes. We have

- for each 0/9 E {STOP, DIV, e t ; , r ~ [[G, \a}, i fB i << Barb(P/) then

BconlOP](B1,..., Bn) << Barb(op(P1,..., pn)).
- for each op S {STOP, DIY, et;,r~o, Ila,\a}, ifBarb(Pi) << Bi then

Barb(op (P1, Pn)) << Beo, IOp](B1,..., Bn).

The main difficulty in the proof of the previous proposition has been that the
operational states of a process can be obtained by an infinite computation, so
reasoning by induction on the length on that computation cannot be applied.

Then we have the fully abstraction theorem for finite processes

T h e o r e m 33. I f P is a finite process we have Barb(P) << Boon [P] and Bcon [P] <<
Barb(P).

381

Now we have to proof the abstraction theorem for general processes (also those
including recursion). First we have the following

L e m m a 34. For each process P we have:

- I f b E Barb(P) and t < nd(b) there exist k E ~ and a barb b' such that
bk E Barb(ap(P, k)) and bk]t = bit.

- I f b E Barb(P), nd(b) < c~ there exists k E IN such that Yk' > k : b E
Barb(ap(P, k')).

- If b E Barb(ap(P, k)) and nd(b) > t there exists b' e Barb(P) such that

b i t = b '] t .
- I f b is a barb verifying nd(b) < oo and Vk e ~ 31 > k : b e Barb(ap(P, k'))

then b E Barb(P).

Proof. It is enough to notice that any finite computation of a process can be
simulated by an approximation ap(P, k) for a large enough k; and, on the other
hand, any computation of any finite approximation ap(P, k) can be simulated by
the process P itself. []

P r o p o s i t i o n 35. For each process P then Boon[P] << Barb(P) and Barb(P) <<
 coniP].
Proof. It is quite easy since Bcon[P] = lub{ap(P, k) I k E]N} and the the set of
states of a process is t-compact. []

Finally, by consequence of the previous proposition we have the theorem that
shows the abstraction of the denotational semantics.

T h e o r e m 36. Given P and Q processes, then P ~ Q -'~ ~ Boon[P] <<

B~on[Q].

7 Conc lus ions
In this paper we have presented a denotational semantics for a timed process
algebra. This denotational semantics is fully abstract with respect to a must
testing semantics defined and characterized in a previous paper [LdFN96] by the
same authors. Here we have a first consequence: since any denotational semantics
is (by definition) compositional, the must testing semantics is a congruence.

The results in this paper are part of the Ph.D. thesis of the first author, where
the must testing semantics for timed process algebras have been deeply studied.
In that work one can also find an axiomatic semantics that will be presented
in a companion paper. This semantics is proved to be sound and complete with
respect to the denotational semantics presented in this paper, therefore it is
sound and complete with respect to the must testing semantics.

A c k n o w l e d g m e n t s

I would like to mention in this section all the people that are working around the
world to make it better, specially those that have recently been kined in Zaire
and Rwanda. I would like to remark that almost all first world countries have not
carried out their pledges in Rio de Janeiro to refnnd the 0.7% of their respective
gross national product for the real development of third world countries.

382

References

[BB93]

[BK84]

[dFLL+95]

[dNH84]

[Gro93]

[HenS8]
[Hoa85]
[HR95]

[LdFN96]

[Lla96]

[MU89]
INS91]

[OM911

[QdFA93]

[rm86]

[Sch95]

[Yi91]

J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal
Aspects of Computing, 3:142-188, 1993.
J. A. Bergstra and J. W. Klop. Process algebra for syncronous communi-
cation. Information and Control, 60:109-137, 1984.
D. de Frutos, G. Leduc, L. L~onard, L. F. Llana-D~z, C. Miguel, J. Que-

mada, and G. Rabay. Time Extended LOTOS. In J. Quemada, editor,
Working Draft on Enhancements to LOTOS. ISO/IEC JTC1/SC21/WG1,
November 1995.
R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.
J. F. Groote. Transition system specifications with negative premises. The-
oretical Computer Science, 118:263-299, 1993.
M. I-Iennessy. Algebraic Theory of Processes. MIT Press, 1988.
C. A. R. Hoare. Communicating SequentiaI Processes. Prentice Hall, 1985.
M. Hennessy and T. Regan. A process algebra for timed systems. Informa-
tion and Computation, 117:221-239, 1995.
L. F. Llana-Diaz, D. de Frutos, and M. Nafiez. Testing semantics for urgent
process algebras. In Third AMAST Workshop in Real Time Programming,
March 1996. To appear in World Sientifie: AMAST Series in Computing.
L. F. Llana-Diaz. Jugando con el Tiempo. PhD thesis, Uaiversidad Com-
plutense de Madrid, 1996.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.
X. Nicollin and J. Sifakis. An overview and synthesis on timed process
algebras. In Computer Aided Design, pages 376-398, 1991. LNCS 575.
Y. Ortega-Malign. En Busea del Tiempo Perdido. PhD thesis, Departa-
mento de Informatica y AutomAtica. Universidad Complntense de Madrid,
1991.
J. Quemada, D. de Frutos, and A. Azcorra. Tic: A timed calculus. Formal
Aspects of Computing, 5:224-252, 1993.
G. M. Reed and A. W. Roscoe. A timed model for communicating sequential
processes. In ICALP '86, pages 314-323. Springer-Verlag, 1986. LNCS 226.
S. Schneider. An operational semantics for timed CSP. Information and
Computation, 116(2):193-213, 1995.
W. Yi. A Calculus of Real Time Systems. Phi) thesis, Department of
Computer Science. Chaimers University of Technology, 1991.

