Skip to main content

Definition of volume transformations for volume interaction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1230))

Abstract

Volume transformations of medical images play an important role for many applications such as registration of different modalities, mapping atlases onto clinical data, or simulation of surgical procedures. While registration and atlas mapping can for the major number of applications be performed without tight time constraints, it is essential for simulation systems that they allow real-time interaction. As any computational method in volumes is usually very time consuming, current approaches do mainly concentrate on surface manipulations instead of transforming the entire volume. This paper describes an approach, which overcomes this problem by first defining the volume manipulation on basis of surface models, which ensure real time performance, and in a second step the transformation is applied to the entire volume by interpolating the mapping parameters using scattered data interpolation methods.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayache, N.: Medical computer vision, virtual reality and robotics. Image and Vision Computing 13, 4 (1995), 295–313.

    Google Scholar 

  2. Bookstein, F. L.: Morphometric tools for landmark data. Cambridge University Press, Cambridge, 1991. (ISBN 0-521-38385-4).

    Google Scholar 

  3. Cotin, S., Delingette, H., Ayache, N.: Real Time Volumetric Deformable Models for Surgery Simulation. In Höhne, K. H., Kikinis, R. (Eds.): Visualization in Biomedical Computing 1996. Lecture Notes in Computer Science 1131, Springer-Verlag, Heidelberg, 1996, 535–540.

    Google Scholar 

  4. Glaeser, G.: Fast Algorithms for 3D-Graphics. Springer-Verlag, Heidelberg, 1995. (ISBN 3-540-94288-2).

    Google Scholar 

  5. Hill, D. L., Studholme, C., Hawkes, D. J.: Voxel Similarity Measures for Automated Image Registration. In Robb, R. A. (Ed.): Visualization in Biomedical Computing 1994, Proc. SPIE 2359. Rochester, MN, 1994, 205–216.

    Google Scholar 

  6. Höhne, K. H., Pflesser, B., Pommert, A., Riemer, M., Schiemann, T., Schubert, R., Tiede, U.: A new representation of knowledge concerning human anatomy and function. Nature Med. 1, 6 (1995), 506–511.

    PubMed  Google Scholar 

  7. Lorensen, W. E., Cline, H. E.: Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graphics 21, 4 (1987), 163–169.

    Google Scholar 

  8. MacDonald, D., Avis, D., Evans, A. C: Multiple Surface Identification and Matching in Magnetic Resonance Images. In Robb, R. A. (Ed.): Visualization in Biomedical Computing 1994, Proc. SPIE 2359. Rochester, MN, 1994, 160–169.

    Google Scholar 

  9. Pommert, A., Bomans, M., Höhne, K. H.: Volume visualization in magnetic resonance angiography. IEEE Comput. Graphics Appl. 12, 5 (1992), 12–13.

    Google Scholar 

  10. Ruprecht, D., Müller, H.: Free form deformations with scattered data interpolation methods. In Farin, G. et al. (Eds.): Geometric Modelling (Computing Suppl. 8). Springer-Verlag, 1993, 267–281.

    Google Scholar 

  11. Schiemann, T., Bomans, M., Tiede, U., Höhne, K. H.: Interactive 3D-segmentation. In Robb, R. A. (Ed.): Visualization in Biomedical Computing II, Proc. SPIE 1808. Chapel Hill, NC, 1992, 376–383.

    Google Scholar 

  12. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In Proc. of the 23rd National Conference of the ACM. ACM-Press, New York, 1968, 517–524.

    Google Scholar 

  13. Thompson, P., Toga, A. W.: A Surface-Based Technique for Warping Three-Dimensional Images of the Brain. IEEE Trans. Med. Imaging 15, 4 (1996), 402–417.

    Google Scholar 

  14. Tiede, U., Schiemann, T., Höhne, K. H.: Visualizing the Visible Human. IEEE Comput. Graphics Appl. 16, 1 (1996), 7–9.

    Google Scholar 

  15. van den Elsen, P. A., Pol, E.-J. D., Viergever, M. A.: Medical image matching — A review with classification. IEEE Engng. Med. Biol. 12, 1 (1993), 26–39.

    Google Scholar 

  16. Wilmer, F., Tiede, U., Höhne, K. H.: Reduktion der Oberflächenbeschreibung triangulierter Oberflächen durch Anpassung an die Objektform. In Fuchs, S., Hoffmann, R. (Eds.): Mustererkennung 1992, Proc. 14. DAGM-Symposium, Springer-Verlag, Berlin, 1992, 430–436.

    Google Scholar 

  17. Wolberg, G.: Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Duncan Gene Gindi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schiemann, T., Höhne, K.H. (1997). Definition of volume transformations for volume interaction. In: Duncan, J., Gindi, G. (eds) Information Processing in Medical Imaging. IPMI 1997. Lecture Notes in Computer Science, vol 1230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63046-5_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-63046-5_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63046-3

  • Online ISBN: 978-3-540-69070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics