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Abstract. When the projection of a collection of samples onto a subset of basis feature 
vectors has a Gaussian distribution, those samples have a generalized projective 
Gaussian distribution (GPGD). GPGDs arise in a variety of medical images as well as 
some speech recognition problems. We will demonstrate that GPGDs are better 
represented by continuous Gaussian mixture models (CGMMs) than fmite Gaussian 
mixture models (FGMMs). 

This paper introduces a novel technique for the automated specification of 
CGMMs, height ridges of goodness-of-fit. For GPGDs, Monte Carlo simulations and 
ROC analysis demonstrate that classifiers utilizing CGMMs defined via goodness-of-fit 
height ridges provide consistent labelings and compared to FGMMs provide better true­
positive rates (TPRs) at low false-positive rates (FPRs). The CGMM-based 
classification of gray and white matter in an inhomogeneous magnetic resonance (MR) 
image of the brain is demonstrated. 

1 Introduction 

The crux of statistical pattern recognition and data analysis is the accurate modeling of the 
distributions of data. This paper presents a novel technique which is ideally suited for 
representing GPGDs. GPGDs arise in a variety of medical images such as MR. images 
containing intensity inhomogeneities, X-ray CT images due to beam hardening, and SPECT 
images due to deficiencies in attenuation compensation. GPGDs also exist in some speech 
and handwriting recognition problems. 

It has been demonstrated that within small regions of an MR image, a tissue's intensity 
will be Gaussian distributed, yet the parameters of those localized Gaussian distributions 
will vary as a result of an intensity inhomogeneity. Consider the proton density (PD) MR 
image in Fig. 1. It was acquired and converted to byte pixel values as described in [2]. It 
contains an intensity inhomogeneity which exists as a large scale dimming in the inferior 
cerebellum. The inhomogeneity can be quantified (Fig. 2) by Gaussian blurring the image 
at a scale of 15 pixels using only those pixel's having values between 100 and 200. More 
exact methods for measuring the inhomogeneity exist [4, 10, 16], but the stated approach 
is sufficient for our demonstration. The correlation between PD value and inhomogeneity 
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Fig. 3. Scatterplot of hand-labeled gray and white matter samples 

magnitude is revealed by a scatterplot ·(Fig. 3) formed from 984 hand-labeled white matter 
and 788 gray matter samples from these images. In that scatterplot, every local collection 
of a tissue's samples has a Gaussian distribution, but a continuum of Gaussians is needed to 
represent each tissue's entire distribution; the distributions are GPGDs. 

In speech recognition, it is commonly accepted that hidden Markov models using 
Gaussian distributions can represent certain aspects of the speech of a single person in a 
controlled situation, e.g., given a fixed level of stress. Smooth warpings can be applied to 
the parameters of those Gaussians to transition them to new situations and speakers [3] . To 
account for such variations in speaker and situation, multiple Gaussians are needed; the 
disttibutions resemble GPGDs. 

When the correlations creating the GPGDs are well understood and easily measured, the 
most accurate models can be obtained by directly eliminating their effects and then using 
simple Gaussians [4, 10, 16] . When the correlations are not well understood or easily 
measured, Gaussian mixture models are appropriate. 

Traditionally, FGMMs defined via maximum likelihood expectation maximization 
(MLEM) have been used to represent GPGDs. We will show that these distributions are 
more accurately and consistently represented by continua of means and variances. We call 
such continua "traces." We will show that the traces of a sampled GPGD can be extracted 
via height ridges of goodness-of-fit functions, and that these traces accurately and 
consistently define a CGMM of the underlying GPGD. 

For this paper, the accuracy and consistency of the distribution models are quantified by 
the accuracy and consistency of the classifiers they define. That is, when a model P of a 
class i is used to provide class conditional probability estimates P(x.l tp(i)) to a classifier, 
the accuracy and consistency of the labelings produced by that classifier determine the 
accuracy and consistency of the model. Assuming equal class priors P( tp(i)) and maximum 
likelihood Bayes Rule classification, then 

label for~ = ARGMAX [P(Pil~) = ~¥>')1r) = P(~ltpi)] [1] 
1=1..# of classes P X 

A classifier's labeling accuracy is quantified by its TPRs and FPRs, and its labeling 
consistency is the standard error of those rates. 

Section 2 introduces finite and continuous Gaussian mixture modeling. Section 3 
presents our implementation of goodness-of-fit functions. These functions respond 
maximally when their parameters Jl' and cr' match those of the distribution from which the 
samples being tested originated. That section also discusses the how these functions are 
applied normal to the trace of a GPGD in order to extract that trace using a height ridge 
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definition, and it ties the traces to the definition of a CGMM, Section 4 uses GPGDs, 
Monte Carlo simulations, and ROC analysis to compare FGMMs with CGMMs. Section 5 
demonstrates the CGMM-based classification of tissues in an inhomogeneous MR image. 

2 Gaussian Mixture Modeling 

A mixture model is formed using multiple "component" distributions. In a Gaussian 
mixture model the component distributions are multivariate (N-dimensional) normal 
densities each of which is parameterized by 1/J. 

1 -±(~-e:r~-l(~-e:) 
F(x;<P) = 1/2 e where <P = {~·~} (2] 

- (2n:)Nf2~~~ 

2.1 Finite Gaussian Mixture Modeling 

If the number of components K is bounded, the Gaussian mixture model is a FGMM P. It 
provides a probability for a sample x. via 

P(~ I 'I')=.~ ro(i)F(~;<P(i)) where 1 = .~ro(i) and 'I'= {{ro.<P}(i) I i = L.K} [3] 
1~1 1=1 

Most investigations involving mixture models use FGMMs trained via MLEM. While no 
FGMM training algorithm is best in all situations, MLEM is easy to implement and 
provides several desirable convergence properties such as monotonic convergence [5, 7, 8, 
18]. MLEM, however, is an approximate gradient ascent algorithm, and it is subject to 
non-optimal local and global maxima. While MLEM is relatively robust to these non­
optimal maxima [7, 15, 18], it will be shown that the FGMM component parameterizations 
produced via MLEM can vary greatly and be far from optimal given different sets of samples 
from the same distribution; FGMMs offer poor consistency. This inconsistency is 
aggravated by the reliance on the user to specify the number of components. 

While much research has focused on automatically determining an appropriate number 
of components for a given problem, a generally applicable approach has not be found [9, 
18]. A FGMM's expected accuracy does not vary monotonically as a function of the 
number of components. Additionally, MLEM's non-optimal maxima can lead to poorly 
utilized components; the effective number of components in an FGMM may be less than 
the user specified number of components. GPGDs are comprised of an infinite number of 
components, so determining an appropriate finite number of components to approximate 
them with can be especially difficult. 

2.2 Continuous Gaussian Mixture Modeling 

A continuous mixture model consists of an uncountably infinite number of components 
whose parameters 'f' span Nt traces T(j) through the parameter space of its components, 
i.e., the domain of 1/J. A CGMM provides a probability via 

( I ) MAX ( ( )) h 'I' l{ ""} 13j E l..Nt s.t. <P E T(j)} 
P x 'I' = roF x;</J w ere = ro,o.v 

- {Cil,I'J}E'f' - andro=P(<P) 
[4] 

This equation follows the simplifying assumptions made by Dempster, Laird, and Rubin [5] 
and states that since the underlying distribution is assumed to be a mixture, each sample is 
in fact generated by just one of the infinite number of components, the generating 
component is determined via maximum likelihood, and the generating component provides 
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the best estimate of the sample's probability. The function F(~.;4>) can be interpreted as 
providing a trace point conditional sample probability, and ro as providing a trace point a 
priori probability. Equation 3 can therefore be rewritten as 

P(! I P) = ~X (P(cJl)P(!Icil)) [5] 
<PeT(J) e'f'ijel •• N t 

The focus of this paper is the definition of the traces T(j) via height ridges of goodness­
of-fit functions. A CGMM defined in this manner can accurately and consistently model the 
continua of means and variances which form a GPGD. For this paper, analysis is limited to 
GPGD's having one-dimensional traces. 

3 Traces of Goodness-of-Fit 

Each trace of a GPGD can be viewed as a continuum of central means (centers) with 
smoothly changing variances normal to that continuum (widths). A method has already 
been developed for representing the centers and widths of objects. That object 
representation method is known as the medialness core [12]. Medialness cores have been 
proven to be invariant to rotation, translation, intensity, and scale [12] and insensitive to 
a wide variety of image and boundary noise [11]. To apply medialness core methods to the 
representation of distributions, goodness-of-fit functions are used instead of medialness 
functions because goodness-of-fit functions are sensitive to sample density whereas 
medialness functions are sensitive to boundariness. 

3.1. Univariate Gaussian Goodness-of-Fit 

One class of goodness-of-fit functions is the univariate chi-squared measures. This class 
includes Pearson's statistic X~· Read and Cressie's power divergent statistic X~&c• and 
the log likelihood ratio XLLR [14]. Since our goal is to develop mixture models using 
Gaussian components, the binned expected distribution E of these omnibus measures is 
derived from a univariate Gaussian. These functions are therefore referred to as Gaussian 
goodness-of-fit (GOoF) functions. 

The parameters of these functions are !!'and cr', the mean and standard deviation to be 
tested;!!' and cr' define the expected distribution E. This paper uses six bins B=6 centered at 
ll' and clipped so as to capture samples within ±1.645cr' of jl'. The GOoF functions are 
devised so as to be maximal when their parameters ll' and cr' best match the !l and cr of the 
population from which the samples originated. This is achieved by subtracting the 
standard goodness-of-fit functions from xL1(a=o.99)=ls.o9 and then normalizing by 
that value (Equation 6). As a result of these modifications, a GOoF function's value is 
expected to be greater than zero for 99% of the sets of samples which originate from a 
Gaussian parameterized by 11' and cr'. 

xlLR(Il' ,a')= (15.09- 2.! Qi •{Q~ )]115.09 [61 
1=1 gl 

The accuracy and consistency of the local maxima of the x~, X~&c• and XLLR GOoF 
functions were evaluated using 96 Monte Carlo simulations. Each simulation consisted of 
5000 runs. The simulations considered four different training set sizes (20, 40, 80, 160 
samples) from two distributions (a Gaussian with J,!=l28 and cr=l6 and a log-normal 
distribution using a log base of 1.6) and four different binning techniques (equirange, 
equiprobable, overlapped-equirange, overlapped-equiprobable) [1]. For each Monte Carlo 
run, the local maximum of the GOoF function was found via gradient ascent through (jl', 

cr'). The starting points for gradient ascent were selected from a 2D Gaussian distribution 
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centered at each population's ideal parameter values (l.t, cr) having a standard deviation of 
5% of those values. The accuracy of a local GGoF maximum was defined as the difference 
between the GOoF parameters (!!', cr') of that maximum and the population's actual 
parameters (1!, cr). Consistency was calculated as the standard error associated with each 
parameter 11' and cr' of the maxima from each simulation. 

Conclusions drawn include that 1) the binning method has more influence on accuracy 
and consistency than the GOoF function; 2) the accuracy and consistency of the estimates 
of 11 do not vary significantly as a function of the number of samples, the GGoF function, 
or the binning technique; 3) XtLR with overlapped-equiprobable binning provides the 
most accurate and consistent estimates a. As a result, XtLR with overlapped-equirange 
binning was used for all GOoF trace calculations. 

3 . 2 Multivariate GGoF via Trace Tangents and Normals 

To calculate multivariate GOoF values, the multivariate data about a given J.( are converted 
to multiple univariate distributions via projection onto a set of basis directions. The 
expected variance associated with each of those projections may differ. The multivariate 
GOoF value is the average XtLR value from each of those projections. We hypothesize 
that neighboring GOoF trace points capture a distribution's variance in the trace tangent 
direction, so each trace point needs only to capture variance normal to the trace. 

To estimate a trace's normal (and tangent) directions as well as the expected variance of 
the distribution in each of those directions, our algorithm extends the geometric measures 
via statistics work conducted by Yoo [17]. Specifically, we suggest that eigenvectors of 
the local data's covariance matrix b(L) well approximate the normal (and tangent) 
directions of the GOoF trace, and the eigenvalues define expected variance ratios for each of 
the normal directions. Since b(L) is a function of only two variables, i.e., a mean u' and a 
neighborhood size s', its use in calculating multivariate GGoF functions allows those 
functions to be parameterized by just u' and s'. b(L) approximation of the tangent allows a 
GOoF trace to be traversed without derivative ciilculations. 

b(L) is measured using a Gaussian weighting G(•) of the samples S about J,{ so as to 
cha.ilge smoothly given small changes in !!.'or s'. 

~~jL)(~· ,s')"' L5G(~~~· ,3s')(~1 - ~'i)(~j- ~·j)/ L5G(rl~· ,3s') [71 
~e ye 

Define Ai for i=l..N as the descending ordered eigenvalues of b(L) and Y.i as their 
corresponding eigenvectors. If no additional information is availabie, it can be assumed 
that the maximum eigenvalued eigenvector Yl approximates the GGoF trace's tangent 
direction. The remaining eigenvectors specify the normal directions. Expected variances 
in each of the normal directions are specified by eigenvalue ratios; the expected variance in 
the eigen-direction, Y.i I i=2 .. N, is (cr')2 = (s')2Ai/Az. 

To help understand the N+l dimensional GGoF "space" (!!.', s') of an N dimensional 
distribution, slices through the 3D GOoF space of a 2D distribution in (fo.ft) can be 
calculated. Consider the scattergram shown in Fig. 4. Those 900 samples were generated 
from a simulated GPGD, Class A. Class A is defined by three approximating cubic B­
splines and four isotropic control Gaussians (Table 1). Each spline governs one of the 
three parameters of the Gaussians, i.e., fo, f1, a. To generate a sample, a parametric value t 
is chosen from the uniform distribution U[O,l]. The three splines are evaluated at that t 
value, an isotropic Gaussian distribution is thus defined, and from that distribution the 
sample is then generated. Figs. 5-7 are the GGoF values for fixed s' and a range of~- values 
using the samples in Pig. 4. lD GOoF traces appear along the extent of the distribution. 
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Mean 
fo ft (j 

G(O) 80 112 16 
GO> 112 56 I 
G(2l 144 56 I 
G<3l 192 112 16 
Table 1. Control Gaussian of the GPGD, Class A 
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Fig. 4. Scattergram of 900 Class A samples Fig. 5. Class A's GOoF space at s'=4 

Fig. 6. Class A's GOoF space at s'=8 Fig. 7. Class A's GOoF space at s'=l6 

3 . 3 Gaussian Goodness-of-Fit Trace Extraction 

As mentioned previously, GGoF traces are based on medialness cores. Techniques 
developed for medialness core extraction are used to extract GGoF traces. The three steps 
involved are trace stimulation, traversal, and traversal termination. 

Trace Stimulation. A trace stimulation point has two components, g0 and sO. FGMM 
is used to specify g0. Specifically, the user must select the number of FGMM components 
to use, the data are then modeled using FGMM, and the component mean which is nearest 
(measured via Euclidean distance) to two other component means is chosen as g0. As a 
result, J.!P will generally be located within a dense region of a sampled GPGD. If multiple 
traces are requested, the remaining component means are used. The number of FGMM 
components used appears to be non-critical; for all CGMMs developed in this paper the 
stimulating FGMM used 7 components. 

Specifying s0 reduces to determining an initial neighborhood size for calculating I,(L) 
at g0. By assuming that the trace tangent at gO is well approximated by the maxi~um 
eigenvalued eigenvector of b(L), s0 is the square root of the second largest eigenvalue. For 
this paper, the initial neighborhood size is set equal to the distance between gO and its 
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closest neighboring FGMM mean. For the data in Fig. 4, JJ.0=(163.66, 80.08) and 
s0=17.94. 

Trace Traversal. The trace normals are approximated by the non-tangent eigenvectors 
of b(L) and a unit vector which points strictly ins. These directions define a hyperplane in 
GGoF space through which the local trace segment passes. When this normal plane is 
slightly shifted in the local trace tangent direction, a gradient ascent with respect to the 
GOoF values within that plane leads to a new trace point. For this paper, a step size of 0.1 
feature space units is used to shift the normal plane, gradient ascent within that shifted 
plane is performed using Brent's line search method [13], and gradient ascent terminates 
when the gradient's projection onto the plane is less than 0.1% ofits total magnitude. The 
point in the plane at which gradient ascent terminates is the new trace point. The new 
tangent direction is approximated by the eigenvector of local data's covariance matrix that 
has the maximum magnitude dot product with the previous trace point's tangent 
eigenvector. If the sign of the dot product is negative, the new tangent vector is negated to 
maintain the direction of traversal. This process is repeated until a traversal termination 
criterion is met. 

Trace Traversal Termination and Recovery. Trace traversal terminates when a 
"well fitting"'Gaussian cannot be found. Empirical evidence suggests that encountering a 
GGoF value of -10 or less is a reasonable stopping criterion. This criterion was used to 
terminate the traversal of every trace presented in this paper. 

The rate of change of the trace is used to identify suspect trace points and halt their 
inclusion into the trace without causing termination of the traversal process. Such points 
are "stepped over" using the tangents of the previous valid trace point. 

The U' component of a lD GGoF trace of the data in Fig. 4 is shown in Fig. 8. The 
effect of recovery is visible as a break in the trace. To visualize the normal variance 
estimates provided by the trace, the 0, ±o.5, ±1, ±1.5, and ±2 cr' points along the normal at 
each trace point can be plotted (Fig. 9). The next section details the conversion of a GOoF 
trace to a CGMM. 
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3. 4 CGMMs via GGoF Traces 
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Fig. 9. Isocontours of the variance estimates 

As defined in Equation 4, two values, P(~.lt/J) and P(t/J), are required at each trace point tfJ to 
define a CGMM 'P. To calculate P(z..ft/J), a trace point covariance matrix b(¢) must be 
defined. The eigenvectors and eigenvalues of I;;@ are defined by 1) the approXImate normal 
directions and expected variances which were ilsed to calculate tfl's GOoF value (Section 3.2) 
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and 2) the approximate tangent direction which is assigned a variance equal to the 
maximum expected variance in a normal direction. 

A trace point's a priori probability P(qJ) is defined as the portion of samples it is 
expected to represent. The expected number of samples that will be represented by a trace 
point can be extrapolated based on the number of observed samples within a fixed standard 
deviation, i.e., s, of that point. 

The CGMM defined via the GGoF trace depicted in Figs. 8 and 9 produces the 
probability density function depicted Fig. 10. Although the GGoF trace extended beyond 
the distribution, the low prior probabilities P(¢) associated with those points reduce the 
negative effects of the over extension. The estimated density function should be compared 
with the population's actual density function which is shown in Fig. 11. There appears to 
be good correspondence. The next section focuses on quantifying that correspondence. 

255 

0 

Fig. 10. CGMM estimated probability 
density function of Class A 

Fig. 11. Actual probability density 
function of Class A 

4 CGMM's Accuracy and Consistency 

To determine the accuracy and consistency of a classifier and thereby determine the accuracy 
and consistency of the distribution models it uses, Monte Carlo simulations and ROC 
analyses must be performed. This section begins by presenting an example classification 
result. 

4 . 1 Example Results 

The accuracy and consistency of a modeling technique is being determined by the accuracy 
and consistency of the labelings produced by classifiers that use the probability estimates 
provided by those models. Class A was defined in Section 3.2. A competing class, Class 
B, is defined as an isotropic Gaussian with !!=(128,128) and 0"=36. Given the set of 900 
training samples from Class B, the stimulation point u0=(160.37, 123.30) and s0=17.94 is 
automatically chosen. The resulting trace point conditional isoprobability curves overlaid 
onto the training data scattergram are shown in Fig. 12. Using the Class A and Class B 
models developed thus far, every point in feature space can be assigned a label and an image 
can be developed which reflects those labelings with differing shades of gray. Fig. 13 is 
such an image with the optimal decision bounds between the classes overlaid in black. 

The CGMMs of Classes A and B provide accurate labelings for the majority of feature 
space. To improve the CGMM's labelings, multiple traces can be used. While generally 
containing redundant information, additional traces do refine a CGMM. CGMMs using 7 
traces per class (CGMM07) produce the labelings shown in Fig. 14. FGMMs using 7 
components per class (FGMM07) produce the labelings shown in Fig. 15. Allocation to 
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Fig. 12. Isoprobability curves of 
Class B's CGMM 

184 

255 

0 

o fo 255 

Fig. 13. Labeling of feature space produced by 
CGMMs with optimal decision bound overlaid 
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Fig. 14. Labelings by CGMM07 Fig. 15. Labelings produced by FGMM07 
Different shades of gray correspond to allocation to different traces/components. 

Light gray shades indicate assignment to Class A 

each trace/component is indicated by different shades of gray; light grays indicate 
allocation to Class A. The presence of non-optimal FGMM maxima is clear; one Class A 
component is reduced to representing a sliver through feature space. That component is 
being poorly utilized, and its use does not correspond with the underlying distribution. 

Given 2700 testing samples from each class, the Class A TPRs and FPRs in Table 2, 
Run1 are produced. Compared to FGMM07, CGMM07 offers an 718% decrease in the FPR 
with a less than 11% decrease in the TPR! To determine if these results were anomalous, 
new models were developed and tested using different samples from Classes A and B. Those 
results are summarized in Table 2, Run2. CGMM07 again produced the lowest FPR, but the 
differences are less dramatic. 

While no conclusions should be drawn from these two runs, the results are quite 
encouraging. Not only does CGMM07 provide the lowest FPR values and competitive TPR 

Runl Run2 
FPR TPR FPR TPR 

CGMMOl 0.3233 0.8859 0.2281 0.6681 
CGMM02 0.3215 0.8859 0.2178 0.7874 
CGMM04 0.2604 0.8367 0.2200 0.8204 
CGMM07 0.0385 0.8237 0.2318 0.8485 
FGMMOl 0.2933 0.8415 0.2878 0.8659 
FGMM02 0.3259 0.9196 0.3185 0.9307 
FGMM04 0.3315 0.9259 0.3218 0.9400 
FGMM07 0.3152 0.9130 0.3067 0.9141 .. Table 2. Class B TPRs & FPRs from two different sets of trainmg and testmg data 
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values, but there is also an ordered progression in the TPR & FPR values for CGMM as the 
number of traces used is increased. For FGMM, the use of additional components does not 
always increase performance. 

4 . 2 Monte Carlo Results 

To gain an understanding of the expected consistency with which CGMMs model GPGDs, 
Monte Carlo simulations involving Class A and Class B were performed. Initial 
simulations revealed that even after 5000 repetitions of the modeling and testing task of 
Section 4.1, classifiers using FGMMs demonstrated extremely poor consistency. So as to 
compare CGMMs with FGMMs on a problem for which FGMMs provide consistent 
performance, the Monte Carlo experiments reported in this paper limited their analysis to 
the FGMMs and CGMMs of the GPGD. Class A. Each classifier was provided with an exact 
model of Class B. Given 100 Monte Carlo runs involving 900 Class A training samples 
and 2700 Class A and 2700 Class B testing samples yielded the average TPRs, FPRs, and 
standard error ranges shown in Table 4 (Fig. 16). 

CGMMOl 
CGMM02 
CGMM04 
CGMM07 
FGMMOl 
FGMM02 
FGMM04 
FGMM07 

Average Standard Error 
FPR TPR FPR TPR 

0.2002 0.7181 0.0057576 0.0165489 
0.2437 0.8192 0.0033732 0.0070245 
0.2702 0.8658 0.0025880 0.0032410 
0.2873 0.8862 0.0020565 0.0019929 
0.2779 0.8364 0.0009231 0.0009339 
0.2419 0.8660 0.0010374 0.0009371 
0.2216 0.8495 0.0011087 0.0014111 
0.1934 0.7990 0.0027022 0.0084882 

Table 3. Average TPRIFPR values and thetr standard error ranges 

a: 
a. 
1-

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

. 
• x • 

• + 

FGMM01 
FGMM02 
FGMM04 
FGMM07 
CGMM01 
CGMM02 
CGMM04 
CGMM07 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
FPR 

Fig. 16. Plot of average TPR & FPR values (Table 3) 

Both modeling techniques demonstrate an ordered progression in consistency based on 
their hyperparameter, i.e., number of components or number of traces. FGMM's 
consistency, however, monotonically declines as additional components are used. 
CGMM's consistency monotonically improves as additional traces are used. CGMM07 is 
shown to offer very competitive consistency. ROC analysis is needed to compare the 
accuracy of these classifiers. 
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4 . 3 ROC Analysis 

By changing the a priori probability (ROC observer bias) associated with Class B while 
keeping each class model and the testing data fixed, a continuum of FPR & TPR values are 
defined. These values form the ROC curves shown in Fig. 17. 

cr: 
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FGMM04 ...... ,. .... . 
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C(HVH'V107 · · ~-- ··· 

0 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 
FPR 

Fig. 17. ROC curves from fixed data, FGMMs and CGMMs 

Using these curves, three measures can be made to quantitatively compare the 
classifiers' accuracy: the area under each curve; the maximum probability of generating a 
correct answer for each curve, i.e., Max-P(C) = MAX(TPR+(l-FPR)); and the TPR values of 
each curve at fixed FPR values [8]. Table 5 summarizes these measures. 

