Skip to main content

Causal reasoning in multi-agent systems

  • Papers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1237))

Abstract

Causal knowledge involves many interacting concepts that make them difficult to deal with, and for which analytical techniques are inadequate. Usually, a causal map (CM) is employed to cope with this type of knowledge. Causal reasoning is important in multiagent environments because it allows to model interrelationships or causalities among a set of individual and social concepts. This provides a foundation to (1) test a model about the prediction of how agents will respond to (unexpected or not) events; (2) explain how agents have done specific actions; (3) make a decision in a distributed environment; (4) analyze and compare the agents' causal representations. All these aspects are important for coordination, conflict solving and the emergence of cooperation between autonomous agents.

In this paper, we investigate the issue of using cognitive maps (CMs) in multiagent environments. Firstly, we explain through different examples how and why these maps are useful in those environments. Then, we present a formal model which establishes the mathematical basis for the manipulation of (CMs). The formal model is used to derive a cognitive map from a set of assertions, to determine the total effect of any concept variable on any other concept variable.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Axelrod, (Ed.). Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, 1976.

    Google Scholar 

  2. A. H. Bond and L. Gasser, (Eds). Readings in Distributed Artificial Intelligence. Morgan-Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  3. M. G. Bougon. Uncovering Cognitive Maps: The Self-Q Technique. Privately printed handbook, Penn State Univ., 1986.

    Google Scholar 

  4. M. G. Bougon and J. M. Komocar. Directing strategic change: a dynamic wholistic approach. In A. S. Huff, (Ed.), Mapping Strategic Thought. Wiley and Sons, 1990, pp. 135–163.

    Google Scholar 

  5. J. W. Bryant. Hypermaps: a representation of perception in conflicts. Omega, 11, pp. 575–586, 1983.

    Google Scholar 

  6. J. W. Bryant. Modelling alternative realities in conflict and negotiation. J. Opl. Res. Soc., 35, 11, pp. 985–993, 1984.

    Google Scholar 

  7. D. M. Buede and D. Ferrell. Convergence in problem solving: A prelude to quantitative analysis. IEEE Trans. Syst., Man, Cybern., vol. 23, 1993, pp. 746–765.

    Google Scholar 

  8. K. S. Decker. TÆMS: a framework for environment centered analysis and design of coordination mechanisms. In G. M. P. O'Hare and N. Jennings, (Eds), Foundations of Distributed Artificial Intelligence, Wiley InterScience, 1996, pp. 429–448.

    Google Scholar 

  9. E. H. Durfee. Planning in distributed artificial intelligence. In G. M. P. O'Hare and N. Jennings, (Eds), Foundations of Distributed Artificial Intelligence, Wiley InterScience, 1996, pp. 231–246.

    Google Scholar 

  10. E. H. Durfee. Blissful ignorance: knowing just enough to coordinate well. Proc. of the First Int. Conf. on Multi-Agent Systems, MIT Press, San-Francisco, USA, 1995, pp. 406–413.

    Google Scholar 

  11. C. J. Eden, and D. Sims. Thinking in organizations. Macmillan, London, 1979.

    Google Scholar 

  12. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge, MIT Press, 1995.

    Google Scholar 

  13. P. J. Gmytrasiewics and E. H. Durfee. A rigourous, operational formalization In Proc. of the First Int. Conf. on Multi-Agent Systems, 1995, pp. 125–132

    Google Scholar 

  14. J. Hart. Comparative cognition. In [1].

    Google Scholar 

  15. G. A. Kelly. The Psychology of Personal Constructs. New: Norton, 1955.

    Google Scholar 

  16. B. Kosko, Neural Networks and Fuzzy Systems. Prentice Hall. 1992.

    Google Scholar 

  17. B. Laasri, S. Lander, and V. Lesser. A generic model for intelligent negotiating agents. Int. J. Intell. Coop. Inf. Syst. 1(1), 1992, pp. 291–318.

    Google Scholar 

  18. V. R. Lesser and D. D. Corkill. Distributed problem solving. In S. C. Shapiro, (Ed.), Encyc. of Artif. Intel., Wiley, New York,1987, pp. 245–251.

    Google Scholar 

  19. J. C. C. McKinsey. Postulates for the calculus of binary relations. Journ. Symbolic Logic, 5, 1940, pp. 85–97.

    Google Scholar 

  20. B. Moulin and B. Chaib-draa. An overview of distributed artificial intelligence. In G. M. P. O'Hare and N. Jennings, (Eds), Foundations of Distributed Artificial Intelligence, Wiley InterScience, 1996, pp. 3–55.

    Google Scholar 

  21. H. J. Müller. Negotiation Principles. In G.M.P. O'Hare and N. Jennings, (Ed.), Foundations of Distributed Artificial Intelligence, Wiley InterScience, 1996, pp. 211–230.

    Google Scholar 

  22. K. Nakumara, S. Iwai, and T. Sawaragi. Decision support using causation knowledge base. IEEE Trans. Syst., Man, Cybern. vol. SMC-12, 1982, pp. 765–777.

    Google Scholar 

  23. K. S. Park and S. H. Kim. Fuzzy cognitive maps considering time relationships. Int. J. Human-Computer Studies, 42, 1995, pp. 157–168.

    Google Scholar 

  24. L. L. Ross and R. I. Hall. Influence diagrams and organizational power. Admin. Sci. Q., vol. 25, 1980, pp. 57–71.

    Google Scholar 

  25. R. G. Smith. The contract net protocol: high-Level communication and control in a distributed problem solver. IEEE Trans. on Computers, C-29(12), 1980, pp. 1104–1113.

    Google Scholar 

  26. T. Smithin and D. Sims. Ubi Caritas?—Modeling beliefs about charities. Eur. J. Opl Res., vol. 10, 1982, pp. 273–243.

    Google Scholar 

  27. K. R. Sycara. Multiagent compromise via negotiation. In L.Gasser and M. N.Huhns, (Eds), Distributed Artificial Intelligence, vol. 2., Morgan Kaufmann, Los Altos, CA/Pitman, London, 1989, pp. 119–137.

    Google Scholar 

  28. K. E. Weick, The social Psychology of Organizing, Reading, MA: Addison Wesly, 1969.

    Google Scholar 

  29. M. P. Wellman. Inference in cognitive maps. Mathematics and Computers in Simulation, 36, 1994, pp. 1–12.

    Google Scholar 

  30. W. R. Zhang, S. S. Chen, and R. S. King. A cognitive map based approach to the coordination of distributed cooperative agents. IEEE Trans. Syst., Man, Cybern., vol. 22(1), 1992, pp. 103–114.

    Google Scholar 

  31. W. R. Zhang. NPN fuzzy sets and NPN qualitative algebra: a computational framework for bipolar cognitive modeling and multiagent analysis. IEEE Trans. Syst., Man, Cybern., vol. 26(4), 1996, pp. 561–574.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Boman Walter Van de Velde

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaib-draa, B. (1997). Causal reasoning in multi-agent systems. In: Boman, M., Van de Velde, W. (eds) Multi-Agent Rationality. MAAMAW 1997. Lecture Notes in Computer Science, vol 1237. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63077-5_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-63077-5_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63077-7

  • Online ISBN: 978-3-540-69125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics