
Integrating Temporal Logics and Model

Checking Algorithms?

Teodor Rus and Eric Van Wyk

Department of Computer Science
The University of Iowa
Iowa City, Iowa USA

Abstract. Temporal logic and model checking algorithms are often used
for checking system properties in various environments. The diversity of
systems and environments implies a diversity of logics and algorithms.
But there are no tools to aid the logician or practitioner in the experi-
mentation with different varieties of temporal logics and model checkers.
Such tools could give users the ability to modify and extend a tempo-
ral logic and model checker as their problem domain changes. We have
developed a set of tools that provide these capabilities by placing the
model checking problem in an algebraic framework. These tools provide
a temporal logic test bed that allows for quick prototyping and easy ex-
tension to logics and model checkers. Here we discuss the usage of these
tools to generate model checker algorithms as algebraic mappings (i.e.,
embeddings of one algebra into another algebra by derived operations)
with the temporal logic as the source algebra and the sets of nodes of a
model as the target algebra. We demonstrate these tools by extending
CTL and its model checker by introducing formulas that quantify the
paths over which the satisfaction of the temporal operators is defined.
This is made possible by permitting propositions to label the edges as
well as the nodes in the model. We use this logic and its model checker
to analyze program process graphs during the parallelization phase of an
algebraic compiler.

1 Introduction

There is currently much research in the area of temporal logic and model check-
ing. It seems only reasonable that logicians and practitioners should have tools
that allow them to experiment with various temporal logic notations and se-
mantics. However, there are no tools that provide this capability. We propose
a methodology which permits users to easily implement and modify temporal
logics and model checking algorithms thus allowing them to change and extend
the notation and semantics of their own temporal logics. This methodology is
conducive to generating tools that foster an interactive experimentation with
temporal logic. We demonstrate this by extending CTL and its model checker

? This work was partially supported by the grant NGT-51321 from the NASA Jet
Propulsion Laboratory.

by introducing formulas that express the quantification of paths for the tempo-
ral operators based on propositions labeling the edges in the model. This model
checker is used by a parallelizing algebraic compiler to analyze program process
graphs of the parallelized program.

Model checking is a formal technique used to verify that a system, be it a
concurrent or real-time program or representation of a physical system, satisfies
a given specification. The system is represented by a model that describes how
the system’s state changes over time. This model, (usually a Kripke structure
[Kri63]), is a directed graph whose nodes are labeled with logical propositions
describing various properties satisfied by the nodes of the system and whose
edges describe the possible transitions between nodes. The specification of a
property to be verified against a given model is written as a temporal logic
formula over the propositions labeling the nodes of the model. Model checking
is the problem of determining which nodes in a model M satisfy a temporal
logic formula f . In this paper we examine the Computational Tree Logic, CTL,
a branching time temporal logic [CES86]. We also extend this logic to CTLe, a
logic whose formulas are checked against models with propositions labeling both
the edges and the nodes in the model.

The traditional implementation of a model checking algorithm is not easily
extended to other temporal logics because the code needs to be re-designed and
re-written. The model checker algorithm implemented as an algebraic embedding
of the source algebra of CTL formulas into the target algebra of sets of nodes
in the model is completely defined by the finite specifications of these algebras.
Therefore, we are able to easily implement and extend temporal logics and model
checkers simply by changing the specifications of the source and target algebras
and allowing the tools to generate the model checker implementation from these
specifications. To facilitate the understanding of how this is performed we first
introduce our usage of the algebraic methodology for problem solving.

In the algebraic methodology, a problem is formulated as an expression in a
problem algebra and its solution may be obtained by mapping this expression into
the solution in a solution algebra. In this approach the problem algebra and the
solution algebra must be similar, i.e., for each operation of arity n in the problem
algebra, there is an operation of arity n in the solution algebra. Then the process
of solving a problem can be viewed as simply calculating the homomorphic image
of the problem given in the problem or source algebra into the solution or target
algebra. For example, a problem stated as finding the value of the expression
x + y ∗ z in the algebra of arithmetic expressions over variables, where x=6,
y=3, and z=9, can be solved by mapping this expression into the number in the
algebra of integers with operations addition and multiplication that is precisely
the value of this expression. However, in most situations the problem algebra and
the solution algebras are not similar. In this case, in order for this process to
work one needs to derive the signature of the problem algebra into the solution
algebra[Coh81]. For each operation in the signature of the problem algebra, the
derivation process consists of generating a derived operation (called a macro-
operation in programming jargon) in the solution algebra that evaluates the

portion of the problem constructed by the source operation. The algebra defined
by these derived operations is a subalgebra of the solution algebra which is
similar to the problem algebra as required by this approach. A homomorphism
mapping the source algebra into the subalgebra of the target algebra defined
by the derived operations is an embedding of the source algebra into the target
algebra. In the above example of the evaluation of the expression x + y ∗ z in
the algebra of natural numbers, if this algebra has only the successor operation,
successor(n) = n+1, and the test for equality, the derivation process requires
us to develop derived operations that express the addition and multiplication of
natural numbers in terms of successor and test for equality operations only.

Assuming that the signature of the source algebra has been derived into the
target algebra, the solution of a problem formulated as a term of the source alge-
bra is computed by identifying the source algebra operations which were used to
construct the problem expression and performing the appropriate derived opera-
tions in the target algebra which will construct the solution expression. A derived
operation is chosen such that given target images of the source operation argu-
ments it constructs the target image of the result of the source operation applied
on those source arguments. The mapping of an expression from the source to
the target algebra is then computed by identifying the free generators and oper-
ations used to create the source expression and building the target expression by
employing the derived target operations associated with each free generator and
operation used in the source expression. Note, the essential property of an algo-
rithm developed on this principle is that it depends only on the (free) generators
and the signature of the source algebra.

For example, the expression x + y ∗ z in the algebra of expressions, E, is
constructed from three free generators, or nullary operations: x: ∅ → E, y: ∅ →
E, z: ∅ → E, by two binary operations: ∗:E × E → E, and +:E × E → E.
Thus, to create the source to target algebra mapping, we must construct derived
target operations that implement the source operations in the target algebra. The
assignment x=6, y=3, z=9 tells us to create constant derived target operations
that generate the values 6, 3, and 9 for the three free-generators “x”, “y”, and
“z”. The source operations +:E × E → E and ∗:E × E → E are implemented
in the target algebra by derived operations performing integer addition and
multiplication. Thus, the embedding morphism identifies the generators x, y,
and z, in the source expression and computes their corresponding target images
to be 6, 3, and 9. Then the embedding morphism identifies the source operation
∗ that creates the expression y ∗ z. The target derived operation associated with
∗ is computed, taking as operands the images of y and z (i.e., 3 and 9) and
generating 27. Finally, the last source operation used to construct x + y ∗ z is
+ in the context x + (y ∗ z). The associated target derived operation is integer
addition and is computed on the image of the arguments, i.e., 6 + 27, giving
33. Thus, by associating each free generator and operation in the source algebra
with an appropriate derived operation in the target algebra, we can construct
the problem solving homomorphism.

We use the same methodology to implement CTL and CTLe model checkers.

We specify the logics and models as algebras and construct the set of derived
operations that will implement the model checker as an embedding of the al-
gebra of formulas into the algebra of subsets of nodes of the model. As source
algebra operations that were used to create the subformulas of a CTL formula
are discovered the associated derived operations are used to compute the sets
of nodes in the model that satisfy these subformulas. Consequently, in the same
manner in which the expression x+y∗z was computed by using target operations
to compute the solution to the component subexpressions, the set of nodes that
satisfy a temporal logic formula is computed by the derived target operations
from the sets of nodes that satisfy its subformulas.

The algebraic tools in this setting are implementations of a generic algorithm
that computes the homomorphic image of a term of a source algebra in a target
algebra when the generators and operations of the source algebra have been de-
rived in the target algebra. This methodology has numerous advantages. First,
the model checker is generated from its specifications, thus there is no tradi-
tional programming which makes the process easier, faster, and less error-prone.
Second, the correctness of the algorithm thus generated is mathematically estab-
lished. Third, this algorithm adapts to a new source logic by simply changing the
signature of the source algebra and its derivation in the target algebra. This is a
consequence of the fact that the algorithm computing a homomorphism depends
only upon the signatures of the algebras involved. Hence, for each new specifi-
cation we automatically get a new model checker. Moreover, since computing a
homomorphism is a naturally parallel algorithm, a parallel implementation of
the model checking algorithm can be generated [Kna94].

The remainder of this paper describes how this methodology is applied to
temporal logic model checking. Section 2 gives the algebraic specification of CTL.
Section 3 presents the algebraic temporal logic and model checker integration
techniques using CTL as an example. Section 4 shows how, in this algebraic
framework, CTL and its model checker can be extended to CTLe. Section 5
shows how CTLe formulas can provide insight into the structure of parallel
programs. Section 6 gives some comments and conclusions.

2 Algebraic specification of CTL

We have developed a set of tools that allow the easy specification and implemen-
tation of temporal logics and model checkers. These tools implement a model
checker by specifying the temporal logic formulas and the sets of nodes of the
model as algebras, and the model checker as an embedding homomorphism that
maps a temporal logic formula into the set of nodes in the model on which the
formula is satisfied. We primarily use this methodology to implement algebraic
compilers where source and target languages are algebras, and the compiler is
an embedding morphism of the source language algebra into the target language
algebra [Rus91]. In this paper, we describe how this methodology can also be
applied to temporal logic and model checking.

Formally, a model [CES86] is a directed graph M = <N,E, P : AP → 2N>

with a finite set of nodes N , a finite set of directed edges E, and a proposition
labeling function P which labels each node with logical propositions describing
that node. This function maps atomic propositions from the set AP to the
set of nodes in N on which those propositions are true. We use the notation
succ(n), n ∈ N to denote the set of successors of n in N . A path n0, n1, ..., nm, ...

is a sequence of nodes such that ∀i ≥ 0, ni ∈ N ∧ ni+1 ∈ succ(ni). The example

m0
e

?
≺®

­
©
ª1

`1, for
©©©©©¼

HHHHHj

≺, for ≺, for

®
­

©
ª2

`2, unit
HHHHHj≺

®
­

©
ª3`3, unit

©©©©©¼ ≺

-f, Va, D`1,0

m4 x

Fig. 1. Model Example

of a model in Fig.1 represents a program abstraction derived from a sequential
source program by an algebraic parallelizing compiler. The nodes of this model
represent computation units performed during program execution. The set of
atomic propositions is AP = {e, x, unit, for, `1, `2, `3}. The meaning of these
propositions is not important for this example; they are however explained in
Section 5. On this model we have P (e) = {0}, P (x) = {4}, P (unit) = {2, 3},
P (for) = {1}, P (`1) = {1}, P (`2) = {2}, P (`3) = {3}. The successor functions
succ is defined by succ(0) = {1}, succ(1) = {2, 3}, succ(2) = {3, 4} succ(3) =
{4}, succ(4) = {}.

The CTL formulas used to express properties to be verified against the model
are propositional logic formulas extended with temporal operators AX, EX, AU,

and EU and defined by the following rules:

1. true, false and any atomic proposition ap ∈ AP are CTL formulas.
2. if f1 and f2 are CTL formulas, so are ¬f1, f1 ∨ f2, and f1 ∧ f2.
3. if f1 and f2 are CTL formulas, so are AXf1, EXf1, A[f1Uf2], and E[f1Uf2].

The formula AXf1 (respectively EXf1) is satisfied on a node if all (one or more)
successors satisfy f1. The formula A[f1Uf2] (respectively E[f1Uf2]) is satisfied
on a node n if on all (one or more) paths beginning on this node there is a node
n′ on which f2 holds and f1 holds on all nodes of the path between n and n′.

The formal rules that determine if a node n in a modelM satisfies a formula
f , denoted M, n |= f or n |= f if M is assumed, are given below:

n |= ap iff n ∈ P (ap)
n |= ¬f iff not n |= f

n |= f1 ∧ f2 iff n |= f1 and n |= f2

n |= f1 ∨ f2 iff n |= f1 or n |= f2

n |= AXf1 iff ∀m ∈ N [(n,m) ∈ E ⇒ m |= f1]
n |= EXf1 iff ∃m ∈ N [(n,m) ∈ E ∧m |= f1]
n |= A[f1 U f2] iff ∀ paths (n0, n1, n2, . . .) [n = n0 and

∃i[i ≥ 0 ∧ ni |= f2 ∧ ∀j[0 ≤ j < i⇒ nj |= f1]]]
n |= E[f1 U f2] iff ∃ a path (n0, n1, n2, . . .) [n = n0 and

∃i[i ≥ 0 ∧ ni |= f2 ∧ ∀j[0 ≤ j < i⇒ nj |= f1]]]

For example, in Fig. 1, since 1 ∈ P (`1), i.e., node 1 is labeled with the proposition
`1, it satisfies the formula `1, that is, 1 |= `1; since succ(1) = {2, 3} and {2, 3} ⊆
P (unit), i.e., both successors of node 1 satisfy the formula unit, node 1 satisfies
the formula AX unit, that is 1 |= AX unit.

To use the algebraic methodology for temporal logic model checking we must
give an algebraic specification of the CTL formulas and the sets of nodes of the
model. This requires the specification of the operators and the carrier set for the
CTL algebra ACTLM

and the sets algebra ASetsM
. For a given model M, the

carrier set of ACTLM
, denoted by FM, is the set of CTL formulas generated from

the atomic propositions which appear on the nodes ofM using the temporal logic
operators. Thus, the free generators, or nullary operations, for ACTLM

are true,
false, ap1, ap2,. . ., apm which generate the CTL formulas denoted by their
operator names. The other operations for creating CTL formulas from given
CTL formulas are¬, ∧, ∨, AX, EX, AU , and EU . For example, the generator
ap3 generates the CTL formula ap3 and from CTL formulas ap1∧ap5 and AXap4

the operator AU generates the formula A[ap1 ∧ ap5UAXap4]. Thus, the algebra
ACTLM

of CTL formulas is the following term algebra:

ACTLM
= <FM, true, false, api,¬,∧,∨, AX,EX,AU,EU>.

Similarly, we specify the language of subsets of the sets of nodes of a model
M = <N,E, P :AP → 2N> as a universal algebra ASetsM

with the carrier set
SM = 2N , the nullary operators are ∅, N , ni ∈ N , succ(ni), P (api), and the
binary operators are ∩, ∪, and \ (set difference). Thus,

ASetsM
= <SM, ∅, N, ni, succ(ni), P (api),∩,∪, \>.

A homomorphic mapping between two algebras requires that they be similar.
Since the two algebras ACTLM

and ASetsM
are not similar, for each operation

in the ACTLM
we construct a derived operation in ASetsM

of the same arity,
thus defining in ASetsM

a subalgebra D(ACTLM
) that is similar to ACTLM

.
Then we can implement the model checker as a homomorphism HM:ACTLM

→
D(ACTLM

) which is an embedding of ACTLM
into ASetsM

[Rus91].
¿From the programming viewpoint the derived operations required by the al-

gebraic implementation of a model checker are parameterized expressions (called
macro-operations in programming jargon) in the target algebra ASetsM

that im-
plement the operations of the source algebra in the target algebra [Rus91]. For

example, the source operation ∧ can be implemented by the target operation ∩
(set intersection). Given two CTL formulas f1 and f2 and the set of nodes on
which they hold, @1 and @2, the set of nodes on which the formula f1∧f2 holds
is the set @1 ∩@2. Here, the source operation is implemented by a single target
operation. However, the temporal CTL operators can not be implemented by a
single target operation of the algebra ASetsM

. For each temporal operator we
need to create a special expression customized to implement the meaning of that
temporal operator in the target in terms of the meaning of its operands, accord-
ing to the satisfaction relations. Following the algebraic conventions [Coh81] we
call these expressions derived operations. For example, if we denote by @1 the
set of nodes on which a formula f holds then the formula AX f will hold on
the set {n ∈ N |succ(n) ⊆ @1}. That is, the unary temporal operator AX is
implemented by the set-expression {n ∈ N |succ(n) ⊆ @1}. Since this expression
depends only on the variable @1 it defines a unary derived operation in ASetsM

that implements the operation AX. In the next section, we discuss the specifi-
cation of the target derived operations as a programming language over sets and
show how the specification is used to generate the model checker implementation.

3 Model checker generation from specifications

Here we discuss the general embedding algorithm and show the specifications
of the source and target algebras that are used by the tools to automatically
generate this algorithm customized to the specified algebras. For that we consider
W1 = <T1, Σ

1
0 , Σ

1
1 , . . . , Σ

1
n1

> to be the source term algebra (in our case W1 is
ACTLM

) to be embedded by a homomorphism into the target term algebra
W2 = <T2, Σ

2
0 , Σ

2
1 , . . . , Σ

2
n2

> (in our case W2 is ASetsM
) by derived operations.

Σi
j is the set of operations of arity j in term algebra Wi.
To construct the general algorithm for the homomorphic embedding of W1

into W2 we use the following result [HR76]: for each operation r ∈ Σ of a term

algebra W = <T , Σ> there is a rewriting rule αr in the production set of a

context-free grammar GW such that T is the same as the language generated by

GW . According to this result, each source operation r ∈ Σ1
0∪Σ

1
1∪. . .∪Σ

1
n1

can be
seen as an equation of the form lhs(r) ::= rhs(r). The generators are specified
by the nullary rules r ∈ Σ1

0 , hence in this case rhs(r) is a lexical term and lhs(r)
is the name of a syntax category such as variable or constant. For example, in a
programming language algebra, true and false are boolean constants, C, thus
their specification rules should be C ::= true and C ::= false. The other kinds
of constructs are specified by rules r ∈ Σ1

1 ∪ . . .∪Σ1
n1

where rhs(r) is interpreted
as a pattern specifying constructs in terms of their construct components while
lhs(r) is a syntax category, such as factor, term, expression, statement, etc. For
example, assignment statements, Assign, may be specified by rules of the form
Assign ::= V ar := Expr. In addition, assume that for each r ∈ Σ1

0 ∪ Σ1
1 ∪

. . . ∪ Σ1
n1
, d(r) is a parameterized expression in W2 where the parameters are

the target algebra expressions corresponding to the construct components of the
source algebra expression specified by rule r. These parameters are typically

labeled @1,@2, . . . ,@n for the n components in rule r. For example, if the target
algebra is an assembly language, d(Assign ::= V ar := Expr) may be @2; STO
R @1, where @2 is the assembly language target code for Expr, STO R @1 is
the assembly language statement which stores the result R of the expression in
the target variable @1. The general algorithm that constructs the homomorphic
embedding of W1 into W2 is:

1. Let w be a term of the algebra W1, to be embedded in the algebra W2.
2. For each r ∈ Σ1

0 ∪ Σ1
1 ∪ . . . ∪ Σ1

n1
search for an occurrence of rhs(r) in w,

i.e, w = w1 rhs(r) w2 and expand d(r) into the term target(r) of the target
algebra W2 using as parameters the target expressions associated with the
language symbols in rhs(r) in w; if r ∈ Σ1

0 , d(r) has no parameters.
3. Substitute the tuple (lhs(r), target(r)) for the occurrence of rhs(r) in w

discovered in (2), i.e., map w into w1 (lhs(r), target(r)) w2 and make sure
that only the component lhs(r) of the tuple (lhs(r), target(r)) is used in (2)
when searching in w for occurrences of rhs(r′), r′ ∈ Σ1

0 ∪Σ1
1 ∪ . . . ∪Σ1

n1
.

4. Continue applying rules (2) and (3) until no occurrence of rhs(r) is found in
w for any r ∈ Σ1

0 ∪ Σ1
1 ∪ . . . ∪ Σ1

n1
. If w reduces to w′ = (lhs(r), target(r))

then it is a syntactically correct term of syntax category lhs(r) in W1 and
its image in W2 is target(r); otherwise w was, in fact, not a term in W1.

The term algebra W1 can be viewed as a language and the rules r as the BNF
specification rules of this language. Hence, this embedding algorithm can be
implemented by a source language recognizer (a bottom-up parser) which is
compositional (i.e., recognizes source language constructs in terms of their con-
struct components) and a target code generator that is compositional (i.e., gener-
ates target language constructs in terms of their target construct components).
Problems raised by such an implementation and their solutions are discussed
in [Rus91]. This is precisely the algorithm performed by an algebraic compiler
[Rus91, KR93]. Here we will assume that this algorithm is given and will focus
on its customization to the languages ACTLM

and ASetsM
.

In customizing the embedding morphism algorithm to the model checker ap-
plication, we first derive grammar rules from the signatures of ACTLM

algebra
operations. The signature ∧:FM ×FM → FM of the ACTLM

operation ∧ gener-
ates the grammar rule FM ::= FM ∧ FM . Similarly, api: ∅ → FM generates the
BNF rule FM ::= api and AU :FM × FM → FM yields FM ::= A [FM U FM].
The BNF rules for the other algebraic operations are generated in the same man-
ner. Here, we have specified one syntax category, FM , the set of formulas over the
propositions in the modelM. These rules create an ambiguous grammar which
must be altered to remove the ambiguities. We can disambiguate this grammar
by partitioning the carrier set FM into 4 levels FM1

, FM2
, FM3

, and FM4
. This

method is commonly used in compiler construction. By partitioning the carrier
in this manner, the ambiguities are removed and the precedence of operations is
ensured. The complete grammar of the CTL language is discussed below.

¿From the grammar specification of the source algebra, the tools generate
a pattern matching parser [Kna94] which parses a CTL formula in a bottom-
up fashion to discover which source algebra operations were used to create the

CTL formula. This corresponds to the searching phase of step (2) in the general
algorithm above. For each source operation discovered, the parser initiates the
macro-processor to expand the associated derived target operation to build the
image of the source construct in the target algebra. This corresponds to the
mapping of d(r) into target(r) in step (2) of the general algorithm above. This
parser is significantly different from most parsers in that it scans the source
text in any order to locate patterns that match the right hand sides of the
specifying grammar rules. Upon finding a match, in the proper context, the
parser replaces the right hand side pattern with the symbol on the left hand
side, expands the appropriate derived target operation, and repeats the process.
Since the right hand sides of more than one rule may match overlapping portions
of the source text, each rule is associated with a set of context and noncontext
pairs to ensure that the proper rule is used when the right hand side pattern
is found [RH94]. Moreover, various relationships may exists among the right-
hand sides of specification rule. For example, there may be rules r1, r2 such that
rhs(r1) = w1 rhs(r2) w2. Obviously in this case not all occurrences of rhs(r2) in a
string w specify constructs of syntax category lhs(r2). Contexts and noncontexts
[Rus88] have been introduced to handle such situations. A context pair (x, y)
associated with a specification rule r describes the context in which the rhs(r)
specifies the lhs(r). Here x is the string of symbols which may appear to the
left of the matched pattern and y is the string of symbols which may appear to
the right of the pattern. Hence, if the context of the pattern in the source text
matches one of the context pairs associated with the rule, then that rule should
be used for the reduction. A noncontext pair takes the same form and describes
the context in which rhs(r) does not specify lhs(r), hence the rule cannot be
used to make the reduction. For example, if the source text has been reduced to
FM4

∨FM3
∧FM2

, should the rule FM3
::= FM3

∧FM2
be matched, or should the

rule FM4
::= FM4

∨ FM3
be matched? The pair (∨, $) (where $ represents the

beginning or end of the source text, depending on the context) is a context pair
for the rule FM3

::= FM3
∧FM2

indicating that this rule should be used. Whereas
the pair ($,∧) is a noncontext pair for the rule FM4

::= FM4
∨ FM3

, indicating
that this rule should not be used. It is the use of this concept of a viable context
as opposed to the traditional viable prefix that guarantees the correctness of this
pattern matching parser and allows its parallelization.

The derived operations associated with the source specification rules describe
the target image of the computation contents of the source constructs specified
by these rules. Hence, the terms in the target algebra specified by derived opera-
tions are called target images of the source constructs. Target images implement
source computations in the target algebra but do not actually perform these
computations. However, we are interested in the actual set of nodes in the model
which satisfy a formula, not a term which tells how to calculate that set of nodes.
Thus, in our case the derived operations need to be evaluated by the compiler
and therefore are written in a pseudo-programming language for sets. This lan-
guage allow us to specify the sequence of set operations used to build the set
of nodes on which a CTL formula is satisfied when we know the set of nodes

on which the components of this formula are satisfied. Thus, when the pattern
matching parser finds rhs(r) in the source text and replaces it with lhs(r), it
initiates the execution of the derived operation, d(r). The expected operations
of ∩, ∪, and \ as well as some conditional set description notations are included.
We also allow set assignment statements and while-loop constructs.

Source specification rules are expressed by BNF notation, i.e., are constructs
of the form r : A0 ::= t0A1t1 . . . tn−1Antn where ti, 0 ≤ i ≤ n, are fixed (ter-
minals) and Ai, 0 ≤ i ≤ n, are variables (non-terminals). Variables represent
components of the constructs (CTL formulas) specified by the rules r and are
identified by their indices i = 0, 1, . . . , n. The target images of these components
are denoted by @i, i = 0, 1, . . . , n, respectively, and are used as parameters in
the construction of the derived operations d(r) associated with the rules r. This
convention is used here as follows: (1) the parameter @0, which often appears
on the left hand side of an assignment statement, represents the target image
of the construct specified by r and thus is associated with the lhs(r) for the
derived operation d(r); (2) parameters @1,@2, and @3 are used as the names for
the target images of the expressions associated with the first, second, and third
parameters on the right hand side of the grammar rule. These target images
are generated by the derived operations associated with the specification rules
that recognize the components of the construct specified by r. Below are BNF
grammar rules and their associated derived target operations.

The source operation true whose signature is true: ∅ → FM1
provides the

BNF rule FM1
::= true and the derived operation @0 = N . Since the CTL

formula true holds on all nodes in the model, the target expression associated
with “FM1

” is N, the set of all nodes in the model. Similarly, since the formula
false is not satisfied on any node in the model, the operation false provides
the BNF rule FM1

::= false and the derived operation @0 = ∅. The set of nodes
associated with the atomic proposition ap is P (ap), the set of nodes on which
ap holds. That is, the operation ap provides the BNF rule FM1

::= ap and the
derived operation @0 = P (ap).

For the CTL operation ¬, with signature ¬:FM1
→ FM2

, we have the BNF
rule FM2

::= ¬FM1
and the derived operation @0 = N \ @1. For the operation ∧,

with signature ∧:FM3
× FM2

→ FM3
we have the BNF rule FM3

::= FM3
∧ FM2

and the derived operation @0 = @1 ∩ @2. That is, the set of nodes on which
f1 ∧ f2 is satisfied is the intersection of the set of nodes on which f1 is satisfied
and the set of nodes on which f2 is satisfied. In a similar manner, the CTL

operation of ∨ gives the BNF rule FM4
::= FM4

∨FM3
and the derived operation

@0 = @1 ∪@2.

For the temporal operator AX we have the BNF rule FM2
::= AX FM1

and
the derived operation @0 = {n ∈ N |succ(n) ⊆ @1}. This derived operation
conditionally uses the target operation ∪ over singleton sets {n} to generate the
set of all nodes, n, such that all successors of n are in the set @1. Similarly,
for EX, we have the BNF rule FM2

::= EX FM1
and the derived operation

@0 = {n ∈ N |succ(n) ∩ @1 6= ∅}. Here, the derived operation finds all nodes r

which have at least one successor in @1.

The derived target operations for the temporal operators AU and EU re-
quire a more complicated use of the ∪ target operation. Here we see the use
of assignment statements and loops to control the application of ∪. For AU we
have, on the left below, the derived operation which implements the least fixed
point solution to the equation @0 = lfp(@2 ∪ (@1 ∩ {n ∈ N |succ(n) ⊆ @0})).
Similarly, for EU we have, on the right below, the derived operation which im-
plements the least fixed point solution to the equation @0 = lfp(@2∪ (@1∩{n ∈
N |succ(n) ∩@0 6= ∅})) [CGL94].

r: FM1
::= A [FM4

U FM4
] r: FM1

::= E [FM4
U FM4

]
d(r): let Z, Z ′ be sets; d(r): let Z, Z ′ be sets;

Z = ∅ ; Z ′ = @2; Z = ∅ ; Z ′ = @2 ;
while (Z 6= Z ′) do while (Z 6= Z ′) do

Z = Z ′ ; Z = Z ′ ;
Z ′ = Z ′ ∪ {n ∈ N |n ∈ @1∧ Z ′ = Z ′ ∪ {n ∈ N |n ∈ @1∧

succ(n) ⊆ Z} ; succ(n) ∩ Z 6= ∅} ;
@0 = Z ; @0 = Z ;

Due to the splitting of the carrier set FM into partitions FM1
, FM2

, FM3
, and

FM4
, we have 4 additional rules, FM2

::= FM1
, FM3

::= FM2
, FM4

::= FM3
,

FM1
::= (FM4

), with the same derived operation @0 = @1. These rules and
derived operations are the complete set of specifications required by the tools to
generated the model checking algorithm.

4 Extending the temporal logic and model checker

As stated earlier, the algebraic tools provide a framework which allows users
of temporal logic to modify and experiment with temporal logics and model
checkers in various forms. We demonstrate how easily this can be accomplished
when the temporal logic and model checker are specified and implemented within
the framework of this algebraic methodology by extending CTL to CTLe, a logic
written over propositions labeling the edges as well as the nodes of a model.

To label the edges of a model with propositions, we extend the definition
of a model to M = <N,E, Pn : APn → 2N , Pe : APe → 2E>, where N and
E are as before, Pn maps atomic node propositions in APn to the set of nodes
on which they hold, and Pe maps atomic edge propositions in APe to the set
of edges on which they hold. Since we allow M to be a multi-graph, edges
may not be uniquely identified by their source and target. When referring to
an edge e, σ(e) denotes the source of edge e and τ(e) denotes the target of e.
Also, a path n0, e0, n1, e1, ... is the sequence of nodes ni and edges ei such that
∀i ≥ 0, ni ∈ N ∧ ei ∈ E ∧ni = σ(ei)∧ni+1 = τ(ei). In the example in Fig. 1, the
set of atomic edge propositions APe is {≺, for, f, Va, D`1,0}. Again, the meaning
of these propositions is explained in the next section and is not important here.
In this example, the edges (1,2) and (1,3) are labeled with the proposition for,
thus Pe(for) = {(1, 2), (1, 3)}.

To create CTLe we define edge formulas to be non-temporal formulas over
the edge propositions constructed by the following rules:

1. true, false and all edge propositions ape ∈ APe are CTLe edge formulas.
2. if f1 and f2 are CTLe edge formulas, so are ¬f1, f1 ∨ f2, and f1 ∧ f2.

If an edge e ∈ E satisfies a edge formula f for a model M we write M, e |= f

or e |= f . Satisfaction of edge formulas is defined below:

e |= ape iff e ∈ Pe(ape) e |= f1 ∧ f2 iff e |= f1 and e |= f2

e |= ¬f iff not e |= f e |= f1 ∨ f2 iff e |= f1 or e |= f2

As in CTL, CTLe uses the following rules to define formulas:

3. true, false and all atomic node propositions apn ∈ APn are CTLe formulas.
4. if f1 and f2 are CTLe formulas, so are ¬f1, f1 ∨ f2, and f1 ∧ f2.

In this extension, we also allow the temporal operators to be subscripted with
edge formulas to specify the conditions which must be met by the edges of the
paths. Thus we add the following CTLe syntax rule:

5. if f1 and f2 are CTLe formulas, and fe is a CTLe edge formula, then
AX{fe}f1, EX{fe}f1, A[f1U{fe}f2], and E[f1U{fe}f2] are CTLe formulas.

The formula AX{fe}f1 (respectively EX{fe}f1) is satisfied on a node if all (one
or more) successors satisfy f1 and the edge to these successors satisfy the edge
formula fe. The formula A[f1U{fe}f2] (respectively E[f1U{fe}f2]) is satisfied on
a node if on all (on one or more) paths beginning on this node there is a node
on which f2 holds, f1 holds on all nodes before this node, and fe holds on all
edges before this node. Hence, the satisfaction rules of these CTLe formulas are
given by:

n |= EX{fe}f1 iff ∃e ∈ E[n = σ(e) ∧ e |= fe ∧ τ(e) |= f1]
n |= AX{fe}f1 iff ∀e ∈ E[σ(e) = n⇒ (e |= fe ∧ τ(e) |= f1]
n |= A[f1 U{fe} f2] iff ∀ paths (n0, e0, n1, e1, . . .) [n = n0 and

∃i[i ≥ 0 ∧ ni |= f2 ∧ ∀j[0 ≤ j < i⇒ (nj |= f1 ∧ ej |= fe)]]]
n |= E[f1 U{fe} f2] iff ∃ a path (n0, e0, n1, e1, . . .) [n = n0 and

∃i[i ≥ 0 ∧ ni |= f2 ∧ ∀j[0 ≤ j < i⇒ (nj |= f1 ∧ ej |= fe)]]]

In specifying the CTLe algebra ACTLe
M
, we must add operations for the

edge formulas. That is, new generators for the edge propositions and operators
to create edge formulas must be added. The edge formula free generators are
truee, falsee, ape1

, ape2
, ..., and apem

corresponding to true and false edge
formulas and the edge propositions apej

, 1 ≤ j ≤ m, that label the edges of the
model M. We also add edge versions of the boolean operators ∨e, ∧e, and ¬e

and subscript them with an “e” to distinguish them from the CTLe boolean
operators ∨, ∧, and ¬. In the actual implementation the subscripts are dropped
since the parser can determine which logical operation is being employed by
the context of the operator. Here we split the carrier set into partitions EFM

(CTLe edge formulas) and FM (CTLe formulas). Thus, the signatures of the
new operators above specify the edge formula partition EFM . In addition to the
new operators, we modify the temporal operators AX, EX, AU , and EU to

allow path quantification. The non path quantified operations are removed since
they can be implemented by the path quantifying operations by using true as the
edge formula. EX and AX must be modified from their previous unary form to
become binary operators which create a CTLe formula from an edge formula and
a CTLe formula, that is AX,EX:EFM ×FM → FM . Also, AU and EU become
ternary operators with the same signature AU,EU :FM ×EFM ×FM → FM , to
create a CTLe formula from a CTLe edge formula and two CTLe formulas. In
conclusion we have

ACTLe
M

= <<FMEFM>, true, false, api, truee, falsee, apej

¬,∧,∨,¬e,∧e,∨e, AX,EX,AU,EU>.

We also extend the target algebra to accommodate edge propositions. Thus,
the carrier set of ASetsM

is extended to a split carrier set of sets of nodes and
sets of edges. We add free generators for the empty set of edges ∅e, for the entire
set of edges E, for each edge ej ∈ E, and for the set of edges labeled by each
edge proposition P (apej

) for each apej
∈ APe. We also add the generators σ(e)

and τ(e) for each edge e ∈ E. The extended algebra can be specified as:

ASetsM
= <<SM, EM>, ∅, N, ni, succ(ni), P (api), σ(ei), τ(ei),

∅e, E, ei, P (apei
),∩,∪, \>.

With the source and target algebras appropriately extended, we can deduce
the source BNF specification rules and their derived operations that specify the
new model checker. In specifying the BNF rules from the signatures of the source
algebra operations, we again generate an ambiguous grammar. We take the same
approach as before and split FM into FM1

, FM2
, FM3

, and FM4
and split EFM

into EFM1
, EFM2

, EFM3
, and EFM4

.
The non-temporal grammar rules and their derived operations from the CTL

specification are also used in the specification for CTLe. The source specification
rules and their derived target operations for the new operation generators are
given as the following tuples: (EFM1

::= truee; @0 = E), (EFM1
::= falsee;

@0 = ∅e), (EFM1
::= apej

; @0 = P (apej
)), (EFM2

::= ¬EFM1
; @0 = E \ @1),

(EFM3
::= EFM3

∧ EFM2
; @0 = @1 ∩ @2), and (EFM4

::= EFM4
∨ EFM3

;
@0 = @1 ∪@2). These are similar to previous derived operations.

The derived operation for the path quantifier AX operator will find all nodes
n such that all successors, n′, of n, via an edge e, satisfy the formula specified
by FM4

and e satisfies the edge formula specified by EFM4
. Thus,

r: FM1
::= AX{EFM4

}FM4
;

d(r): @0 = {n ∈ N |∀e ∈ E[σ(e) = n⇒ (e ∈ @1 ∧ τ(e) ∈ @2)]}

The derived operation below for the path quantified EX operator will find all
nodes n such that ∃e ∈ E, σ(e) = n, which satisfies the edge formula specified
by EFM4

, and whose target satisfies the formula specified by FM4
. Thus,

r: FM1
::= EX{EFM4

}FM4
;

d(r): @0 = {n ∈ N |∃ e ∈ E[σ(e) = n ∧ e ∈ @1 ∧ τ(e) ∈ @2]}

For AU and EU we have the following specification rules and derived opera-
tions which solve, respectively, the equations @0 = lfp(@3 ∪ (@1 ∩ {r ∈ N |∀e ∈
E, σ(e) = r ⇒ e ∈ @2} ∩ {r ∈ N |succ(r) ⊆ @0})) and @0 = lfp(@3 ∪ (@1 ∩ {r ∈
N |∃e ∈ E, σ(e) = r ∧ e ∈ @2 ∧ τ(e) ∈ @2})):

r: FM1
::= A[FM4

U{EFM4
}FM4

] r: FM1
::= E[FM4

U{EFM4
}FM4

]
d(r): let Z, Z ′ be sets; d(r): let Z, Z ′ be sets;

Z = ∅ ; Z ′ = @3; Z = ∅ ; Z ′ = @3;
while (Z 6= Z ′) do while (Z 6= Z ′) do

Z = Z ′ ; Z = Z ′ ;
Z ′ = Z ′ ∪ {n ∈ N |n ∈ @1 Z ′ = Z ′ ∪ {n ∈ N |n ∈ @1

∧∀e ∈ E, σ(e) = n⇒ ∧∃e ∈ E, σ(e) = n∧
(e ∈ @2 ∧ τ(e) ∈ @3)} ; e ∈ @2 ∧ τ(e) ∈ @3)} ;

@0 = Z ; @0 = Z ;

The algebraic tools then use this specification to generate the model checker for
the extended logic CTLe.

5 A program abstraction model

Part of our motivation for this research is our own need for custom temporal log-
ics and model checkers which we use in algebraic compilers. By representing the
structure of a program as a program abstraction model, labeling the nodes and
edges with descriptive propositions, and describing optimization opportunities
as temporal logic formulas, we can use a model checker to locate the parts of the
program where optimizations can be applied [RV97]. Program abstraction mod-
els are not traditional control flow graphs; they have the fundamental property
that all computations at their nodes can execute concurrently. To ensure the
correctness of the computation the execution order is restricted by dependency
(flow and data) relationships between nodes. The structure of the code fragment
below is represented in the model in Fig. 1.

`1 for i := 1 to 100 do

`2 a[i] := b[i] ;

`3 c[i] := a[i] * d[i];

endfor

Nodes in the model represent computation units and control structures in the
program, in this case, the three statements above, and are labeled by properties
identifying the computation contents they represent, in this case the labels `1, `2,

`3, for, and unit. Node 1, labeled `1, for, represents the for loop at `1, node
2 labeled by `2, unit, and node 3, labeled by `3, unit, are the computation
units which represent the assignment statements at `2 and `3, respectively. The
two additional nodes labeled e and x indicate, respectively, the entry and exit
points of the computation represented by the model. Edges in the model are
also labeled with propositions that represent data and control flow dependencies
between the computations at the nodes. The proposition ≺ represents a control

flow dependency indicating that the computation at the source of the edge must
complete before the computation at the target of the edge starts. Thus, the
entry node 0, completes before the loop at node 1 begins; computation at node
1 completes before the assignment statements at nodes 2 and 3 begin. The edges
labeled by the proposition for are control dependencies associated with a for

loop and represent the concurrent initiation of all iterations of the computations
in the loop. That is, the edge from 1 to 2 represents the initiation of all 100
instances of the computation at node 2. Thus, the necessary data dependency
edges must be added to ensure that the computation will execute correctly.
Since `2 writes a value in a[i] which is used by `3 during the same iteration,
a data dependency edge from node 2 to node 3 is added. This edge is labeled
by three propositions, f, Va, and D`1,0 where f indicates that this is a data
flow dependency, Va indicates that the variable a caused the dependency, and
D`1,0 indicates that the data dependency is over loop `1 with a data dependency
distance of 0. The data dependency distance is the number of loop iterations
crossed between the computations causing the data dependency[Ban88]. Hence,
every instance of the computation at node 3 must wait for the completion of the
computation at node 2 from the same iteration of the loop `1. Data dependencies
that have a positive or unknown distance are labeled by the proposition D`,+

and D`,? respectively.
¿From this model of the program structure, the compiler designer can in-

struct the compiler to pose questions about the computations it processes in
the form of CTLe formulas. The answers to these questions are sets of nodes in
the model that satisfy the CTLe formulas. One question often asked is whether
the iterations of a loop can be executed in parallel. The iterations of a loop can
execute in parallel if they are independent. For example, if there are no data de-
pendencies with positive or unknown distances between the iterations performed
by the loop `1 then all iterations of this loop can be executed in parallel. This
condition is stated by the CTLe formula:

1 |= `1 ∧ (AX{for} (¬(EX{D`1,+∨D`1,?}(true))))

This formula states that on all successors reachable by a for labeled edge, there
does not exist an out going edge labeled by propositions for a positive or un-
known data dependency distance. Note that this formula assumes that there are
no nested loops or branch statements in the for loop. However, more general
formulas can be written for the general case.

6 Conclusions and comments

We use the general algorithm that constructs the homomorphic embedding of
an algebra A1 into an algebra A2 to implement temporal logic model checkers.
For that we specify the temporal logic formulas and their model as algebras.
This methodology has a number of advantages. First, by generating the model
checker from a set of specifications, the user has great flexibility in the notation
and semantics of the logic. So, by extending and modifying the specifications,

the user can generate new model checkers for different temporal logics. Second,
since there is no traditional programming, and only specifications are written,
there are no programming errors created by the user. Assuming that the spec-
ifications are correct, a correct model checker is generated. Third, since the
homomorphism algorithm is naturally parallel, parallel model checkers can be
generated, thus increasing the size of problems which can be solved with model
checking. However, while these tools are designed so that users can easily extend
temporal logics and model checkers to meet their specialized needs, the user still
needs to be concerned with issues of logic soundness and the correctness of the
model checker specifications.

Demonstrations of these tools and of the automatically generated model
checkers can be found on the web page http://www.cs.uiowa.edu/~rus/TICS.

References

[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic,
Boston, 1988.

[CES86] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems, 8(2):244–263, 1986.
[CGL94] E. Clarke, O. Grumberg, and D. Long. Model checking. In Proceedings of

the International Summer School on Deductive Program Design, 1994.
[Coh81] P. Cohn. Universal Algebra. Reidel, London, 1981.
[HR76] W. Hatcher and T. Rus. Context-free algebra. Journal of Cybernetics, 6:65–

77, 1976.
[Kna94] J. Knaack. An Algebraic Approach to Language Translation. PhD thesis, The

University of Iowa, Department of Computer Science, Iowa City, IA 52242,
December 1994.

[KR93] J. Knaack and T. Rus. The environment of an algebraic compiler. Technical
Report 93–04, Department of Computer Science, The University of Iowa,
Iowa City, IA 52242, April 1993.

[Kri63] S. Kripke. Semantical analysis of modal logic i: Normal modal propositional
calculi. Zeitschrift f. Math. Logik und Grundlagen d. Math., 9, 1963.

[RH94] T. Rus and T. Halverson. Algebraic tools for language processing. Computer
Languages, 20(4):213–238, 1994.

[Rus88] T. Rus. Parsing languages by pattern matching. IEEE Transactions on

Software Engineering, 14(4):498–510, 1988.
[Rus91] T. Rus. Algebraic construction of compilers. Theoretical Computer Science,

90:271–308, 1991.
[RV97] T. Rus and E. Van Wyk. A formal approach to parallelizing compilers. In

SIAM Conference on Parallel Processing for Scientific Computation, Pro-

ceedings, March 14 1997. Paper available at http://www.cs.uiowa.edu/~rus.

This article was processed using the LATEX macro package with LLNCS style