Area of TPR @ TPR @ TPR @ 
ROC Max-P(C) FPR=O.l FPR=0.15 FPR=0.2 

CGMM07 0.8752 1.5893 0.6160 0.7068 0.7741 
FGMMOl 0.8443 1.5530 0.5688 0.6704 0.7337 
FGMM02 0.8665 1.6048 0.5889 0.6961 0.7844 
FGMM04 0.8765 1.6126 0.6019 0.7166 0.7945 
FGMM07 0.8793 1.6159 0.6047 0.7155 0.7935 

Table 4. Results of measures made on ROC curves m F1g. 19 

The area under the CGMM07 curve is comparable to that of FGMM04 and only slightly 
less than FGMM07. CGMM07 provides performance similar to FGMM02, but well below 
FGMM04 and FGMM07. As demonstrated in both experiments of Section 4.1, CGMM07 
provides the best TPR value for the smallest FPR tested, i.e., FPR=O.l. This ROC analysis, 
however, is based on a single instance of a model and does not reveal expected accuracy. 

To determine the expected accuracy of CGMMs and FGMMs on the Class A I Class B 
problem, the Monte Carlo averaged TPR & FPR values reported in Section 4.2 are used. 
Specifically, the ROC curves passing through each classifier's Monte Carlo averaged TPR 
& FPR values can be explicitly calculated under the assumption that the class distributions 
are unit variance Gaussians. While that assumption is strictly incorrect for Class A, a 
Gaussian is a first order approximation to Class A's actual distribution. The significant 
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measure produced from this ROC analysis is the probit measure d', the spread of the means 
[6]. More accurate models have larger d' values. Table 5 lists the relevant d' values. 

d' d' 
CGMMOl 1.418 FGMMOl 1.569 
CGMM02 1.607 FGMM02 1.808 
CGMM04 1.719 FGMM03 1.801 
CGMM07 1.768 FGMM04 1.801 
CGMM141 1.810 FGMM07 1.704 

Table 5. Probit's d' value for ROC curves based on Monte Carlo averages (Table 3) 

These values indicate that as additional cores are used, CGMMs can be expected to 
asymptotically outperform the best performing FGMM when representing Class A, a 
GPGD. That is, under first order assumptions for Classes A and B, the area under the 
CGMM14's ROC curve will be larger, the maximum probability of being correct for 
CGMM14 will be higher, and CGMM14 will provide a better TPR for every FPR value 
compared to the best performing FGMM, i.e., FGMM02. 

Every one of the experiments performed suggests that for low FPRs, CGMMs composed 
of a sufficient number of GGoF traces can be expected to provide better TPRs than any 
FGMM via MLEM. The next sections presents some "real-world" results, the 
segmentation of an inhomogeneous medical image. 

5 Inhomogeneous Magnetic Resonance Images 

This section demonstrates the efficacy of CGMMs using GGoF traces for medical image 
data. Using the hand-labeled samples shown in Fig. 3, four GGoF traces can be 
automatically extracted to represent each class. Using these CGMMs, all of the points in 
the image can be labeled as either gray or white matter. While there will be errors since 
other tissues are present, the results are very promising; the gray matter mask formed is 
given in Fig. 18. The qualitative best FGMM was achieved using four components. 
FGMM04's gray matter mask is shown in Fig. 19. 

Fig. Fig. 

The differences between the CGMM and the FGMM masks are extremely small. The 
lack of a gold standard for this data prevents a quantitative comparison. These results are 
significant, however, in that they indicate that 1) CGMMs are a viable alternative for 
GPGDs given "real-world" data and 2) CGMMs do not require the user to specify a 
hyperparameter value, i.e., the number of components. 

1 Traces were stimulated using component means from FGMMI4; See Section 3.3. 
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6 Conclusion 

A CGMM of a GPGD can be defined using GGoF traces. When such models are used for 
classification, accurate labelings are produced. Initial experiments indicate that for small 
FPRs, this approach provides superior TPRs compared to FGMMs defined via MLEM. 
Given different collections of training data, the TPRs and FPRs associated with these 
labelings remain consistent relative to the consistency of the labelings produced by 
FGMMs. Furthermore, as additional GGoF traces are extracted, the accuracy and 
consistency of the CGMM improves asymptotically; defining CGMMs using GGoF traces 
avoids reliance on the user to specify critical hyperparameters such as the number of 
components, and it avoids the problems associated with local maxima in iterative 
parameter refinement processes, e.g., MLEM. The application of CGMMs using GGoF 
traces to medical image data and the existence of GPGDs in medical images is demonstrated 
via the classification of tissues in an inhomogeneous MR image. Current work is focusing 
on the extraction of higher dimensional (M>1) GGoF traces and the development of 
deformable distribution models using GGoF traces which adapt generic representations to 
form more optimal specific representations. 
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